Ушп плита: УШП: развод на деньги или экономия средств

фундамент монолитная плита или УШП?

Плитный (или монолитный) фундамент хорошо известен строителям и широко применяется многие десятилетия. А вот УШП (утепленная шведская плита) пополнила список технологий сравнительно недавно – не более 20 лет назад. Сегодня ведутся споры, какой же из этих вариантов лучше.

С этим вопросом нередко обращаются в нашу компанию, чтобы получить консультацию от профессионалов. Рассмотрим этот вопрос поподробнее.

    Содержание статьи

  1. Сравниваем плитный фундамент и УШП
  2. Как они строятся?
  3. Почему стоит выбрать нас

Сравниваем плитный фундамент и УШП

Монолитный фундамент максимально прост – он представляет собой железобетонную плиту, залитую в заранее подготовленный котлован. Простая, надежная, сравнительно дешевая и проверенная временем технология.
УШП имеет значительно более сложный состав, включающий в себя:

  1. фундамент,
  2. коммуникации (водопровод, канализация, дренаж),
  3. утеплитель,
  4. систему теплых полов.

О плюсах и минусах утепленной шведской плиты Вы можете узнать здесь

О ценах и строительстве УШП нашей компанией Вы можете узнать здесь

Разумеется, вселяться в дом, построенный на УШП, значительно легче – все коммуникации уже подведены. Утеплитель защищает почву под домом от промерзания и пучения. Теплые полы позволяют легко поддерживать в жилых помещениях оптимальную температуру. К тому же, гладкая бетонная поверхность позволяет обойтись без черновой отделки – прямо на пол можно положить паркет, ламинат или линолеум, не тратя лишних денег на дополнительный ремонт.

Казалось бы, УШП выигрывает у плитного фундамента по всем параметрам. Но если рассмотреть оба варианта более подробно, то выявится множество дополнительных факторов. Начнем с монолитного фундамента.

Значительная толщина позволяет ему выдерживать значительные нагрузки на сжатие, изгиб и растяжение, а большая площадь обеспечивает равномерное распределение нагрузки по грунту. Максимальная простота гарантирует надежность и долговечность – ломаться в ней практически нечему.

С УШП всё значительно сложнее. Начать с того, что более сложное устройство существенно повышает стоимость – в результате за фундамент придется отдать до трети бюджета всего дома. Коммуникации, вмонтированные в бетон, также являются весьма спорным решением – если прорвет канализацию или водопровод, то для ремонта придется разбирать часть фундамента, что доставит немало хлопот. К тому же, УШП обычно имеет значительно меньшую толщину, что сказывается на несущей способности и прочности.

Поэтому выбрать подходящее основание для дома не всегда бывает легко – заказчик должен сам решить, какие факторы являются для него наиболее важными – экономия и надежность или комфорт.

Как они строятся?

Строительство монолитного фундамента максимально упрощено. Подготавливается котлован, собирается опалубка, засыпается песочная подушка, поверх которой укладывается арматурный каркас, и заливается бетон. Вот и все – спустя несколько недель можно приступать к строительству. УШП имеет гораздо более сложную схему строительства:

  1. Укладка песочной подушки толщиной в 10 сантиметров и более;
  2. Установка пенополистирола – специального листового утеплителя, похожего на пенопласт, но гораздо более плотного и крепкого;
  3. Монтаж отмостки, представляющей собой дополнительный теплоизолятор, защищающий почву под домом от промерзания;
  4. Укладка коммуникаций;
  5. Сборка арматурного каркаса;
  6. Установка теплых полов – электрических или водяных;
  7. Заливка бетонной стяжки, выполняющей функцию черновых полов на первом этаже.

Как видите – процесс монтажа довольно сложен, поэтому лучше будет доверить работу настоящим профессионалам, способным выполнить все строго по выверенной технологии.

Получить бесплатную консультацию инженера

Введите Ваш телефон:

По этому номеру мы свяжемся с Вами для консультации

Получение консультации вас НИ к чему не обязывает. Вы можете отказаться в любой момент

Почему стоит выбрать нас

Сотни клиентов, которым нужно построить фундамент в Санкт-Петербурге, предпочитают довериться СК Гарант.

Мы известны на рынке услуг много лет и обладаем безупречной репутацией. Чтобы заработать её, компания безупречно выполнила сотни заказов различной сложности. Разумеется, мы не станем рисковать своей репутацией, выполняя некачественно хоть один заказ.

Самые сложные проекты могут быть просчитаны опытными проектировщиками и воплощены в жизнь профессиональными монтажниками под присмотром технологов. Ну а политика демократичных цен делает сотрудничество с нами не только приятным и надежным, но и максимально выгодным.

Утепленная шведская плита | Наше место

Статьи / Инновации в строительстве

Назад к списку статей

Для строительства домов возможно использование современного фундамента- утепленная шведская плита (УШП). Это один из видов фундаментов малого заглубления, который были придуман и активно используется в скандинавских странах. Конструкция шведской плиты представляет собой многослойную структуру, включающую в себя дренажную систему, канализацию, систему водоснабжения, утеплитель и теплые полы. Фундамент УШП — это полноценный пол первого этажа, подготовленный к финальной отделке.

Утепленная шведская плита. Преимущества

  • Готовый пол. Утепленная шведская плита — надежная конструкция основания будущего дома с встроенными коммуникациями, и, что не мало важно: идеально ровная поверхность для укладки чистового пола! Нам не понадобится возводить первое перекрытие — оно уже готово, причем за счет укладки в фундамент труб водяного отопления мы получаем пол-батарею, который будет отапливать первый этаж без дополнительных электроприборов.
    Конвекторы, батареи, калориферы — больше не нужны, ведь у нас теплый фундамент.
  • Быстро. На устройство утепленной шведской плиты, включая устройство опалубки, укладку коммуникаций, труб теплого пола, теплоизоляции, армирование и заливку уходит всего неделя. Использование специальной техники не понадобится. Достаточно бригады из 4-х человек. Сроки в строительстве — самое важное, и за счет использования современных материалов, мы получили возможность сократить их до минимума.
  • Надежно. Что нам нужно от фундамента? Чтобы он не «гулял» — соответственно необходимо исключить морозное пучение грунта под основанием. Этот вопрос как раз решает хороший морозостойкий утеплитель, который выпускается специально только для использования в шведских плитах, поэтому мы закладываем в конструкции наших фундаментов именно его. К тому же, он обладает самыми высокими прочностными параметрами среди всех аналогов на рынке, поэтому будет выдерживать самые серьезные нагрузки как со стороны грунтов, так и со стороны ограждающих конструкций.
  • Удобно. Простая и быстрая технология устройства шведской плиты позволяет возвести фундамент на любой почве — будь то супесь, глина, водонасыщенные или слабонесущие грунты.
  • Энергоэффективно. Теплопотери через стены фундамента могут достигать 20% от общей величины — то есть одну пятую часть тепла мы теряем через основание нашего дома. Утепленная шведская плита значительно снижает этот процент, приводя его к минимуму. Использование утеплителя толщиной 20 см приближает параметры энергоэффективности фундамента к европейским нормам.

Этапы строительства утепленной шведской плиты

Шаг 1 — Разметка подъездной дороги

Шаг 2 — Разметка пятна застройки

Шаг 3 — Разработка котлована

Шаг 4 — Укладка геотекстиля

Шаг 5 — Трамбовка песчаного основания

Шаг 6 — Трамбовка песчаного основания

Шаг 7 — Устройство подъездной дороги

Шаг 8 — Монтаж гильз под ввод инженерных коммуникаций

Шаг 9 — Устройство прифундаментного дренажа

Шаг 10 — Монтаж опалубки

Шаг 11 — Утепление фундамента экструдированным пенополистеролом

Шаг 12 — Армирование фундаментной плиты

Шаг 13 — Устройство системы тёплый пол

Шаг 14 — Устройство системы тёплый пол

Шаг 15 — Коллектор системы_тёплый пол

Шаг 16 — Фундамент перед заливкой

Шаг 17 — Заливка фундаментной плиты

Шаг 18 — Заливка фундаментной плиты

Шаг 19 — Добавка присадки в бетонную смесь

Шаг 20 — Готовый фундамаент УШП

Шаг 21 — Готовый фундамент УШП


Формула для расчета числа теоретических тарелок: SHIMADZU (Shimadzu Corporation)

Добавить закладку

Введение

N, число теоретических тарелок, является одним из показателей, используемых для определения производительности и эффективности колонок, и рассчитывается по уравнению (1).

・・・1) где tr: время удерживания и W: ширина пика

Ширина этого пика, W, основана на пересечении базовой линией касательных линий к пику Гаусса, что эквивалентно ширине пика на уровне 13,4 % от высоты пика.
Однако для упрощения расчета и учета негауссовых пиков на практике используются следующие методы расчета.

Рис. 1 Ширина пика

1. Метод касательной линии

Ширина пика — это расстояние между точками, в которых линии, касающиеся левой и правой точек перегиба пика, пересекают базовую линию, рассчитывается по уравнению (1). Этот метод используется в USP (Фармакопея США).

Это приводит к малым значениям N при большом перекрытии пиков.

Это также представляет проблему, если пик искажен, так что он имеет несколько точек перегиба.

・・・1)

2. Метод половинной высоты пика

Ширина рассчитывается по ширине на половине высоты пика (W 0,5 ). Поскольку ширину можно легко рассчитать вручную, это наиболее широко используемый метод. Это метод, используемый DAB (Немецкая фармакопея), BP (Британская фармакопея) и EP (Европейская фармакопея).

・・・2)

Японская фармакопея 15-й редакции, выпущенная в апреле 2006 г., изменила коэффициент с 5,55 до 5,54.

(LCsolution позволяет выбрать коэффициент с помощью настройки [Column Performance], где метод расчета для 5,54 — «JP», а для 5,55 — «JP2».
Для более широких пиков метод половинной высоты пика приводит к большим значениям N чем другие методы расчета

・・・2)

3. Метод Area Height

Ширина рассчитывается на основе значений площади пика и высоты. Этот метод обеспечивает относительно точную и воспроизводимую ширину даже для искаженных пиков, но приводит к несколько большим значениям N при значительном перекрытии пиков.

・・・3) A: Площадь, H: Высота

4. Метод ЭМГ (экспоненциально модифицированный гауссов)

В этом методе вводятся параметры, учитывающие асимметрию пиков, и используется ширина пика на уровне 10 % высоты пика (W 0,1 ). Поскольку он использует ширину вблизи базовой линии, он приводит к большим значениям N, чем другие методы для широких пиков. Кроме того, он не может вычислить ширину, если пик полностью не отделен.

・・・4) a 0,1 : Ширина первой половины пика на 10 % высоты b 0,1 : Ширина второй половины пика на высоте 10 %

Сравнение методов расчета

Учитывая пик Гаусса, каждый из этих методов расчета дает одно и то же значение N. Однако обычно пики имеют тенденцию иметь некоторый хвост, что приводит к различным значениям N для разных методов расчета.


Таким образом, четыре метода расчета сравнивались с использованием хроматограмм. Профиль A показывает типичную хроматограмму (с небольшим хвостом), тогда как профиль B показывает хроматограмму со значительным хвостом. Теоретическое количество тарелок, рассчитанное с использованием четырех методов, указано в таблице ниже. Результаты для N различались даже для хроматограммы A. Кроме того, пики с более значительным искажением, такие как пик 1 на профиле B, могут привести к многократным различиям значений N.
Ключевым фактором для проведения надежного количественного анализа является возможность или невозможность разделения, поэтому существует общее мнение, что более практичным является метод расчета, который оценивает более широкие пики, например, с хвостом. Однако, к сожалению, единого мнения относительно N и W, по-видимому, нет.
Следовательно, если для оценки уже используется определенный метод, то для достижения корреляции, вероятно, предпочтительнее продолжать использовать тот же метод.

Рис. 2 Хроматограммы

Сравнение теоретического количества чашек

  A (примерно типичный пик) B (значительный хвост)
1 2 3 4 1 2 3 4
Метод половинной высоты пика 15649 20444 20389 22245 5972 7917 9957
Метод касательной линии 14061 18516 20309 21447 5773 7692 5795 9707
Метод площади и высоты 13828 19207 17917 21020 4084 7845 6217 8641
Метод ЭМГ 10171 15058 14766 17836 1356 4671

Дефис означает, что расчет был невозможен. В методе половинной высоты пика в качестве коэффициента использовали 5,54.

Программное обеспечение рабочей станции LC компании Shimadzu может выводить отчеты о производительности с использованием любого из указанных выше методов: 1. касательная линия, 2. высота полупика (5,54), 2 фута. высота половины пика (5,55), 3. высота области или ЭМГ. Мы рекомендуем записывать соответствующие результаты работы колонки вместе с аналитическими результатами!

 

  • Линейка продуктов для жидкостной хроматографии
  • Линейка жидкостных хроматографов и масс-спектрометров

 

Теоретические планшеты ‘N’ и их определение в анализе ВЭЖХ: Pharmaguideline

Узнайте о теоретических плашках N и их расчете в ВЭЖХ с использованием времени удерживания и ширины пика. Это полезный параметр для определения пригодности системы.

Теоретические планшеты известны как средство измерения эффективности колонки для ВЭЖХ. Любая хроматографическая колонка не имеет физической тарелки, а является результатом математического расчета.

Колонки с большим количеством теоретических тарелок считаются более эффективными при ВЭЖХ-разделении, чем колонки с меньшим количеством теоретических тарелок. Более эффективная колонка для ВЭЖХ будет иметь более узкий пик, чем менее эффективная колонка с меньшим числом теоретических тарелок при том же времени удерживания.

Связанный: Принцип ВЭЖХ

Для разрешения узких пиков при анализе лекарств необходима высокая эффективность колонки. Следовательно, разрешение пиков также зависит от эффективности колонки, т.е. теоретических тарелок. Теоретические тарелки рассчитываются на метр длины колонны и часто называются Нм. В соответствии с Фармакопеей США (USP) для расчета теоретических тарелок колонок для ВЭЖХ используется следующая формула.

n = 16 (V E /W B ) 2

, где,

n = теоретические пластины

V E = Время хранения

W B = Пик. плиты должны определяться при конкретных заданных условиях; в частности, важную роль играет температура, которая изменяет количество теоретических тарелок. Фактор удерживания (k) испытуемого растворенного вещества, используемого для определения теоретических тарелок, должен быть больше 5. Коэффициент удерживания менее 5 может дать неточное количество теоретических тарелок.


Связанные: коэффициент разрешения, коэффициент хвоста, теоретические тарелки и коэффициент емкости в ВЭЖХ

При сравнении эффективности двух колонок; должны быть одинаковые температурные условия и коэффициент удерживания (k) для достоверной оценки их эффективности.

Все колонки имеют разное количество теоретических тарелок. Как правило, он колеблется в пределах 8000-12000, но также зависит от скорости потока, вязкости подвижной фазы и молекулярной массы анализируемого соединения. В обращенно-фазовой хроматографии его определяют с помощью простых гидрофобных соединений, таких как толуол, нафталин или аценафтен, а подвижная фаза содержит более высокую концентрацию органических растворителей, имеющих низкую вязкость.

LEAVE A REPLY

Ваш адрес email не будет опубликован. Обязательные поля помечены *