Утеплитель на фасад: Выбираем материал: чем лучше утеплить фасад дома
Белтеп Фасад 95 — утеплитель для стен дома снаружи
Белтеп Фасад 95 — утеплитель для стен дома снаружиБренд: Белтеп
Страна-производитель: Беларусь
Под заказ
Сфера применения фасадных плит Белтеп ФАСАД 95
Теплоизоляционный слой при устройстве систем утепления фасадов малоэтажных зданий, зданий коттеджного типа, индивидуальной застройки.
Плиты из каменной ваты Белтеп Фасад 95 используются в качестве теплоизоляционного cлоя в системах фасадной изоляции с тонким штукатурным слоем.
* Вся представленная информация на сайте beltep-structura.ru, включая цены товаров, носит исключительно информационный характер и ни при каких условиях не является публичной офертой. Для получения подробной информации о наличии и стоимости указанных товаров и услуг, пожалуйста, обращайтесь по телефону. Характеристики и комплектация товара могут изменяться производителем без уведомления.
Плотность, р | 95 (+5; -5) кг/м3 |
Толщина, d | 50 ÷ 200 мм |
Теплопроводность при температуре 25 °С, не более | 0,0375 λ25, Вт / (м · К) |
Теплопроводность при температуре 10 °С, не более | 0,035 λ10, Вт / (м · К) |
Прочность на сжатие при 10%-ой линейной деформации, не менее | 25 σ10, кПа, |
Паропроницаемость | 0.526 μ, мг/ (м·ч·Па |
Горючесть, класс | НГ |
Теплопроводность при условиях эксплуатации А | 0,0406 λ A,Вт / (м · К) |
Теплопроводность при условиях эксплуатации В | 0,0418 λ B, Вт / (м · К) |
Предел прочности при растяжении перпендикулярно плоскости плиты, не менее | 10 σ mt, кПа |
Влажность, не более | 0,5 % |
Водопоглощение (кратковременное), не более |
На основе 1 оценок
Задать вопрос Добавить отзыв
Олег Карпов Хороший материал.
Заказывал эти фасадные плиты для теплоизоляции фасада моего загородного дома. Пришли в срок, структура у них равномерная, при распаковке был елеуловимый специфический запах ( но он выветривается быстро), укладываются на поверхность хорошо, плиты прилегают друг к другу плотно. За такое качество цена невысокая.
27 июля 2021
Похожие товары
Выбрать материал утеплителя:
Универсальные
Выбрать маркуЛайт Экстра λ=0.0393Лайт λ=0.0393Универсал λ=0.0393
Плиты для вент. фасадов
Выбрать маркуВент 50 λ=0.0399Вент 25 λ=0.0400
Фасадные плиты под штукатурку
Выбрать маркуФасад Т λ=0.0404Фасад λ=0.0418Фасад 12 λ=0.0424Фасад 15 λ=0.0428Фасад 95 λ=0.0526Фасад PRO λ=0.0410
Плиты для совмещенных кровель
Выбрать маркуРуф 30 λ=0.0400Руф 35 λ=0.0408Руф 50 λ=0.0416Руф 60 λ=0.0425Руф 70 λ=0.0431Руф 70 Basic λ=0.0430Руф В 60 λ=0.0429Руф 80 λ=0.0440
Плиты выдерживающие нагрузку
Выбрать маркуФлор 125 λ=0. 0414Флор 190 λ=0.0434
Площадь утепления: м2
Толщина утеплителя: мм
Размер плит: 1200×600 1000×600
Количество упаковок
0 шт.
Объем утеплителя
0 м3
Площадь утеплителя
0 м2
Толщина утеплителя …………..
0 мм.
Вес упаковки ………………………………………..
0 кг.
Общий вес ………………………………………..
0 кг.
Пожалуйста, включите JavaScript в вашем браузере для заполнения данной формы.Имя *
Телефон *
Сообщение
Фасадный утеплитель — Какой лучший, базальтовый, под сайдинг и штукатурку
Содержание:
- Как выбрать фасадный утеплитель
- Виды фасадного утеплителя
- Фасадный утеплитель Rockwool
- Минеральная вата
- Пенополистирол
- Пенопласт
- Эковата
- Базальтовые утеплители для фасада
- Утеплитель фасадный под штукатурку
Вопрос утепления фасада всегда требует ответственного и должного отношения. На рынке предлагается немало различных вариантов, что усложняет выбор. А ведь утеплитель – это объективная необходимость, старые дома нужно утеплять дополнительно, а новые изначально делать достаточно теплыми. Поговорим о том, какой нужно выбирать утеплитель для фасада дома.
Грамотный подход к утеплению стен дает возможность существенно снизить показатель теплопотерь, поэтому вопрос, какой материал выбрать для утепления фасадной части здания и какой утеплитель для стен, всегда стоит остро.
Каждый утеплитель имеет свои преимущества и недостатки в зависимости от критерия отбора. Какой-то материал больше подходит для суровой зимы, какой-то является актуальным в условиях повышенной влажности.
Утепление сооружения возможно несколькими способами – изнутри и снаружи. Более эффективным и чаще используемым считается фасадное утепление. Оно сохраняет тепло в здании, не уменьшая площадь помещения изнутри.
Как выбрать фасадный утеплитель
- Минимальная теплопроводность — основное качество утеплителя.
Она позволяет удерживать тепло в помещении, изолируя от холодного воздуха. Высокая теплопроводность утеплителя потребует использования дополнительных материалов.
- Коэффициент водопоглощения. Этот показатель напрямую влияет на срок эксплуатации материала. Качественным утеплителем считается тот, который впитывает влагу в незначительных количествах, в основном, он должен сопротивляться ее поглощению.
- Высокая паропроницаемость
- Небольшой вес и плотность утеплителя. Имеет значение, когда нельзя создавать излишнюю нагрузку на фундамент. Особенно это касается более старых конструкций.
- Долговечность. Это необходимое условие для более длительной службы материала.
- Экологичность.
Материал утеплителя должен быть абсолютно безопасен для здоровья человека.
- Горючесть. Кроме всего прочего утеплитель должен предохранять здание от случайного огня, поэтому этот показатель весьма важен.
- Возможность отделки своими руками. Этот фактор имеет значение в условиях сокращения бюджетных средств на строительство.
Виды фасадного утеплителя:
Фасадный утеплитель Rockwool
Широко известен во всем мире. Он отвечает высоким требованиям европейского стандарта качества ISO и подходит к жестким российским условиям эксплуатации.
Плиты Rockwool обладают следующими характеристиками:
- высокая паропроницаемость;
- абсолютно негорючи;
- экологичны;
- долговечны;
- монтируются на зданиях всех степеней огнестойкости;
- звуконепроницаемы;
- используются на высоте до 75 метров.
Минеральная вата
Этот материал отличается устойчивостью к повреждениям механического характера, паропроницаемостью и отсутствием риска воспламенения. Но минеральная вата немало весит, что обусловливает необходимость ее крепления к стене дома при помощи большого числа дюбелей. Это уже повышает стоимость утепления. Да и сам материал отличается более высокой стоимость по сравнению с иными.
Однако преимущества данного материала перевешивают недостатки. Например, он идеально сочетается не только с любыми стенами, но и облицовочным материалом – сайдингом. Укладывать проще полужесткие маты размером 0,5 на 1 метр, чем ее рулонный аналог. Перед облицовкой сайдингом минвату защищают пароизоляционной пленкой, чтобы избавить атмосферу от ее мелких частиц.
Пенополистирол
По сравнению с предыдущим материалом пенополистирол более легкий, а также удобный в работе. Утеплитель фасада дома из пенополистирола устанавливается значительно быстрее утеплителя на основе минеральной ваты. Пенополистирол стоит дешевле, к тому же обладает более высокими показателями влагостойкости, чем минеральная вата.
С другой стороны, пенополистирол:
- в меньшей степени устойчив к воздействию огня;
- отличается худшими звукоизоляционными свойствами вследствие небольшой массы;
- может считаться лишь незначительно паропроницаемым.
Пенопласт
Удобен в установке, легкий и жесткий утеплитель. Недостатком является недолговечность, срок его службы составляет 10-15 лет. Низкая паронепроницаемость и звукоизоляция. Этот материал больше подходит для утепления инженерных коммуникаций, нежели жилых зданий.
Эковата
Идеальный утеплитель под сайдинг, который изготовлен из целлюлозы. Она не подвержена возгоранию и гниению благодаря безопасным добавкам в виде буры и борной кислоты.
Базальтовые утеплители для фасада
Это по-настоящему лучшие утеплители для фасада, поскольку они обладают такими свойствами:
- обеспечение звукоизоляции;
- вибростойкость;
- устойчивость к деформации;
- высокий теплоизоляционный уровень;
- наличие огнезащитных свойств;
- возможность сопротивления.
Одним из самых важных преимуществ этого материала является использование его в работах по утеплению криволинейных поверхностей – эркеров, пилястр и других подобных конструкций. Толщина фасадного утеплителя колеблется от 50 до 100 мм.
Утеплитель фасадный под штукатурку
Это минеральная вата в виде плит, которая крепится с помощью специального клеящего состава. Сверху теплоизоляционный слой покрывается специальным армирующим слоем для придания необходимой жесткости и плотности. Эта форма сохраняется на протяжении всего срока эксплуатации. Поверх утеплителя наносится слой штукатурки, который придает зданию привлекательный внешний вид и защищает теплоизоляцию от разрушения.
О технологиях утепления
Утепление фасада может осуществляться различными способами. Так, выделяют технологии «мокрого» фасада и вентилируемого. В первом случае речь идет о таких системах, в которых между фасадным материалом и утеплителем присутствует вентилируемый зазор. Обычно такой технологии придерживаются в промышленном строительстве и гражданском, а также при реконструкции старых зданий и возведении новых.
Обычно используется базальтовый утеплитель для вентилируемых фасадов. Хорошей альтернативой (не менее распространенной, кстати) является и утеплитель для стен фасада на основе минеральной ваты.
Частный случай вентилируемого фасада – обшитый сайдингом дом. Утеплитель для фасадов под сайдинг также чаще всего бывает базальтовым.
Если говорить об утеплителях для «мокрого» фасада, то это, наоборот, отличные от базальта материалы (т.е. пенополистирол и минеральная вата). Вообще «мокрый» фасад – это технология, при которой происходит скрепления между собой слоя теплоизоляции, базового и наружного слоев. Причем наружный слой (штукатурка) наносится еще тогда, когда пребывает в сыром состоянии. Получается, что все слои высыхают впоследствии, что и предопределило название – «мокрый» фасад.
Использование утеплителя для фасадов под штукатурку по «мокрой» технологии отличается рядом преимуществ:
- При подобном утеплении отсутствует нагрузка на фундамент, что приводит к экономии в ходе выполнения строительных работ;
- «Мокрый» фасад обеспечивает менее значительные температурные перепады от окон и стен к центру помещения;
- При жаркой погоде несущие конструкции нагреваются не так сильно.
Таким образом, каждая система утепления характеризуется своими особенностями, для каждой из них характерны свои преимущества. И все это, в конечном итоге, влияет на выбор материала для утепления.
Что такое утепление фасада — утепление наружных стен
by Nick Connor
Утепление фасада — это теплоизолирующая, защитная, декоративная процедура наружной облицовки с использованием различных изоляционных материалов. материалы. Теплотехника
Изоляция фасада – изоляция наружных стен
Основным источником потерь тепла из дома является через стены и фасад . Изоляция фасада представляет собой теплоизоляционную, защитную, декоративную наружную облицовку, включающую использование пенополистирольной изоляции, стекловаты или минеральной ваты, пенополиуретана или фенольной пены, покрытой армированной цементной, минеральной или синтетической отделкой и штукатуркой.
Целью утепления фасада является снижение общего коэффициента теплопередачи за счет добавления материалов с низкой теплопроводностью. Изоляция наружных стен в зданиях является важным фактором для достижения теплового комфорта для его жителей. Изоляция наружных стен, а также другие виды изоляции уменьшают нежелательные теплопотери, а также снижают нежелательное приращение тепла. Они могут значительно снизить энергопотребление систем отопления и охлаждения. Следует добавить, что нет материала, который может полностью предотвратить теплопотери, теплопотери можно только свести к минимуму.
Изоляционные материалы
Как уже было сказано, теплоизоляция основана на использовании веществ с очень низкой теплопроводностью . Эти материалы известны как изоляционные материалы . Обычными изоляционными материалами являются шерсть, стекловолокно, минеральная вата, полистирол, полиуретан, гусиное перо и т. д. Эти материалы очень плохо проводят тепло и поэтому являются хорошими теплоизоляторами.
Следует добавить, что теплоизоляция в первую очередь основана на очень низкой теплопроводности газов. Газы обладают плохой теплопроводностью по сравнению с жидкостями и твердыми телами и, таким образом, являются хорошим изоляционным материалом, если их можно уловить (например, в пенообразная структура ). Воздух и другие газы обычно являются хорошими изоляторами. Но главное преимущество в отсутствии конвекции . Следовательно, многие изоляционные материалы (например, полистирол) функционируют просто благодаря большому количеству заполненных газом карманов , которые предотвращают широкомасштабную конвекцию . Во всех типах теплоизоляции удаление воздуха из пустот еще больше снижает общую теплопроводность изолятора.
Чередование газового кармана и твердого материала приводит к тому, что тепло должно передаваться через много интерфейсов , вызывающих быстрое снижение коэффициента теплопередачи.
Для изоляционных материалов можно определить три основные категории. Эти категории основаны на химическом составе основного материала, из которого производится изоляционный материал.
Далее дается краткое описание этих типов изоляционных материалов.
Неорганические изоляционные материалы
Как видно из рисунка, неорганические материалы можно классифицировать соответственно:
- волокнистые материалы
- Стеклянная шерсть
- Скальная шерсть
- Клеточные материалы
- Расчет Силикат
- Клеточный стеклянный стеклянный стек из нефтехимического или возобновляемого сырья (на биологической основе). Почти все нефтехимические изоляционные материалы представляют собой полимеры. Как видно из рисунка, все нефтехимические изоляционные материалы являются ячеистыми. Материал является ячеистым, когда структура материала состоит из пор или ячеек. С другой стороны, многие растения содержат волокна для прочности, поэтому почти все изоляционные материалы на биологической основе являются волокнистыми (за исключением вспененной пробки, которая является ячеистой).
Органические изоляционные материалы могут быть классифицированы соответственно:
- Нефтехимические материалы (производство нефти/уголь)
- Расширенный полистирол (EPS)
- Экстрадированный полистирол (XPS)
- Polyurethane (PUR)
- Phenolic Papalolic Foololic 6706706706706706706706706706706706706706707067067067067067067067067067067070670706706707067. PIR)
- Возобновляемые материалы (растительного/животного происхождения)
- Целлюлоза
- Пробка
- Древесное волокно
- Конопляное волокно
- Льняная шерсть
- Sheeps Wool
- Изоляция хлопка
Другие изоляционные материалы
- Клеточное стекло
- Airgel
- Вакуумные панели. из мономера стирола, который получают из бензола и этилена, обоих нефтепродуктов. Полистирол может быть твердым или вспененным. Полистирол представляет собой бесцветный прозрачный термопласт, который обычно используется для изготовления изоляции из пенопласта или картона, а также типа насыпной изоляции, состоящей из небольших шариков полистирола.
Пенополистирол 95-98% воздуха. Пенополистирол является хорошим теплоизолятором и поэтому часто используется в качестве строительных изоляционных материалов, например, в изоляционных бетонных опалубках и строительных системах конструкционных теплоизоляционных панелей. Вспененный (EPS) и экструдированный полистирол (XPS) оба сделаны из полистирола, но EPS состоит из маленьких пластиковых шариков, которые сплавляются вместе, а XPS начинается как расплавленный материал, который выдавливается из формы в листы. XPS чаще всего используется в качестве пенопластовой изоляции.
Пенополистирол (EPS) представляет собой жесткий и прочный пенопласт с закрытыми порами. На строительство и строительство приходится около двух третей спроса на пенополистирол. Он используется для изоляции (полых) стен, крыш и бетонных полов. Благодаря своим техническим характеристикам, таким как малый вес, жесткость и формуемость, пенополистирол может использоваться в самых разных областях, например, в лотках, тарелках и рыбных ящиках.
Хотя как вспененный, так и экструдированный полистирол имеют структуру с закрытыми порами, они проницаемы для молекул воды и не могут считаться пароизоляцией. В пенополистироле между вспененными гранулами с закрытыми порами есть промежуточные зазоры, которые образуют открытую сеть каналов между склеенными гранулами. Если вода замерзнет и превратится в лед, она расширится и может привести к отрыву гранул полистирола от пенопласта.
Пример – Потери тепла через стену
Основным источником потерь тепла из дома являются стены. Рассчитайте скорость теплового потока через стену площадью 3 м x 10 м (A = 30 м 2 ). Стена имеет толщину 15 см (L 1 ) и выполнена из кирпича с теплопроводностью k 1 = 1,0 Вт/м.К (плохой теплоизолятор). Предположим, что температура внутри и снаружи помещения составляет 22°С и -8°С, а коэффициенты конвективной теплоотдачи на внутренней и внешней сторонах равны h 1 = 10 Вт/м 2 К и ч 2 = 30 Вт/м 2 К соответственно.
Обратите внимание, что эти коэффициенты конвекции сильно зависят, в частности, от окружающих и внутренних условий (ветер, влажность и т. д.).
- Рассчитайте тепловой поток ( потери тепла ) через эту неизолированную стену.
- Теперь возьмем теплоизоляцию на внешней стороне этой стены. Использовать утеплитель из пенополистирола толщиной 10 см (L 2 ) с теплопроводностью k 2 = 0,03 Вт/м·К и рассчитайте тепловой поток ( потери тепла ) через эту композитную стену.
Решение:
Как уже было сказано, многие процессы теплопередачи включают составные системы и даже включают комбинацию теплопроводности и конвекции. С этими композитными системами часто удобно работать с общим коэффициентом теплопередачи , , известным как U-фактор . U-фактор определяется выражением, аналогичным Закон охлаждения Ньютона :
Общий коэффициент теплопередачи связан с общим тепловым сопротивлением и зависит от геометрии задачи.
- голая стена
Предполагая одномерную теплопередачу через плоскую стенку и пренебрегая излучением, общий коэффициент теплопередачи можно рассчитать как:
Общий коэффициент теплопередачи 3Тогда 0014 равно:
U = 1 / (1/10 + 0,15/1 + 1/30) = 3,53 Вт/м 2 K
Тогда тепловой поток можно рассчитать просто как:
q = 3,53 [ Вт/м 2 К] x 30 [К] = 105,9 Вт/м 2
Суммарные потери тепла через эту стену составят:
q потери = q . A = 105,9 [Вт/м 2 ] x 30 [м 2 ] = 3177 Вт
- композитная стена с теплоизоляцией
Предполагая одномерную теплопередачу через плоскую композитную стену, контактное тепловое сопротивление отсутствует и пренебрегая излучением, общий коэффициент теплопередачи можно рассчитать как:
Тогда общий коэффициент теплопередачи равен:
U = 1 / (1/10 + 0,15/1 + 0,1/0,03 + 1/30) = 0,276 Вт/м 2 К
Тепловой поток можно рассчитать следующим образом:
q = 0,276 [Вт/м 2 К] x 30 [К] = 8,28 Вт/м 2
Суммарный потери тепла через эту стену составят:
q потери = q .
А = 8,28 [Вт/м 2 ] x 30 [м 2 ] = 248 Вт
Как видно, добавление теплоизолятора приводит к значительному снижению тепловых потерь. Следует добавить, что добавление очередного слоя теплоизолятора не приводит к такой большой экономии. Это лучше видно из метода термического сопротивления, который можно использовать для расчета теплопередачи через композитных стен . Скорость устойчивого теплообмена между двумя поверхностями равна разности температур, деленной на общее тепловое сопротивление между этими двумя поверхностями.
Ссылки:
Теплопередача:
- Основы тепломассообмена, 7-е издание. Теодор Л. Бергман, Эдриенн С. Лавин, Фрэнк П. Инкропера. John Wiley & Sons, Incorporated, 2011. ISBN: 9781118137253.
- Тепло- и массообмен. Юнус А. Ценгель. McGraw-Hill Education, 2011. ISBN: 9780071077866.
- Министерство энергетики, термодинамики, теплопередачи и потока жидкости США.
Справочник по основам Министерства энергетики, том 2 из 3. Май 2016 г.
Ядерная и реакторная физика:
- Дж. Р. Ламарш, Введение в теорию ядерных реакторов, 2-е изд., Addison-Wesley, Reading, MA (1983).
- Дж. Р. Ламарш, А. Дж. Баратта, Введение в ядерную технику, 3-е изд., Prentice-Hall, 2001, ISBN: 0-201-82498-1.
- WM Стейси, Физика ядерных реакторов, John Wiley & Sons, 2001, ISBN: 0-471-39127-1.
- Гласстоун, Сезонске. Разработка ядерных реакторов: разработка реакторных систем, Springer; 4-й выпуск, 1994, ISBN: 978-0412985317
- WSC Уильямс. Ядерная физика и физика элементарных частиц. Кларендон Пресс; 1 издание, 1991 г., ISBN: 978-0198520467
- Г. Р. Кипин. Физика ядерной кинетики. Паб Эддисон-Уэсли. Ко; 1-е издание, 1965 г.
- Роберт Рид Берн, Введение в работу ядерных реакторов, 1988 г.
- Министерство энергетики, ядерной физики и теории реакторов США. Справочник по основам Министерства энергетики, том 1 и 2.
Январь 1993 г.
- Пол Ройсс, Нейтронная физика. EDP Sciences, 2008. ISBN: 9.78-2759800414.
Advanced Reactor Physics:
- К. О. Отт, В. А. Безелла, Введение в статистику ядерных реакторов, Американское ядерное общество, исправленное издание (1989 г.), 1989 г., ISBN: 0-894-48033-2.
- К. О. Отт, Р. Дж. Нойхольд, Введение в динамику ядерных реакторов, Американское ядерное общество, 1985, ISBN: 0-894-48029-4.
- Д. Л. Хетрик, Динамика ядерных реакторов, Американское ядерное общество, 1993, ISBN: 0-894-48453-2.
- Э. Э. Льюис, В. Ф. Миллер, Вычислительные методы переноса нейтронов, Американское ядерное общество, 1993, ISBN: 0-894-48452-4.
См. также:
Тепловые потери
Мы надеемся, что эта статья Утепление фасадов – Утепление наружных стен поможет вам. Если это так, дайте нам лайк на боковой панели. Основная цель этого веб-сайта — помочь общественности узнать интересную и важную информацию о теплотехнике.
Категории ТеплотехникаCopyright 2023 Теплотехника | Все права защищены | Атомная энергия | Реакторная физика |
Тепло- и звукоизоляционная пробковая панель для стен MD Facade 50x500x1000 мм — MD Facade
Цена за 1 шт. 61,56 евро
Цена за 2 шт. 44,53 евро Цена за 4 шт.
43,69евро Цена за 6 шт. 37,73 евро Цена за 12 шт.
36,07 евро Цена за 18 шт. 35,37 евро Цена за 24 шт.
- Нефтехимические материалы (производство нефти/уголь)