Утепление стен газосиликатных: Утепление стен из газосиликатных блоков снаружи минеральной (каменной) ватой
Наружное утепление стен и фасада дома газосиликатными блоками: технология укладки, кладка, материалы и инструменты, правила, инструкции
В настоящее время в связи с удорожанием газа и нефти в целях экономии повсеместно внедряются энергосберегающие технологии. И в этом немалую роль играет степень теплоизоляции как жилых, так и производственных зданий и отдельных помещений. Эта статья расскажет вам о выполнении теплоизоляции дома при помощи газосиликатных блоков.
На данный момент стандартные теплопотери здания составляют от 30 до 50%, в зависимости от количества этажей, окон и конструктивных особенностей здания. В жилых домах старой постройки, времен, когда экономии энергоносителей не придавалось такого значения, теплопотери могут достигать 80%. В связи с этим на современном строительном рынке появилось масса разнообразных теплоизоляционных материалов.
Традиционные варианты теплоизоляции
Одним из распространенных теплоизоляторов является минероловатная и пенополистирольная плита. Такие плиты крепятся клеем и дюбелями со специальными широкими пластмассовыми шляпками (эти дюбели называются «грибками»). Сверху на плиту наносится несколько слоев защитно-отделочного покрытия. Подобные покрытия могут быть двух видов: полимерные или полимерцементные. Для прочности крепления защитно-отделочных покрытий на панели предварительно крепится армированная стеклосетка.
К любым системам теплоизоляции предъявляются весьма серьезные требования. Система должна:
- быть самонесущей конструкцией
- сохранять теплозащитные свойства
- иметь хорошую теплоизоляцию
- выполнять защитную функцию
- быть стабильной в сцеплении
Так как 1 квадратный метр различных систем утепления, в зависимости от вида и толщины отделочных материалов и плит, может весить 10-20 кг, то система теплоизоляции должна иметь самостоятельное крепление (быть самонесущей). При этом крепления должны обладать достаточной прочностью и износостойкостью.
Также большое значение имеют изначально высокий показатель теплоизоляции и сохранение теплозащитных свойств материала. Ведь под воздействием внешних факторов и в ходе эксплуатации любой материал постепенно разрушается, что приводит к снижению его теплоизолирующих свойств. Для снижения агрессивного воздействия внешней среды поверх теплоизоляционного слоя наносится специальный защитный слой, который является и отделочным.
Разрушение теплоизоляционного материала происходит вследствие образования конденсата между теплоизоляционным слоем и защитно-отделочным, что в свою очередь способствует деформации защитно-отделочного покрытия и уменьшении сцепления при перепадах температуры (замораживании, оттаивании), воздействии солнечной радиации, изменении влажности. Перепады влажности внутри помещений тоже способствуют образованию конденсата между стеной и теплоизоляционной плитой. Этих перепадов можно избежать при наличии хорошей системы кондиционирования.
Есть и существенная разница в толщине утеплителя для различных регионов. В регионах с более суровым климатом толщина теплоизолирующего слоя увеличивается, что влияет на количество повреждений теплоизолятора в процессе эксплуатации, особенно подвержены повреждениям торцевые части теплоизоляционных плит. Поэтому в последнее время становится популярным утепление при помощи ячеистого бетона. Для этого материала все вышеперечисленные проблемы не характерны. Толщина ячеистого бетона выбирается в зависимости от материала утепляемой стены и коэффициента теплопроводности самого ячеистого бетона. Кроме всего прочего такой способ утепления дешевле в полтора раза за счет материалов входящих в состав ячеистого бетона (цемент, песок, известь, вода), а сами материалы экологически чистые.
Технология утепления газосиликатными блоками
Требования к бетону, применяемому для изготовления газосиликатных блоков и перемычек для утепления стен:
- класс по прочности на сжатие: В 1,0-1,5 — блоки, В 3,5 — перемычки
- марка по плотности: D 500 — блоки, D 700 — перемычки
- марка по морозостойкости — не менее 25
При помощи газосиликатных блоков можно утеплять стены из:
- кирпича
- камня
- мелких и крупных блоков
- бетонных панелей
- объемных блоков
- монолитного бетона
Материалы и инструменты:
- мешалка
- ручная электродрель
- специальные дюбели
- пластмассовое ведро
- мастерки различной ширины
- деревянный или резиновый молоток
- уровень
- разметочный угольник
- пила
- рубанок
- терка
- инструмент для нарезки пазов
- сверла
- мягкая щетка
- цементо-песчаная смесь
- сухая клеевая смесь
Наружное утепление газосиликатными блоками представляет собой кладку по периметру стен, которая опирается на специальные поддерживающие конструкции. Конструкция крепится к наружным стенам полимерными дюбелями со стальными сердечниками и/или полосовыми анкерами. Шляпки дюбелей обязательно утапливают в блоке или перемычке на 2-3 см и покрывают шпатлевкой.
Глубина заделки дюбеля в стену: для бетона — это 5 см, для кирпича и других блоков — 10 см.
Толщина самой кладки должна быть не более 20 см. Соответственно толщина блоков и перемычек не должна превышать те же 20 см. Кладка выполняется цепной перевязкой на специальный газосиликатный клей. По такому же принципу, что и укладка обычных газосиликатных блоков. Но после схватывания клея каждый ряд закрепляется специальными дюбелями. Для этого предварительно засверливают отверстие, после чего забивают дюбель в стену на необходимую глубину в зависимости от типа стены. Дюбели располагают по одному ряду с шагом 1 м и в шахматном порядке по отношению к верхнему и нижнему ряду.
Надежность кладки можно дополнительно увеличить. Для этого на внешней стене делают насечки, как при плиточных работах, а клей наносят не только на горизонтальную поверхность блока и боковые поверхности, которые будут соприкасаться с соседними блоками, но и на боковую поверхность блока, обращенную к стене. Учтите, что такой вариант возможен только при идеально ровной кладке наружной стены и при укладке газосиликатных блоков с минимальным зазором в 2-3 мм.
Утепление стен из газосиликатных блоков снаружи минеральной (каменной) ватой
Утепление стен дома решает массу проблем, возможных или уже существующих. Самая серьезная из них — предотвращение намокания материала стен от постепенного накопления водяного пара, выдавливаемого изнутри дома. Этот процесс никак не остановить, он проходит постоянно, пока в доме живут люди.
Не утепленные стены накапливают влагу, которая либо замерзает на внешней стороне стены и разрушает ее материал, либо конденсируется на внутренней поверхности, отчего стена мокнет, обрастая плесенью или грибком.
Утепление — единственная процедура, которая может прекратить конденсирование влаги и обеспечить вывод пара из стен без потерь качества материала.
В качестве эффективных материалов для утепления могут быть:
- минвата;
- пенопласт;
- экструдированный пенополистирол;
- пеноплекс;
- пенофолом;
- пеноизол;
- пенополиуретан.
Внутреннее и внешнее утепление – особенности и нюансы
С точки зрения физики, эффективное утепление переносит точку росы из стены наружу, лучше всего — в материал утеплителя. Иначе говоря, наличие правильно установленного утеплителя перераспределяет температурный режим в толще стен, делая их теплее и сдвигая холодные слои наружу, отчего область возможного конденсирования пара оказывается вне материала стен.
При этом, на теплой внутренней поверхности стен образование конденсата становится попросту невозможным.
ВАЖНО!
Такой процесс действует с наибольшей отдачей только лишь при наружном расположении утепляющего материала.
Различают внутреннее и внешнее утепление. При внутреннем утеплитель располагается на внутренней поверхности стены, при внешнем — снаружи. Эффективность внутреннего утепления в большой степени зависит от соотношения паропроницаемости стен и утеплителя, который должен создавать большую преграду для пара, чем стена.
В противном случае начнется накопление пара и намокание материалов на границе утеплитель-стена (что зачастую и наблюдается). Обычно для защиты от этого устанавливают сплошную отсечку, отчего вывод пара возможен только при помощи усиленной вентиляции помещения.
Способы утепления стен
Кроме того, материал стен перестает получать тепло изнутри, оставаясь лишь механической преградой для внешних проявлений.
Утепление снаружи намного эффективнее и предпочтительнее. Именно такая технология выводит наружу точку росы, предохраняет тепло стен от рассеивания в наружное пространство и способствует увеличению комфорта внутри дома. Выход пара через стены не имеет препятствий, он не накапливается в толще стены или утеплителя.
Кроме этого, имеется масса других преимуществ:
- Объем помещений не уменьшается.
- Стены изнутри остаются в неприкосновенности, не требуется оформлять оконные блоки заново откосами и подоконниками.
- Состав внутреннего воздуха не содержит излишней влаги.
- Создается дополнительная звукоизоляция от внешних шумов.
Поэтому внутреннее утепление выполняется лишь в дополнение к наружному или когда снаружи работать физически невозможно. Утепление снаружи запускает правильные процессы, причем вероятность ошибки при такой технологии гораздо меньше, что позволяет производить работы своими руками.
Когда необходимо утеплять стены из газобетонных блоков
На первый взгляд рядовому читателю может показаться совершено логичным производить изоляцию сразу после возведения стены здания или даже в процессе ее возведения. Однако, это большое заблуждение! Важно не изолировать газобетонные блоки от внешней среды сразу же после их распаковывания из заводской упаковки. Все дело в том, что после формировки и высыхания блоки формируют в пачки, упаковывая их полиэтиленовой пленкой. Таким образом, блоки сохраняют в себе достаточно высокую влажность, которая под воздействием отрицательных температур непременно будет разрушать материал, приводя в негодность постройку в целом.
Таким образом, утепление дома из газобетонных блоков можно проводить сразу лишь в том случае, если в процессе постройки проводились меры по защите конструкции и материалов от влаги. В противном случае необходима выдержка в течение 2-5 месяцев (в зависимости от климатических особенностей местности), а только после полного высыхания стен можно наносить изоляционный слой.
Основные виды утеплителей
Материалов для утепления стен выпускается довольно много, все они имеют свои характеристики, свои плюсы и минусы. На сегодня наиболее пригодными считаются материалы из синтетики или природных минералов, поскольку они обладают самыми ценными качествами:
- Не гниют.
- Не растворяются в воде.
- Не изменяют свою форму при длительной эксплуатации.
- Обладают низкой теплопроводностью.
- Выпускаются в удобной для монтажных работ форме.
Такими свойствами в большей степени обладают:
- Минвата (в особенности, базальтовая вата),
- Пенопласт.
- Экструзионный пенополистирол.
- Пенополиуретан.
- Пенобетон.
Большинство из наиболее подходящих материалов имеют плитную форму выпуска, наиболее подходящую для установки на стены. Минвата выпускается также в рулонах, но плиты — удобнее, жестче, имеют более четкие размеры.
Утепление бани из газобетона
В первую очередь утепление бани необходимо для снижения затрат на отопление банного помещения. Как и в случае с жилым домом, утеплять баню рекомендуется снаружи.
Важно при выборе утеплителя для бани учитывать, что он должен выдерживать высокие температуры и не выделять при этом вредные вещества, наиболее подходящим материалом является базальтовая вата, обязательно оставлять вентиляционный зазор, чтобы обеспечить просушку утеплителя. Отделку утепленных стен как правило делают вагонкой и вентилируемым фасадом, чтобы обеспечить лучшую циркуляцию воздуха.
Какой утеплитель лучше всего подходит для утепления стены из газосиликатных блоков?
Газосиликат — пористый материал. Он почти на 90% состоит из пузырьков газа, что определяет его свойства — высокое теплоудержание, легкость. При этом, он может впитывать воду, поэтому для сохранения рабочих качеств требуется постоянная возможность беспрепятственного вывода влаги из толщи блоков.
ОБРАТИТЕ ВНИМАНИЕ!
Из всех используемых утеплителей наиболее подходящим для газосиликатных блоков является базальтовая (каменная) вата.
Причины этого кроются в ее свойствах: если у пенопласта или пенополиуретана чрезвычайно низка паропроницаемость, то базальтовая вата хорошо пропускает пар, способствуя выводу его из толщи газосиликата и самого утеплителя.
В этом сочетании стеновой пирог работает эффективным образом, обеспечивая беспрепятственное движение пара в нужном направлении.
Базальтовая (каменная) вата
Варианты материалов для теплоизоляции
Для теплоизоляции газосиликатных домов применяется несколько типов материалов, имеющих положительные и отрицательные качества.
Минеральная вата
Этот материал легко пропускает пар, поэтому распространен в частном строительстве. Он защищает стены от повышенной влажности и низких температур, продлевает срок службы блоков, исключает проблемы, которые возникают при утеплении изнутри. Минеральная вата характеризуется хорошими шумоизоляционными свойствами, огнестойкостью. Утеплитель поставляется под марками URSA, ISOVER, KNAUF. Толщина полотна составляет 50-200 мм.
Минеральная вата — это волокнистый неорганический утеплитель.
Пенополистирол
При производстве утеплителя применяется газ, создающий объем. Пенополистирол имеет невысокую теплопроводность, устойчив к воздействию влаги, хорошо пропускает пар, безопасен и долговечен.
Выпускаются разновидности, самостоятельно затухающие в случае возникновения пожара.
Термопанели
Это многослойный утеплитель, состоящий из пенополистирола и декоративного покрытия. Термопанели часто используют при работе по методике «мокрый фасад». Декоративное покрытие имитирует кирпич или натуральный камень. Оно производится из керамобетона — раствора с пластификаторами, пигментами и антисептическими добавками.
Термопанели являются многослойным утеплителем.
Пенопласт
Распространенный недорогой материал для теплоизоляции жилых домов отличается низкой теплопроводностью, хорошими шумоизоляционными свойствами. Он удобен в установке, имеет малый вес. Для утепления газосиликатных конструкций используют плиты толщиной 10 см. Пенопласт сохраняет свойства в течение 40-50 лет. При выборе плит учитывают плотность. Рекомендованный показатель — 15-25 кг/м³.
Пенополиуретан
Теплоизолятор отличается хорошими эксплуатационными характеристиками. Он прочен, легок, способен к расширению, удобен в монтаже. Однако пенополиуретан относится к легковоспламеняющимся материалам. Утеплитель неустойчив к воздействию щелочей и кислот.
Пенополиуретан легок и удобен в монтаже.
Утепление газосиликатных стен снаружи — устройство стенового пирога
Состав стенового пирога для газосиликатных блоков:
- Поверхность стены.
- Слой утеплителя — оптимально, минваты (базальтовой).
- Слой паро- гидрозащитной мембраны.
- Контробрешетка, обеспечивающая вентиляционный зазор для проветривания поверхности мембраны и позволяющая испаряться влаге.
- Наружная обшивка — сайдинг или подобная, слой огнеупорного или декоративного кирпича и т.д.
Как вариант — на утеплитель кладут клеевой слой, стеклосетку, выравнивающий слой грунтовки и штукатурят.
Стеновой пирог
В некоторых случаях (например, если сборка делалась на цементный раствор, а не на специальный клей) непосредственно на газосиликат может быть нанесен слой паропроводящей штукатурки, для выравнивания поверхности и создания дополнительной защиты газосиликатных блоков от намокания.
Теплопроводность в зависимости от плотности
Наблюдается прямо пропорциональная зависимость этих коэффициентов. Чем выше плотность, тем хуже теплоизоляционные свойства материала. Во избежание повышения расходов на обогрев жилья стены приходится утеплять. От плотности газосиликата зависят:
- необходимость гидроизоляции;
- количество слоев конструкции;
- необходимость теплоизоляции;
- способ укладки блоков.
Проследить зависимость теплопроводности от плотности можно с помощью таблицы.
Плотность, кг/м³ | Показатель теплопроводности Вт/(мС) |
1800 | 0,8-0,9 |
1600 | 0,65-0,78 |
1400 | 0,5-0,6 |
1200 | 0,4-0,53 |
1000 | 0,32-0,4 |
800 | 0,25-0,32 |
600 | 0,2-0,27 |
500 | 0,18-0,24 |
Гидро- и пароизоляция
Пароизоляция для отсечки утеплителя от стены не применяется, так как она вызовет накопление паров, выходящих из массива стен и намокание газосиликата.
Наоборот, требуется свободный проход пара через минвату.
При этом, атмосферная влажность может отрицательно сказаться на свойствах утеплителя, а минвата склонна к намоканию от действия влажности.
Решением служит наружный слой паро-гидроизоляционной мембраны, выпускающей пары изнутри, но не пропускающей влагу снаружи.
Установка мембраны делается максимально сплошным слоем, горизонтальными полосами (начиная снизу), с нахлестом слоев не менее 15 см и обязательной проклейкой соединений специальной липкой лентой.
ОСТОРОЖНО!
Никаких отверстий или нарушений целостности паро- гидрозащитного слоя не допускается!
При финишном слое из штукатурки мембрана не устанавливается, вместо нее поочередно накладываются слои наружной отделки (Клей-стеклосетка-грунтовка-штукатурка), которые в совокупности выполняют роль гидрозащиты.
Как устроен стеновой пирог
Конструкция включает следующие элементы:
- стеновую поверхность;
- утепляющий слой, например из базальтовой ваты;
- паро-, гидроизоляционный слои;
- обрешетку, создающую вентиляционное пространство;
- облицовочный слой (клинкерные панели, сайдинг).
Стеклосетка — это один из самых лучших вариантов для армирования стен.
Иногда поверх утеплителя наносят клей, устанавливают стеклосетку, укладывают слой штукатурки. Если стеновой пирог собирается с применением цементного раствора, газоблоки покрывают паропроницаемой штукатуркой.
Заделка щелей и подготовка обрешетки
Подготовительные работы перед установкой утеплителя — это нанесение защитного грунтовочного слоя, выравнивающего поверхность и смягчающего проводимость клеевых переходов между блоками.
После этого на поверхность стены устанавливается несколько горизонтальных рядов деревянных брусков сечение которых равно толщине утеплителя.
После установки минваты они послужат опорой для планок контробрешетки, необходимой для обеспечения вентиляционного зазора и для установки наружной обшивки. Бруски предварительно покрывают слоем антисептика (дважды), чтобы исключить гниение материала.
Монтаж обрешетки
Как вариант — вместо брусков можно использовать металлический профиль для гипсокартона. Направляющие устанавливаются в том же порядке, крепятся к стене на дюбеля и шурупы (обязательно оцинкованные).
Контробрешетка также может состоять из направляющих для гипсокартона. Соединение вертикальных планок с горизонтальными производится на штатные шурупы под сверло.
Теплоизоляция помещений снаружи — пошаговая инструкция и способы
Работы выполняются 2 способами: по методу мокрого или вентилируемого фасада. Начинают работу с покупки материалов и инструментов, подготовки стен.
Какие инструменты и материалы необходимы для работы
Для утепления дома потребуются:
- теплоизоляционный материал;
- клеевой состав;
- емкость для приготовления раствора;
- перфоратор;
- строительный уровень;
- шпатель;
- выравнивающая грунтовка;
- штукатурка;
- дюбели, шурупы.
Для утепления дома потребуется перфоратор.
Мокрый фасад
Утепление по этой технологии выполняют так:
- Осматривают поверхности стен, устраняют крупные неровности.
- Чертят нижнюю линию, используя веревку с синькой. При необходимости можно закрепить деревянную рейку, препятствующую соскальзыванию первого ряда плит.
- Покрывают пористые поверхности проникающей грунтовкой. На этом этапе не стоит экономить раствор.
- Измеряют величину отклонения углов от горизонтали, используя отвес и веревку. Устанавливают отвесы по всей высоте стен.
- Готовят клеевую смесь. Вначале в емкость вливают воду. После этого постепенно добавляют сухие компоненты.
- Наносят клей на поверхность утеплителя. Если фасад ровный, пользуются гребенкой. В остальных случаях раствор распределяют шпателем или мастерком маячковым способом. На один лист наносят 8 порций клея высотой до 2 см.
- Прикладывают плиту к стене. Пенопласт прижимают и выравнивают рейкой или полутерком, контролируя правильность положения уровнем. Каждый последующий ряд начинают от внутренних углов, перемещаясь к наружным.
- Устанавливают противопожарные перемычки из минеральной ваты той же толщины, что и плиты.
Ширина рассечки должна составлять не менее 20 см.
- Отделывают оконные и дверные проемы. Для утепления лучше использовать минеральную вату. Материал должен перекрывать рамы. На примыкающую к оконному блоку сторону клей не наносят. Щель заливают монтажной пеной.
- После затвердевания клеевого состава плиты дополнительно фиксируют дюбелями.
При технологии мокрый фасад, поверхности покрывают проникающей грунтовкой.
Вентилируемый фасад
Монтажные работы при использовании этой технологии осуществляют так:
- Оценивают кривизну стен. При отсутствии выраженных отклонений выравнивание не требуется.
- Размечают поверхность. Сначала чертят линии-маяки, пролегающие вдоль цоколя и углов. Отмечают промежуточные точки на равном расстоянии друг от друга.
- По разметке устанавливают кронштейны. Для этого проделывают отверстия под анкеры. Под каждый кронштейн подставляют паронитовую прокладку.
- Монтируют минеральную вату так, чтобы она полностью покрывала поверхности.
При укладке в 2 слоя верхние плиты смещают относительно нижних. Совпадение стыков недопустимо, оно способствует появлению мостов холода.
- Укладывают пароизоляционный слой. Монтируют несущий каркас, прикрепляемый к кронштейнам. Так между утепляющим и отделочным слоями появляется наполненное воздухом пространство.
- Устанавливают профили, салазки или кляммеры для крепления облицовки. Укладывают отделочный материал, начиная снизу.
Утепление стен из газосиликатных блоков снаружи минватой
Рассмотрим последовательность действий при утеплении наружной стены плитной базальтовой ватой.
Порядок действий рекомендуется такой:
- Подготовка поверхности стены, при необходимости — нанесение выравнивающего слоя паропроницаемой штукатурки. Демонтаж наружных оконных откосов и прочих элементов, мешающих установке утеплителя.
- Установка горизонтальных брусков (или направляющих для гипсокартона). Нижний ряд располагается по границе цоколя (утеплителя цоколя), последующие располагаются с расчетом плотной укладки плит минваты между ними.
- Установка минваты производится на клей, в качестве дополнительных креплений служат дюбели с широкими шляпками. В качестве клея используется сухая смесь, она продается в бумажных мешках (как для керамической плитки). Выбор клея производится с учетом местных климатических условий.
- Клей рекомендуется наносить как на минвату, так и на стену, поскольку минвата — неоднородный волокнистый материал с рыхлой поверхностью, требующей повышенного расхода клея.
- Стыки плит минваты во избежание образования мостиков холода следует проклеить специальным скотчем или монтажной пеной.
- Монтаж паро- гидроизолирующей мембраны. Работа ведется снизу вверх, ряды пленки укладываются внахлест 15 см и проклеиваются скотчем. Пленка крепится степлером, дополнительно фиксируется скотчем, гвоздями или шурупами.
- После установки мембраны монтируется вертикальная контробрешетка. Шаг рядов составляет 0,6-1 м (зависит от облицовочного материала), Толщина планок должна обеспечивать достаточный вентиляционный зазор — не менее 3 см.
- Установка наружной обшивки.
Устройство в разрезе
Монтаж минеральных плит
Укладка утеплителя
Альтернативный метод утепления
Утепление газосиликатных стен снаружи должно производиться с учетом свойств материала, склонного к намоканию и аккумулированию влаги в своей толще. Поэтому основным условием, обеспечивающим правильную работу стенового пирога, будет беспрепятственный выход пара изнутри и надежная отсечка от влаги снаружи.
Тогда утепление сможет обеспечить экономию тепла, сохранность материала стен и комфорт в помещении.
Как утеплить стены из газобетона своими руками
Итак, стоит напомнить, что стены фасада дома, построенного из газобетонных блоков, можно утеплить различными способами. Однако, зачастую специалисты прибегают к методам и способам, которые можно сделать самостоятельно, своими руками, без привлечения специализированных организаций. Для этих целей можно использовать любой плитовой материал, который и имеет прекрасные теплонепроницаемые характеристики, и монтируется без особого труда и без использования дополнительного узкоспециализированного инструмента. Итак, утепление стен из газобетона своими руками будет означать для владельца дома следующую последовательность действий:
- Выгонка стен из описанного материала в полном объеме, то есть, окончание возведения коробки будущего дома.
- Выдержка в течение 2-5 месяцев для просушки и удаления излишней влаги из газобетонных блоков.
- Проведение работ по теплоизоляции здания снаружи. Для этого потребуется непосредственно сам материал, клеящие составы, контрольные дюбеля-зонтики и традиционный ручной строительный инструмент для сверления, монтажа плит, замешивания клеящего раствора, других производственных процессов.
Таким образом, видно, что все работы по обустройству теплоизоляционного слоя постройки можно выполнить самостоятельно, не прибегая к услугам специализированных организаций. Придерживаясь основных требований при производстве данных работ, соблюдая технологию монтажа, здание, непременно, получит дополнительный термо слой, что, в сочетании с отопительной системой, придаст комнатам внутри комфорта и уюта.
Отчет о мировом рынке промышленной изоляции за 2022 год: рост
| Источник: Исследования и рынки Исследования и рынки
Дублин, 23 ноября 2022 г. (GLOBE NEWSWIRE) — «Рынок промышленной изоляции по форме (труба, одеяло, плита), материалу (минеральная вата, силикат кальция, пенопласт), конечному использованию (энергия, масло). и нефтехимия, газ, химия, цемент, продукты питания и напитки) и регион — глобальный прогноз до 2027 года» добавлен в Предложение ResearchAndMarkets.com .
По прогнозам, объем рынка промышленной изоляции достигнет 5,0 млрд долларов США к 2027 году при среднегодовом темпе роста 5,4% по сравнению с 2022 годом. В 2021 году наибольшая доля рынка принадлежала электроэнергетике, за которой в течение прогнозируемого периода следовал сегмент нефти и нефтехимии.
В стоимостном выражении плиты являются второй наиболее быстрорастущей формой на рынке промышленной изоляции в течение прогнозируемого периода.
Плитная форма утеплителя представляет собой конструкционный или отделочный материал, состоящий из слегка спрессованных листов и специально предназначенный для его теплоизоляционного эффекта. Основным компонентом или материалом для изоляции плит могут быть пластмассы, такие как XPS, стекловата, кальций и силикат. Эта форма используется для тепло- и звукоизоляции в жилых, коммерческих и промышленных помещениях.
Силикат кальция в стоимостном выражении является вторым по величине и самым быстрорастущим материалом на рынке промышленной изоляции в течение прогнозируемого периода.
Силикат кальция представляет собой гранулированный тип изоляции, который состоит из извести и кремнезема, армирован органическими и неорганическими волокнами и отформован в жесткие формы. Он может работать в диапазоне температур от 95F до 1499F. Он в основном используется в нефтехимической, нефтегазовой и энергетической промышленности. В нефтяной и газовой промышленности для оборудования, непрерывно работающего при температуре выше 212°F, или для звукоизоляции используется силикат кальция. Johns Manville и Insulcon BV являются одними из крупнейших производителей изоляции из силиката кальция.
В стоимостном выражении продукты питания и напитки оцениваются как третий самый быстрорастущий сегмент рынка промышленной изоляции в отрасли конечного использования в течение прогнозируемого периода.
Изоляционные материалы используются в трубах, фритюрницах, плитах, резервуарах для хранения и стерилизаторах в сфере производства продуктов питания и напитков. Приготовление и обработка пищи требуют теплоизоляции для экономии энергии и снижения общих эксплуатационных расходов. Используемые изоляционные материалы должны быть пригодны для пищевых продуктов и одобрены правительством. Изоляция на этих объектах помогает снизить затраты на электроэнергию, уменьшить образование конденсата и обеспечить безопасную рабочую среду. Пенопласт в основном используется в этой отрасли для изоляции.
Регион Западной Европы занимает третье место на рынке промышленной изоляции в стоимостном выражении.
Разнообразные отрасли конечного использования, производители, составители компаундов, дистрибьюторы и поставщики технических услуг открывают возможности роста для рынка.
Рыночная динамика
Драйверы
- Увеличивающиеся потребности в энергетике и энергии в развивающихся, а также в развитых экономиках
- Растущая индустриализация в рамках развивающихся экономик
- Правила
- 44444444444443
- 43
- 3
- 3
- 3
- 3
- 43
- 443
- 43
- 43
- 43
- 443
- 43
- 43
- 44444444444444444444444444444443
- 44 Цены на материалы
- Увеличение стоимости изоляционных материалов
Возможности
- Увеличение расходов на инфраструктуру в странах с развивающейся экономикой
- Растущее внедрение технологии промышленной автоматизации
- Новые возможности для изоляционных материалов на основе биоизоля
- Увеличение спроса на высокотемпературные изоляционные материалы
Проблемы
- Высокие затраты на установку и требование квалифицированной рабочей силы
1 Введение
2 Методология исследования
3 Резюме
4 Premium Insights
5 Обзор рынка
6 Рынок промышленной изоляции, по форме
7 Рынок промышленной изоляции, Material
8 Рынок промышленной изоляции, от конечной промышленности.
9 Рынок промышленной изоляции по регионам
10 Конкурентная среда
11 Профили компаний
12 Приложение
Компании, упомянутые
- Aerofoam USA LLC
- Arabian Faberglass Insulation Company Ltd
- Armacell International SA
- Aspen Aerogels, Inc.
- Beijing Hocreboard Building Material.
- Cabot Corporation
- Glassrock Insulation Company Sae
- Insulcon Bv
- Johns Manville
- Kingspan Group plc
- Knauf Insulation
- L’Solante K-Flex SPA
- Nichias Corporation
- NMC International SA
- OWENS CORNING
- PGF IOSTULE
- PROMAT (ETEX)
- ROCKWOOL
- 4 SAINT-GOVAIN (ETEX)
- Drockwool
- 44444444444444444444444444444444444444444444444444444444444444444444444444444444444444444.
- Temati
- Unifrax
- Union Foam Spa
- Visionary Industrial Insulation
Для получения дополнительной информации об этом отчете посетите https://www.
- Мировой рынок промышленной изоляции
Глобальный рынок промышленной изоляцииГлобальный рынок промышленной изоляции
Силикат кальция Промышленная изоляция Изоляционный материал Микропористая изоляция Минеральная вата Теплоизоляция
Контактные данные
КОНТАКТЫ: ResearchAndMarkets.com Лаура Вуд, старший пресс-менеджер [email protected] Чтобы узнать о часах работы E.S.T., позвоните по телефону 1-917-300-0470. Для США/Канады: бесплатный звонок: 1-800-526-8630 Чтобы узнать о часах работы по Гринвичу, позвоните по телефону +353-1-416-8900.
Контакты
Прозрачная изоляция — Проектирование зданий
|
Honeycomb прозрачная изоляция была впервые разработана в 1960-х годах для улучшения изоляционных свойств систем остекления с минимальными потерями светопропускания (Hollands 1965). За последние 25 лет прозрачные изоляционные материалы (ТИМ) применялись для изготовления окон, стен, световых люков, крыш и высокопроизводительных солнечных коллекторов (Долли и др. 19).94, Кошика и Сумати, 2003 г.).
Прозрачные изоляционные материалы выполняют те же функции, что и непрозрачные изоляционные материалы, но обладают способностью пропускать дневной свет и солнечную энергию, уменьшая потребность в искусственном освещении и отоплении. Они передают тепло в основном за счет теплопроводности и излучения, но конвекция обычно подавляется (Kaushika and Sumathy 2003).
Тепловые и оптические свойства прозрачных изоляционных материалов зависят от материала, его структуры, толщины, качества и однородности. Обычно они состоят из стекла или пластика в виде сот, капилляров или закрытых ячеек. В качестве альтернативы для достижения более высоких показателей изоляции можно использовать гранулированный или монолитный аэрогель на основе диоксида кремния.
В зависимости от структуры материала его расположение можно классифицировать как:
- Амортизатор перпендикулярный.
- Абсорбер параллельный.
- Полость.
- Квазиоднородный.
Рисунок 1: Типы прозрачной изоляции
На рис. 2 (ниже) сравнивается теплопроводность различных прозрачных изоляционных материалов и других изоляционных материалов. Okalux Glass Honeycomb представляет собой серийно выпускаемый поглотитель, перпендикулярный ТИМ, с коэффициентом теплопроводности 0,039.Вт/м.К (Платцер и др., 2004).
Полупрозрачный аэрогель кремнезема, квазигомогенный ТИМ, имеет самую низкую теплопроводность среди всех известных твердых тел и составляет 0,004–0,018 Вт/м·К (Yokogawa 2005, Cabot 2009). Только вакуумная технология сравнима с теплопроводностью в районе 0,005 Вт/м·К (Циммерман и др., 2001).
Рисунок 2 – Теплопроводность изоляционных материалов
Остекление TIM обычно состоит из стеклянных или пластиковых капилляров или сотовых структур, зажатых между двумя стеклянными панелями. Эти системы хорошо рассеивают свет, уменьшая блики и тени (Lien et al. 19).97). Коммерческие продукты, такие как остекление Okalux и Arel, могут иметь низкие коэффициенты теплопередачи при хорошем коэффициенте пропускания солнечного света и света.
По данным Hutchins and Platzer (1996), капиллярное остекление Okalux толщиной 40 мм и сотовое остекление Arel толщиной 50 мм могут достигать коэффициента теплопередачи 1,36 Вт/м2К, что сравнимо с современным газонаполненным двойным остеклением. В качестве альтернативы, системы толщиной 80 и 100 мм могут достигать коэффициента теплопередачи 0,8 Вт/м2·К соответственно, что сравнимо с современными газонаполненными тройными стеклопакетами.
Согласно Робинсону и Хатчинсу (1994), применение остекления TIM, как правило, ограничивается мансардными окнами, атриумами и коммерческими/промышленными фасадами, поскольку геометрическая структура TIM имеет тенденцию ограничивать четкий обзор снаружи. Прозрачные изоляционные материалы кажутся наиболее прозрачными, если смотреть спереди, и имеют тенденцию быть непрозрачными, если смотреть под углом. Чтобы увеличить видимую передачу остекления TIM, важно увеличить размер капилляров, уменьшить толщину или рассмотреть прозрачный изоляционный материал на расстоянии (Lien et al. 19).97).
Согласно измерениям, проведенным Хатчинсом и Платцером (1996 г.), нормальный коэффициент пропускания света через сотовое и капиллярное ТИМ-стекло составляет 78 и 84% соответственно. Для сравнения, нормальное светопропускание через стандартное двойное остекление аналогично на 81%. Низкоэмиссионные газонаполненные стеклопакеты с двойным и тройным остеклением могут быть ниже на 66 и 63% соответственно (Хатчинс и Платцер, 1996).
Platzer and Goetzberger (2004) и Wong et al. (2007) утверждают, что коммерческое внедрение прозрачных изоляционных материалов было медленным из-за предполагаемых высоких инвестиционных затрат и ограниченного количества проведенных исследований окупаемости. Пепортье и др. (2000) предполагают, что качество продукции должно быть улучшено, чтобы уменьшить дефекты, такие как шероховатости или оплавленные края, которые могут мешать четкости.
Каушика и Сумати (2003) предполагают, что был достигнут значительный прогресс в снижении стоимости производства прозрачной изоляции . На основании этой более низкой стоимости Wong et al. (2007) рассчитали 3–4-летний период окупаемости промышленного предприятия в Зальцгиттере, Германия, отремонтированного с применением остекления TIM площадью 7 500 м2. Неясно, могут ли эти сроки окупаемости быть непосредственно перенесены на бытовой или коммерческий сектор, но, тем не менее, этот срок окупаемости значительно меньше, чем у новых стеклопакетов.
Исследования в области остекления TIM сосредоточены на разработке систем с использованием прозрачного аэрогеля на основе диоксида кремния. Этот легкий нанопористый материал сочетает в себе высокую светопропускную способность и низкую теплопроводность (Шульц и Дженсон, 2008 г.).
Согласно Bahaj et al. (2008), аэрогелевое остекление часто называют «Святым Граалем» окон будущего, предлагая потенциал для достижения коэффициента теплопередачи всего 0,1 Вт/м2·К, а также высокой солнечной энергии и коэффициента пропускания дневного света примерно 90% (Бахай и др. , 2008 г., Шульц и Дженсон, 2008 г.).
Термические, оптические и инфракрасные свойства кремнеземных аэрогелей хорошо известны. Материал эффективно пропускает солнечный свет, блокируя передачу тепла путем теплопроводности, конвекции и теплового инфракрасного излучения. Кремнеземный аэрогель имеет самую низкую теплопроводность среди всех материалов: от 0,018 Вт/мК для гранулированного кремнеземного аэрогеля до 0,004 Вт/мК для вакуумированного монолитного кремнеземного аэрогеля (Yokogawa 2005, Cabot 2009).
На сегодняшний день было построено несколько небольших прототипов для определения характеристик аэрогеля из монолитного диоксида кремния при остеклении. Образцы помещают между стеклянными листами и вакуумируют, чтобы защитить аэрогель от напряжения и влаги, поскольку большинство аэрогелей являются хрупкими и гидрофильными, а это означает, что они разлагаются при контакте с водой (Zhu et al. 2007, Schultz and Jenson 2008).
Duer и Svendsen (1998) измерили характеристики пяти различных монолитных плит аэрогеля, изготовленных в разных лабораториях, толщиной от 7 до 12 мм. Коэффициент теплопередачи центрального стекла образцов остекления варьировался от 0,41 до 0,47 Вт/м2·К. Солнечное и визуальное пропускание варьировалось от 74 до 78% и от 71 до 73% соответственно.
Дженсен и др. (2004), Шульц и соавт. (2005) и Schultz and Jenson (2008) сообщили о характеристиках монолитного аэрогелевого остекления, произведенного на заводе Airglass AB в Швеции. Самым большим прототипом было окно площадью 1,2 м2, состоящее из четырех монолитных плит размером 55 см × 55 см × 15 мм, встроенных в вакуумный герметичный каркас. Этот прототип достиг коэффициента теплопередачи центральной панели 0,66 Вт/м2К (измерено в лаборатории) и общего значения коэффициента теплопередачи 0,72Вт/м2К (измерено с помощью горячего ящика), что указывает на то, что эффект теплового моста по краям был маленьким. Прямое солнечное пропускание составляло 75–76 %, а нормальное пропускание в видимом спектре — 85–90%.
Несмотря на впечатляющее сочетание термических и оптических свойств, аэрогель из монолитного кремнезема еще не вышел на рынок коммерческого остекления. Согласно Рубину и Ламперту (1983 г.), стоимость, длительное время обработки аэрогеля, сложность изготовления однородных образцов и отсутствие надлежащей защиты от напряжения и влаги являются ключевыми препятствиями, мешающими прогрессу. Дьюер и Свендсен (1998) и Бахадж и др. (2008) предполагают, что требуется дальнейшая работа по улучшению прозрачности образцов, если они заменят обычные окна.
Основная проблема заключается в том, что наноструктура аэрогеля диоксида кремния рассеивает проходящий свет, что приводит к нечеткому изображению. Шульц и Дженсон (2008) утверждают, что благодаря усовершенствованным методам термообработки завод Airglass AB способен производить плитки из аэрогеля с параллельными и гладкими поверхностями, что обеспечивает неискаженный вид при защите от прямого солнечного излучения. Однако при воздействии неперпендикулярного солнечного излучения искажение зрения все равно возникает. Согласно Дженсену и соавт. (2004), Шульц и соавт. (2005) и Schultz and Jenson (2008), остекление аэрогелем является отличным вариантом для больших площадей фасадов, выходящих на север, что позволяет получить чистый прирост энергии в течение отопительного сезона. Ожидается, что благодаря разработкам в области технологий герметизации краев изделия будут иметь срок службы 20–25 лет без ухудшения характеристик (Шульц и Дженсон, 2008 г.).
Использование гранулированного аэрогеля в остеклении предлагает альтернативу монолитному аэрогелю, который дешевле, надежнее и его легче производить в промышленных масштабах. Системы не следует рассматривать как прямую замену прозрачным окнам, поскольку гранулы ограничивают свободный обзор наружу. Наоборот, этот материал позволяет достичь низких значений коэффициента теплопередачи, улучшить светорассеяние и резко снизить передачу звука в тех местах, где внешний вид не является существенным (Wittwer 19).92).
Характеристики глазури из гранулированного аэрогеля первоначально исследовались Wittwer (1992). Значения U от 1,1 до 1,3 Вт/м2К были измерены для стеклопакетов толщиной 20 мм, заполненных гранулами диаметром от 1 до 9 мм. Гранулы меньшего размера обладают лучшими термическими характеристиками, так как через воздушные промежутки между гранулами проходит меньше тепла. Оптически более крупные гранулы аэрогеля пропускали больше света и солнечного света.
Совсем недавно Reim et al. (2002, 2005) измерили и смоделировали характеристики гранулированных аэрогелей, инкапсулированных в 10-миллиметровый пластиковый лист с двойными стенками, зажатый между двумя стеклянными панелями с изолированным газовым наполнением. Лист с двойными стенками был выбран для предотвращения оседания гранул с течением времени, создавая тепловой мост вдоль верхнего края. Для прототипов, содержащих газообразные наполнители криптон/аргон, были рассчитаны такие низкие значения коэффициента теплопередачи, как 0,37–0,56 Вт/м2·К. Без оконных стекол светопропускание составляло 88 и 85% соответственно.
Используя тепловую модель для немецкого климата, Reim et al. (2002) подсчитали, что энергетическая выгода гранулированного аэрогелевого остекления сопоставима с тройным остеклением. Результаты показали, что остекление из гранулированного аэрогеля может снизить риск перегрева на южных и восточных/западных фасадах. На фасадах, выходящих на север, энергетический баланс аэрогелевого остекления был значительно лучше, чем у тройного остекления, благодаря улучшенному сохранению тепла.
Наиболее подробно задокументировано применение прозрачных изоляционных материалов в плоских солнечных коллекторах (Kaushika and Sumathy 2003, Wong et al 2007). Эти системы предназначены для нагрева воздуха или воды под воздействием солнечных лучей. Основными компонентами являются обращенное на юг покрытие TIM, которое передает солнечную энергию, уменьшая при этом конвекционные и радиационные потери в атмосферу, и черную поглощающую солнечную энергию поверхность для передачи поглощенной энергии жидкости (Duffie and Beckman 2006).
Эксперименты Роммеля и Вагнера (1992) показали, что плоские коллекторы, содержащие слои поликарбонатных сот толщиной 50-100 мм, работают хорошо, облегчая рабочие температуры в диапазоне 40-80°C. Более высокие рабочие температуры до 260°С могут быть достигнуты при использовании стеклянных сот, так как пластиковые покрытия подвержены плавлению при температурах выше 120°С (Rommel and Wagner 1992).
Nordgaard и Beckman (1992) смоделировали работу плоских коллекторов, содержащих аэрогель из монолитного кремнезема. Было показано, что снижение коэффициента пропускания солнечного света по сравнению с одинарным стеклопакетом более чем компенсируется снижением тепловых потерь. Свендсен (1992) продемонстрировали, что прототип площадью 1,4 м2, содержащий вакуумированный аэрогель из монолитного кремнезема, был в два раза эффективнее коммерческих высокотемпературных плоских коллекторов.
При дооснащении наружных стен, выходящих на юг, можно использовать прозрачные изоляционные материалы с воздушным зазором сзади для улавливания солнечной энергии. Эта энергия может быть использована либо путем выпуска теплого воздуха внутрь помещения, либо путем пассивного отвода тепла через стену. Согласно Caps and Fricke (1989), Athienitis and Ramadan (1999) и Suehrcke et al. (2004), прозрачные изоляционные материалы, в том числе стеклянные соты, плоские/гофрированные поликарбонатные листы и аэрогель из вакуумированного диоксида кремния, могут обеспечить значительную экономию энергии при модернизации непрозрачных стен жилых и коммерческих помещений. Результаты показывают, что в холодные солнечные дни дополнительный обогрев может не потребоваться, однако в летнее время необходимы стратегии контроля, чтобы свести к минимуму перегрев.
Долли и др. (1994) использовали тестовую ячейку для контроля производительности поликарбонатной сотовой системы TIM. Результаты были экстраполированы для оценки того, как TIM будет работать при модернизации типовых жилых домов Великобритании, построенных по другим строительным стандартам. Прогнозируется, что 8 м2 прозрачного изоляционного материала сэкономят примерно 40 кВтч/м2/год в домах с суперизоляцией и 140 кВтч/м2/год в домах до 19-го века.Дом 30-х годов с крепкими стенами. При сравнительном анализе плоского солнечного коллектора воздуха и непрозрачной стены, облицованной поликарбонатом TIM, Пепортье и Мишель (1995) продемонстрировали увеличение эффективности этих систем по сравнению с обычными системами с одинарным стеклом на 25% и 50% соответственно.
Долли и др. (1994) измерили эксплуатационные характеристики непрозрачных стен, облицованных прозрачной изоляцией , на месте.