Толщина утеплитель: Как рассчитать толщину утеплителя
Толщина утеплителя, сравнение теплопроводности материалов ГК ВЕРИ
Необходимость использования Систем утепления WDVS вызвана высокой экономической эффективностью.
Вслед за странами Европы, в Российской Федерации приняли новые нормы теплового сопротивления ограждающих и несущих конструкций, направленные на снижение эксплуатационных расходов и энергосбережение.
С выходом СНиП II-3-79*, СНиП 23-02-2003 «Тепловая защита зданий» прежние нормы теплового сопротивления устарели. Новыми нормами предусмотрено резкое возрастание требуемого сопротивления теплопередаче ограждающих конструкций.
Теперь прежде использовавшиеся подходы в строительстве не соответствуют новым нормативным документам, необходимо менять принципы проектирования и строительства, внедрять современные технологии.
Как показали расчёты, однослойные конструкции экономически не отвечают принятым новым нормам строительной теплотехники. К примеру, в случае использования высокой несущей способности железобетона или кирпичной кладки, для того, чтобы этим же материалом выдержать нормы теплового сопротивления, толщину стен необходимо увеличить соответственно до 6 и 2,3 метров, что противоречит здравому смыслу. Если же использовать материалы с лучшими показателями по тепловому сопротивлению, то их несущая способность сильно ограничена, к примеру, как у газобетона и керамзитобетона, а пенополистирол и минвата, эффективные утеплители, вообще не являются конструкционными материалами.
На данный момент нет абсолютного строительного материала, у которого бы была высокая несущая способность в сочетании с высоким коэффициентом теплового сопротивления.
Чтобы отвечать всем нормам строительства и энергосбережения необходимо здание строить по принципу многослойных конструкций, где одна часть будет выполнять несущую функцию, вторая — тепловую защиту здания. В таком случае толщина стен остаётся разумной, соблюдается нормированное тепловое сопротивление стен.
Системы WDVS по своим теплотехническим показателям являются самыми оптимальными из всех представленных на рынке фасадных систем.
Таблица необходимой толщины утеплителя для выполнения требований действующих норм по тепловому сопротивлению:
Таблица, где:
1 — географическая точка
2 — средняя температура отопительного периода
3 — продолжительность отопительного периода в сутках
4 — градусо-сутки отопительного периода Dd, °С * сут
5 — нормируемое значение сопротивления теплопередаче Rreq, м2*°С/Вт стен
6 — требуемая толщина утеплителя
Условия выполнения расчётов для таблицы:
1. Расчёт основывается на требованиях СНиП 23-02-2003
2. За пример расчёта взята группа зданий 1 — Жилые, лечебно-профилактические и детские учреждения, школы, интернаты, гостиницы и общежития.
3. За несущую стену в таблице принимается кирпичная кладка толщиной 510 мм из глиняного обыкновенного кирпича на цементно-песчаном растворе l = 0,76 Вт/(м * °С)
4. Коэффициент теплопроводности берётся для зон А.
5. Расчётная температура внутреннего воздуха помещения + 21 °С «жилая комната в холодный период года» (ГОСТ 30494-96)
6. Rreq рассчитано по формуле Rreq=aDd+b для данного географического места
7. Расчёт:
Формула расчёта общего сопротивления теплопередаче многослойных ограждений:
R0= Rв + Rв.п + Rн.к + Rо.к + Rн
Rв — сопротивление теплообмену у внутренней поверхности конструкции
Rн — сопротивление теплообмену у наружной поверхности конструкции
Rв.п — сопротивление теплопроводности воздушной прослойки (20 мм)
Rн.к — сопротивление теплопроводности несущей конструкции
Rо. к — сопротивление теплопроводности ограждающей конструкции
R = d/l
d — толщина однородного материала в м,
l — коэффициент теплопроводности материала, Вт/(м * °С)
R0 = 0,115 + 0,02/7,3 + 0,51/0,76 + dу/l + 0,043 = 0,832 + dу/l
dу — толщина теплоизоляции
R0 = Rreq
Формула расчёта толщины утеплителя для данных условий:
dу = l * ( Rreq — 0,832 )
а) — за среднюю толщину воздушной прослойки между стеной и теплоизоляцией принято 20 мм
б) — коэффициент теплопроводности пенополистирола ПСБ-С-25Ф l = 0,039 Вт/(м * °С) на основании протокола испытаний*
в) — коэффициент теплопроводности фасадной минваты l = 0,041 Вт/(м * °С) на основании протокола испытаний*
* — в таблице даны усреднённые показатели необходимой толщины этих двух типов утеплителя.
Примерный расчёт толщины стен из однородного материала для выполнения требований СНиП 23-02-2003 «Тепловая защита зданий».
* для сравнительного анализа используются данные климатической зоны г. Москвы и Московской области.
Условия выполнения расчётов для таблицы:
1. Нормируемое значение сопротивления теплопередаче Rreq = 3,14
2. Толщина однородного материала d= Rreq * l
Таким образом, из таблицы видно, что для того, чтобы построить здание из однородного материала, отвечающее современным требованиям теплосопротивления, к примеру, из традиционной кирпичной кладки, даже из дырчатого кирпича, толщина стен должна быть не менее 1,53 метра.
Чтобы наглядно показать, какой толщины необходим материал для выполнения требований по теплосопротивлению стен из однородного материала, выполнен расчёт, учитывающий конструктивные особенности применения материалов, получились следующие результаты:
В данной таблице указаны расчётные данные по теплопроводности материалов.
По данным таблицы для наглядности получается следующая диаграмма:
* — статья отредактирована 12.05.2008
«Всё о системах утепления фасадов»
Оригинал новости «Какой толщины должен быть утеплитель, сравнение теплопроводности материалов. »
Толщина утеплителя для стен: пример расчета, калькулятор
Содержание
- 1 Зачем рассчитывать толщину утеплителя?
- 2 От чего зависит толщина?
- 3 Расчет толщины утеплителя для стен
- 4 Толщина утеплителя для каркасных стен
- 5 Толщина утеплителя для стен: калькулятор
Дома, предназначенные для круглогодичного проживания, нужно утеплять. И утепление стен является одним из важнейших этапов строительства. Важно не только правильно подобрать утеплитель, но и понять, какая его толщина необходима для грамотной теплоизоляции дома.
Зачем рассчитывать толщину утеплителя?
Толщина утеплителя для наружных стен – не постоянная величина. Она меняется в зависимости от совокупности факторов. Все рекомендации о том, какой толщины взять тот или иной утеплитель, будут лишь примерными. И на них вряд ли стоит опираться.
Расчет утеплителя для стен сугубо индивидуальная процедура. И на самом деле она не так сложна, как может показаться на первый взгляд. Провести расчеты можно самостоятельно, не обращаясь к специалистам.
Проводить расчеты обязательно, так как недостаточная толщина утеплительного контура приведет к тому, что дом будет промерзать, влага, образующаяся внутри фасада станет благоприятной средой для грибков и плесени. И напротив, закупив более толстый утеплитель, чем требуется, вы зря потратите бюджет на бесполезный дополнительный объем материала.
В связи с этим, основное назначение расчетов – найти золотую середину.
От чего зависит толщина?
Итак, перед тем, как рассчитать толщину утеплителя для стен, необходимо определить ряд параметров, от которых она зависит. Очевидно, что на толщину в первую очередь будут влиять климатические условия. Кроме того, важно также, из каких материалов построен дом, какой толщины стены и проч.
Вот параметры, значения которых потребуются для предстоящих расчетов:
- Коэффициент минимально допустимого сопротивления теплоотдаче в регионе.
- Теплопроводность всех материалов, используемых при строительстве и отделке стен, а также толщина каждого из слоев.
- Теплопроводность самого утеплителя.
Параметр под первым номером определяется строительными нормативами. Значения по регионам приведены в соответствующем СНиП. Мы приведем ряд значений для крупных городов в таблице ниже.
Что касается теплопроводности стройматериалов и выбранного утеплителя, то данные значения можно получить из технической документации, прилагаемой к изделиям.
Расчет толщины утеплителя для стен
Покажем порядок расчетов на гипотетическом примере. Итак, предположим мы строим дом из пенобетона. Снаружи стена будет штукатуриться, внутри также будет нанесена гипсовая штукатурка. Дом строится в Твери.
Исходные данные, которые мы имеем:
- Пенобетон (толщина – 0,4м, теплопроводность – 0,55 Вт/м*0С.
- Песчано-цементная штукатурка (толщина 4см, теплопроводность — 1,1 Вт/м*0С).
- Гипсовая штукатурка (толщина – 2см, теплопроводность 0,31 Вт/м*0С).
- Утеплитель пенополистирол (теплопроводность – 0,028 Вт/м*0С).
Требуется рассчитать толщину пенополистирола.
Для начала определим Т – минимальный порог сопротивления пеплоотдаче. Из таблицы мы видим, что в Твери он равен 3,31 Вт/м*0С.
Теперь высчитаем, каким суммарным сопротивлением обладают все материалы, помимо утеплителя Т1. Чтобы узнать значение сопротивления по каждому материалу, нужно его толщину разделить на значение теплопроводности.
Таким образом получаем:
Т1= 0,4/0,55 + 0,04/1,1 + 0,02/0,31 = 0,73 + 0,04 + 0,06 = 0,83
Чтобы понять, какая толщина утеплителя для стен будет оптимальной, высчитаем разницу между Т и Т1:
3,31 – 0,83 = 2,48.
Мы получили ту недостающую стенам величину сопротивления теплоотдаче, которой должен соответствовать утеплительный слой.
Теперь, наконец, можно высчитать, какой толщины утеплитель нам потребуется.
Для этого полученное значение нужно умножить на показатель теплопроводности утеплительного материала:
2,48 * 0,028 = 0,07м.
Таким образом, минимальная толщина пенополистирола данном случае равна 7см. Расчет по данному алгоритму является наиболее точным.
Толщина утеплителя для каркасных стен
Этот параметр определяется абсолютно аналогично, по приведенной выше схеме. Как правило, утеплителем в данном случае является базальтовая вата.
При расчетах для каркасников также учитывают теплопроводность и толщину каждого из слоев «пирога». Тонкими прослойками, как пароизоляция, при расчетах можно пренебречь.
Толщина утеплителя для стен: калькулятор
Для выполнения приблизительных расчетов вы можете также воспользоваться онлайн-калькулятором.
Одним из наиболее частых вопросов, которые нам задают наши клиенты, является значение теплопроводности этой изоляции труб. На этот вопрос легко ответить, если речь идет о строительной изоляции и теплоизоляционных плитах, поскольку поверхности изделий плоские. У изоляции труб поверхность не плоская, а изогнутая, что значительно усложняет расчет R-коэффициента. В этом руководстве мы не будем вдаваться в математические уравнения расчета значения R, мы просто объясним следующее:
1. Каково основное определение R-значения?
В самых общих чертах значение R можно рассматривать как изоляционную способность или тепловое сопротивление. Чем выше значение R, тем больше изолирующая способность. Более высокие значения R более эффективны для максимальной экономии энергии.
2. Почему расчет R-значений для изоляции труб отличается от расчета теплоизоляции зданий (плоская изоляция).
Строительная изоляция плоская, что позволяет определить R-значение по фактической толщине изоляции. Изоляция трубы изогнута, поэтому площадь поверхности изменяется в зависимости от толщины изоляции и размера трубы. Чем меньше труба и чем толще изоляция, тем больше количество изоляции в этом пространстве. На приведенной ниже диаграмме мы пытаемся показать две трубы с изоляцией толщиной 1 дюйм. Как видите, меньшая труба будет иметь большую площадь изоляции, основанную на разнице между площадью внешней поверхности изоляции и площадью поверхности трубы.
2. Почему R-значения для изоляции труб из стекловолокна различаются для разных размеров труб.
Как показано на диаграмме выше, «Эквивалентная толщина» больше для меньшей трубы.
Например, изоляция трубы 1 x 1 будет иметь эквивалентную толщину 1,541 дюйма, а изоляция трубы 5 x 1 будет иметь эквивалентную толщину 1,104 дюйма. Изоляция 5 x 1 будет более плоской и ближе к 1 дюйму, чем изоляция 1 x 1, что почти равноценно плоской изоляции 1-1/2 дюйма из-за сравнения размеров труб.
3. Почему R-значения между различными типами изоляционных материалов для труб различаются в зависимости от средней температуры.
R-значение изоляции делится на два фактора; a.) толщина изоляции и b.) значение K типа изоляции при средней температуре. Чем ниже значение К для изоляционного материала при определенной средней температуре, тем лучше. Значения K будут варьироваться в зависимости от средней температуры ( Например, при средней температуре 100° стекловолокно будет иметь K-0,24, а при 400° стекловолокно будет иметь более высокий K 0,39.. Таким образом, R-значение стекловолокна при 100° будет выше, чем его R-значение при 400°.
ГЛОССАРИЙ:
Средняя температура = Когда мы обсуждаем среднюю температуру, это температура трубы и температура окружающего воздуха (комнатная температура), сложенные вместе и разделенные на два.
Например: Выхлопная труба имеет температуру 325°, а температура в помещении 75°, средняя температура будет 400/2 = 200°.
K-значение = K-значение основано на типе изоляционного материала и средней температуре. Чем ниже K-значение, тем лучше будет R-значение.
Эквивалентная толщина = Эквивалентная толщина – это такая толщина изоляции, которая при установке на плоскую поверхность будет давать тепловой поток, равный потоку тепла на внешней поверхности цилиндрической геометрии.
ПРЕДЕЛЫ ЭКВИВАЛЕНТНОЙ ТОЛЩИНЫ
Ниже показан размер трубы на толщину изоляции, где эквивалентная толщина превышает фактическую толщину изоляции. Большинство размеров труб, меньших указанных ниже, будут иметь эквивалентную толщину, превышающую фактическую толщину изоляции трубы.
Толщина 1/2 дюйма = 2 x 1/2 и меньше
Толщина 1 дюйм = 4 x 1 и меньше
Толщина 1-1/2 дюйма = 12 x 1-1/2 и меньше
Толщина 2 дюйма = 16 x 2 и меньше
ТАБЛИЦА R-ЗНАЧЕНИЙ ПРИ 75° ДЛЯ ИЗОЛЯЦИИ ИЗ СТЕКЛОВОЛОКНА ТОЛЩИНА ИЗОЛЯЦИИ ТРУБЫ
Размер трубы | 1/2 дюйма | 1″ | 1-1/2 дюйма | 2 дюйма |
5/8 х | Р 4,5 | Р 9,5 | Р 13,0 | н/д |
1/2 х | Р 3. 1 | Р 7.4 | Р 13,2 | Р 18,9 |
3/4 х | Р 2,9 | Р 5,8 | Р 10,9 | Р 16.1 |
1 х | Р 2,8 | Р 7.0 | Р 11,5 | Р 16,8 |
1-1/4 х | Р 2.7 | Р 11,9 | Р 14,5 | |
1-1/2 х | Р 2,5 | Р 6,4 | Р 10,4 | Р 17,8 |
2 х | Р 2,8 | Р 6. 1 | Р 10,4 | |
2-1/2 х | Р 2,8 | Р 5,9 | Р 11,8 | Р 15,9 |
3 х | Р 2,5 | Р 5,5 | Р 9.0 | Р 12,7 |
4 х | Р 2.4 | Р 5,5 | Р 8,6 | Р 12.1 |
*Пожалуйста, свяжитесь с нами для получения любой другой информации о R-значении по адресу [email protected]
Рекомендуемая толщина изоляции Polyiso | ПИМА
Технический бюллетень 118
Технический бюллетень PIMA № 118
Рекомендуемая толщина изоляции Polyiso для соответствия нормативным требованиям R-значения для коммерческих крыш
Изоляция для крыш Polyiso производится в широком диапазоне толщин, что обеспечивает профессионалам-проектировщикам гибкость при определении значений R для коммерческих кровельных систем. Согласно Международному кодексу энергосбережения, сплошная крыша обычно требуется установка изоляции в два или более слоев (см. C402.2.1). В свете минимальных требований к изоляции для всех путей соответствия и лучших отраслевых практик, все конструкции кровельных систем для новые и заменяемые крыши должны включать многослойную систему непрерывной изоляции, расположенную в шахматном порядке. В этом техническом бюллетене содержится руководство, соответствующее этой рекомендации.
Соответствие нормативным значениям R-значений с вариантами толщины изоляции крыши Polyiso
Минимальные нормативные требования к изоляции для крыш с малым уклоном в Соединенных Штатах (изоляция полностью над палубой — IEAD) и Канаде обычно варьируются от R-20 в более теплых климатических зонах до более чем R-40 в более холодных климатических зонах (эквивалентный коэффициент U может быть указан для узла крыши). Кровельная изоляция Polyiso обычно изготавливается с нарастающей толщиной от 0,5 до 4,5 дюймов с универсальными вариантами для удовлетворения требований энергетического кодекса.
Многослойная изоляция из полиизоцианата, расположенная в шахматном порядке, обеспечивает улучшенные тепловые характеристики и контроль конденсации в кровельных системах. Дополнительную информацию о преимуществах энергоэффективности см. в Техническом бюллетене PIMA № 113 «Многослойная изоляция крыши Polyiso». Высокое значение R на дюйм кровельных материалов из полиизо и доступность конических систем обеспечивают дополнительную гибкость конструкции для сборок, включающих изоляцию кровли из полиизо.
В приведенных ниже примерах представлены различные многослойные конфигурации кровельной изоляции полиизо, которые удовлетворяют минимальным требованиям к коэффициенту сопротивления теплопередаче в диапазоне от R-20 до R-40. Этот диапазон значений R представляет типичные минимальные требования для большинства климатических зон в США и Канаде.