Точка росы при утеплении пенопластом: Точка росы при утеплении пенопластом стен

инструкция по этапам, расчёты и их важность, рекомендации

Утепление стен пенополистиролом своими руками лучше вести не на глаз, а руководствоваться более-менее строгим расчётом. Как это сделать? Этим вопросом задаются многие, потому что каждый лишний сантиметр плиты пенополистирола, умноженный на всю площадь здания, выливается не просто в копеечку, а в изрядную сумму денег. Сегодня мы собираемся показать, как не заплатить лишнего и не поплатиться неправильно проведёнными работами. Давайте посмотрим, как проводится утепление стен пенополистиролом.

Технология проведения утеплительных работ пенополистиролом

Сама технология базируется на предохранении несущих конструкций от точки росы. Что это такое? Когда внутри дома тепло, а снаружи холодно, то по всей толще несущей конструкции образуется некое распределение температуры. Если на каком-то участке диапазон опускается ниже точки выпадения росы, то стена отсыревает. Это плохо и само по себе, потому что нарушает условия эксплуатации здания, но ещё хуже, если до влаги доберётся мороз. В этом случае вода будет превращаться в лёд, и разрывать несущую конструкцию. Данный процесс имеет прямое отношение к параметрам морозостойкости и во многих случаях определяет долговечность здания.

Принцип утепления пенополистиролом

Вот почему все строители своими руками стараются проделать два элементарных шага, возводя любую стену:

  1. Казалось бы, самым очевидным является возведение защиты стены снаружи. Чтобы на несущие конструкции не попадали дождь, туман, мокрый снег, прочие осадки. Но на самом деле в первую очередь стена защищается от влаги изнутри. И, как это ни парадоксально звучит, именно такой подход является правильным. Внутри помещения находятся тёплый воздух с большим содержанием паров воды. Все усугубляется тем, что внутри имеются открытые источники влаги, а также люди, неизбежно накаляющие ситуацию самим своим существованием и присутствием. Вот почему, хотя Малышева обычно говорит в своих передачах про недостаток относительной влажности, в особенности в зимний период, на самом деле роса имеет склонность выпадать, начиная именно от внутренней части стены. Ниже мы рассмотрим онлайн калькулятор, на примере которого каждый наш читатель сможет убедиться в этом простом факте. При отсутствии снаружи осадков роса начинает выпадать именно на внутренней части стен. Поэтому поверхность нужно защитить специальной мембраной или каким-нибудь облицовочным материалом, плохо пропускающим пары воды. Например, это может быть масляная, но не эмалевая, краска.

    Наружнее утепление стен

  2. Во вторую очередь защищается наружная часть стены. Именно здесь многими строителями допускается особенно большое количество ошибок. Допустим, встречаются предложения обложить деревянный дом обычным кирпичом, а в промежуток уложить пергамин. Из СНиП II-3-79 прекрасно видно, что сопротивление проницаемости пара этого материала может сравниться только с бетоном на плотных наполнителях. Любое же дерево, даже поперёк волокон, имеет более щадящие показатели. Поэтому отделывая наш дом слоем пергамина, мы создаём барьер для нормального выхода пара из помещения на улицу. В этом случае по всей площади поверхности с высокой вероятностью будет выпадать конденсат. Что особенно плохо для деревянных стен.

Вы видите, сколько существует нюансов при проведении любых работ с несущими конструкциями. Нужно сделать все так, чтобы точка росы не появлялась вообще, а промерзание стены лучше и вовсе исключить. Мы для этого предлагаем использовать достижения современных технологий. Сегодня в режиме онлайн доступно достаточно много автоматизированных программ для расчёта условий эксплуатации несущих конструкций. Нам понравилась расположенная по адресу http://smartcalc.ru/thermocalc?&gp=212&rt=0&ct=0&os=0&ti=20&to=-28&hi=55&ho=85&ld0=2000&le0=1&lt0=0&mm0=4&ld1=150&le1=1&lt1=0&mm1=593, но на момент прочтения читателями этого обзора условия могут измениться. Если даже онлайн-калькулятор канет в небытие, то всегда можно отыскать другой аналогичный.

Слои отделки стены

Калькулятор для расчёта режима эксплуатации несущих конструкций

Как пользоваться калькулятором? Расчёту подлежит стена, которую мы помещаем в выбранные условия. Варьируются наружная и внутренняя температура, а также уровень относительной влажности. Мы можем произвольно набирать слои по материалам нужной нам толщины. Мы для примера взяли перекрытия из железобетона толщиной 20 сантиметров, поместили в московскую зиму с её 28-ю градусами ниже нуля и стали искать толщину утеплителя такую, чтобы конструкция не промерзала по всей толще, а точка росы была исключена.

При выборе плит пенополистирола марки ПСБ-35 толщина слоя оказалось 15 мм. Уже в таких условиях наружная граница стены лежит в области температур выше нуля, а точка росы не возникает нигде. Обратите внимание, что стоит нам добавить слой утеплителя изнутри помещения, как эти условия коренным образом меняются. При наличии внутри такого же покрытия ПСБ-35 толщиной 15 мм роса начинает выпадать практически по всей толще несущей конструкции, а температура наружной части стены опускается практически на 10 градусов ниже нуля. То есть, при проведении любых утеплительных работ нужно разумно учесть имеющиеся условия. Если снаружи уже проведены некоторые мероприятия, то отделав свою стену изнутри новым слоем пенополистирола, мы можем коренным образом ухудшить эксплуатационные условия всего здания.

Крепление утеплителя к внутренней стене

Обратите внимание, что выбранный нами калькулятор при возникновении точки росы заботливо окрашивает в синий цвет часть несущих конструкций, подверженных воздействию этого неприятного фактора. Что во многом упрощает процесс работы с программой. Кроме того на графике прямо по толщине стены можно видеть две линии:

  • чёрная представляет собой график температуры, можно для каждой точки найти свою отметку, чтобы убедиться, что она соответствует норме;
  • синяя является местом положения точек росы, и чёрная кривая все время должна находиться выше, во избежание неприятных последствий.

Размеры пенополистирола

Таким образом, утепление стен экструдированным пенополистиролом желательно проводить при наличии хорошей математической базы для расчётов. Ну, а марку материала легко можно узнать у дилера. Есть ли в точности такого же не имеется, то нужно выбрать аналогичный по свойствам материал. В ход идут, как это должно быть уже понятно, в нашем случае два параметра, а именно:

  1. Сопротивление паропроницанию.
  2. Сопротивление теплопотерям.

Обратите внимание, что нужные данные для имеющихся в базе материалов приводятся под графиком для каждого слоя. Нет ничего проще, чем у дилера затребовать данные на его продукцию и сравнить с этими цифрами. В результате можно будет оценить вероятность возникновения точки росы, а также полюбоваться на распределение количества влаги по перекрытию.

При помощи калькулятора легко убедиться в том, что бетону наружный слой пергамина даже толщиной 2 миллиметра не страшен. Но дело обстояло бы иначе, если бы на его месте была древесная стена. Для сосны пришлось бы взять слой пенополистирола ПСБ-35 толщиной 60 мм. Только в этом случае точка росы выходит за пределы несущих конструкций. Зато конденсат начнёт выпадать внутри самого утеплителя. В результате того, что некоторые участки находятся при отрицательных температурах, возникнут самые разные негативные эффекты. Вплоть до разрушения слоя утеплителя, как это можно видеть на периметре пластиковых окон, установленных нерадивыми строителями.

Утепление многоэтажного дома

Вы видите, что утеплять пенополистиролом выгодно плотный бетон. Когда же дело касается древесины, то всё уже не так просто. Можно убедиться, что многие негативные эффекты пропадают, если внутренняя поверхность помещения одета пароизоляционной мембраной, например, тем же пергамином. Руководствуясь результатами расчёта онлайн калькулятора, можно выбрать не только толщину плит пенополистирола, но и их расположение. В частности, очень хорошо видно, почему не нужно вести утеплительные работы изнутри помещения.

Этапы проведения работ при отделке стен пенополистиролом

Утепление стен изнутри пенополистиролом обычно ведётся под обрешётку. То есть выбирается любой сайдинг, наподобие вагонки, а под него прячутся плиты. В этом случае обрешётку разумно изготовить из стальных профилей. Сама особенность конструкции такова, что в этом случае проще укладывать плиты утеплителя. По указанным выше соображениям поверх одевается пароизоляционная мембрана. Это помогает сохранить всю конструкцию в относительной сухости. Не забудьте в порядок расчёта включить сам облицовочный материал.

Если это обыкновенная вагонка, то разница может быть не очень большой. Но при наличии ПВХ панелей условия распространения пара сильно меняются. Во многих случаях здесь пароизоляционные мембраны укладывать не надо. Вместо этого по всей поверхности облицовки прорезаются отдушины для регуляции показателей влажности. При достаточно толстом слое утеплителя температура за облицовкой будет практически комнатной.

Во многих случаях утепление стен снаружи пенополистиролом будет более действенным мероприятием. Но и выполняется оно намного более сложным путём. Кое-что мы об этом уже рассказывали ранее. Плиты полистирола наклеиваются на стену, а поверх набрасывается штукатурка, куда нужно ещё утопить армирующую сетку. Не только сама процедура сложна, но и стоимость выполнения работ нельзя назвать низкой. Многим гораздо привлекательнее может показаться технология вентилируемого фасада. Эта позволяет самостоятельно избавить свой дом от многих проблем.

Точка росы, пароизоляция и вентилируемый зазор в стене

РЕКЛАМА

Водяной пар в стене — откуда он?

Для того чтобы понять, к каким последствиям приведёт отсутствие вентилируемого зазора в стенах, выполненных из двух и более слоев разных материалов, и всегда ли нужны зазоры в стенах, необходимо напомнить о физических процессах, происходящих в наружной стене в случае разности температур на её внутренней и наружной поверхностях.

Как известно в воздухе всегда содержатся водяные пары. Парциальное давление пара зависит от температуры воздуха. С повышением температуры парциальное давление водяных паров увеличивается.

РЕКЛАМА

В холодное время года парциальное давление паров внутри помещения значительно выше, чем снаружи. Под действием разницы давлений водяные пары стремятся попасть изнутри дома в область меньшего давления, т.е. на сторону слоя материала с меньшей температурой — на наружную поверхность стены.

Также известно, что при охлаждении воздуха водяной пар, содержащийся в нём, достигает предельного насыщения, после чего конденсируется в росу.

Точка росы – это температура, до которой должен охладиться воздух, чтобы содержащийся в нём пар достиг состояния насыщения и начал конденсироваться в росу.

На приведённой диаграмме, Рис.1., представлено максимально возможное содержание водяного пара в воздухе в зависимости от температуры.

Рис. 1. График температуры точки росы.
Максимально возможное содержание
пара в воздухе в зависимости от
температуры.

Отношение массовой доли водяного пара в воздухе к максимально возможной доле при данной температуре называется относительной влажностью, измеряемой в процентах.

Например, если температура воздуха составляет 20 °С, а влажность – 50%, это означает, что в воздухе содержится 50% того максимального количества воды, которое может там находится.

Как известно строительные материалы обладают разной способностью пропускать содержащиеся в воздухе водяные пары, под действием разности их парциальных давлений. Это свойство материалов называется сопротивление паропроницанию, измеряется в м2*час*Па/мг.

Кратко резюмируя вышесказанное,

в зимний период воздушные массы, в состав которых входят водяные пары, будут проходить сквозь паропроницаемую конструкцию внешней стены изнутри наружу.

Температура воздушной массы будет уменьшаться по мере приближения к внешней поверхности стены.  

В сухой стене — пароизоляция и вентилируемый зазор

Рис.2. Пример распределения температуры в толще наружной стены.

 а — при большом, б — при

малом теплосопротивлении материала стены;

Точка росы в правильно спроектированной стене без утеплителя окажется в толще стены, ближе к наружной поверхности, где пар будет конденсироваться и увлажнять стену.

Зимой, в результате превращения пара в воду на границе конденсации, наружная поверхность стены будет накапливать влагу.

В теплое время года эта накопленная влага должна иметь возможность испариться.

Необходимо обеспечивать смещение баланса между количеством поступающих в стену паров изнутри помещения и испарением из стены накопившейся влаги в сторону испарения.

Баланс влагонакопления в стене можно смещать в сторону удаления влаги двумя путями:

  1. Уменьшать паропроницаемость внутренних слоев стены, сокращая тем самым количество пара в стене.
  2. И (или) увеличивать испарительную способность наружной поверхности на границе конденсации.

Однослойные стены имеют одинаковое сопротивление паропроницанию по всей толщине, а также равномерное изменение температуры по толщине стены. Граница конденсации водяных паров в правильно спроектированной стене без утеплителя находится в толще стены, ближе к наружной поверхности. Это обеспечивает таким стенам положительный баланс удаления влаги из толщи стены во всех случаях, кроме помещений с повышенной влажностью.

В многослойных стенах с утеплителем используются материалы с разным сопротивлением  паропроницанию. Кроме того, распределение температуры в толще многослойной стены не равномерное. На границе слоев в толще стены имеем резкие перепады температуры.

Чтобы обеспечить требуемый баланс перемещения влаги в многослойной стене необходимо, чтобы сопротивление паропроницанию материала в стене уменьшалось по направлению от внутренней поверхности к наружной.

В противном случае, если наружный слой будет иметь большее сопротивление паропроницанию, баланс влагоперемещения сместится в сторону накопления влаги в стене.

Например.

Сопротивление паропроницанию газобетона значительно меньше, чем у керамики. При фасадной отделке дома из газобетона керамическим кирпичом обязателен вентилируемый зазор между слоями. При отсутствии зазора блоки будут накапливать влагу.

Вентилируемый зазор между лицевой кладкой из керамического кирпича и несущей стеной из керамзитобетонных блоков не нужен, т.к. сопротивление паропроницанию кирпичной облицовки меньше, чем у стены из керамзитобетонных блоков.

При неправильном устройстве стены, влага в утеплителе будет накапливаться постепенно.

Уже на второй, максимум третий-пятый отопительный период, можно будет ощутить существенное увеличение расходов на отопление. Связано это, естественно, с тем, что увеличилась влажность теплоизоляционного слоя и всей конструкции в целом, а соответственно существенно снизился показатель термического сопротивления стены.

Влага из утеплителя будет передаваться и в соседние слои стены. На внутренней поверхности наружных стен может образовываться грибок и плесень.

Кроме накопления влаги, в утеплителе стены происходит еще один процесс — замерзание сконденсировавшейся влаги. Известно, что периодическое замерзание и оттаивание большого количества воды в толще материала разрушает его.

Увлажнение конденсатом утеплителя, например эковаты, также ведет к вымыванию антисептиков и антипиренов. Чаще всего, это борная кислота. Концентрация которой со временем будет снижаться.

Любой утеплитель постепенно, с годами, теряет свои теплосберегающие свойства. Когда надо менять утеплитель читайте здесь.

Стеновые материалы различаются по своей способности противостоять замерзанию конденсата. Поэтому, в зависимости от паропроницаемости и морозостойкости утеплителя, необходимо ограничивать общее количество конденсата, накапливающегося в утеплителе за зимний период.

Например, минераловатный утеплитель имеет высокую паропроницаемость и очень низкую морозостойкость.

В конструкциях с минераловатным утеплителем (стены, чердачные и цокольные перекрытия, мансардные крыши) для уменьшения поступления пара в конструкцию со стороны помещения всегда укладывают паронепроницаемую пленку.

Без пленки стена имела бы слишком малое сопротивление паропроницанию и, как следствие, в толще утеплителя выделялось и замерзало бы большое количество воды.  Утеплитель в такой стене через 5-7 лет эксплуатации здания превратился бы в труху и осыпался.

Толщина теплоизоляции должна быть достаточной для того, чтобы удерживать точку росы в толще утеплителя, рис.2а.

При малой толщине утеплителя температура точки росы окажется на внутренней поверхности стены и пары будут конденсироваться уже на внутренней поверхности наружной стены, рис.2б.

Понятно, что количество влаги, сконденсировавшейся в утеплителе, будет увеличиваться с ростом влажности воздуха в помещении и с увеличением суровости зимнего климата в месте строительства.

Количество испаряемой из стены влаги в летнее время также зависит от климатических факторов — температуры и влажности воздуха в зоне строительства.

Рис.3. Результат расчета влажностного режима
трехслойной стены: керамзитобетон — 250 мм., утеплитель
минераловатный — 100 мм., кирпич керамический — 120 мм.
жилой дом в г. С.-Петербург.
Накопления влаги в годичном цикле нет.

Как видим, процес перемещения влаги в толще стены зависит от многих факторов. Влажностный режим стен и других ограждений дома можно рассчитать, Рис. 3.

По результатам расчета определяют необходимость уменьшения паропроницаемости внутренних слоев стены  или необходимость вентилируемого зазора на границе конденсации.

Результаты проведенных расчетов влажностного режима различных вариантов утепленных стен (кирпичные, ячеистобетонные, керамзитобетонные, деревянные) показывают, что

в конструкциях с вентилируемым зазором на границе конденсации накопления влаги в ограждениях жилых зданий не происходит во всех климатических зонах России.  

Многослойные стены без вентилируемого зазора необходимо применять, основываясь на расчете влагонакопления. Для принятия решения, следует обратиться за консультацией к местным специалистам, профессионально занимающимся проектированием и строительством жилых зданий. Результаты расчета влагонакопления типовых конструкций стен в месте строительства, местным строителям давно известны.

«Стена каменная трехслойная с облицовкой из кирпича» — это статья об особенностях влагонакопления и утепления стен из кирпича или каменных блоков.

Особенности влагонакопления в стенах с фасадным утеплением пенопластом, пенополистиролом

Утеплители из вспененных полимеров — пенопласта, пенополистирола, пенополиуретана, обладают очень низкой паропроницаемостью. Слой плит утеплителя из этих материалов на фасаде служит барьером для пара. Конденсация пара может происходить только на границе утеплителя и стены. Слой утеплителя препятствует высыханию конденсата в стене.

Товары для дома

Для предотвращения накопления влаги в стене с полимерным утеплителем необходимо исключить конденсацию пара на границе стены и утеплителя. Как это сделать? Для этого необходимо сделать так, чтобы на границе стены и утеплителя температура всегда, в любые морозы, была бы выше температуры точки росы.

Указанное выше условие распределения температур в стене обычно легко выполняется, если сопротивление теплопередаче слоя утеплителя будет заметно больше, чем у утепляемой стены. Например, утепление «холодной» кирпичной стены дома пенопластом толщиной 100 мм. в климатических условиях средней полосы России обычно не приводит к накоплению влаги в стене.

Совсем другое дело, если пенопластом утепляется стена из «теплого» бруса, бревна, газобетона или поризованной керамики. А также, если для кирпичной стены выбрать очень тонкий полимерный утеплитель. В этих случаях температура на границе слоев может легко оказаться ниже точки росы и, чтобы убедиться в отсутствии влагонакопления, лучше выполнить соответствующий расчет.

Выше на рисунке показан график распределения температуры в утепленной стене для случая, когда сопротивление теплопередаче стены больше, чем слоя утеплителя. Например, если стену из газобетона с толщиной кладки 400 мм. утеплить пенопластом толщиной 50 мм., то температура на границе с утеплителем зимой будет отрицательной. В результате будет происходить конденсация пара и накопление влаги в стене.

Толщину полимерного утеплителя выбирают в два этапа:

  1. Выбирают, исходя из необходимости обеспечить требуемое сопротивление теплопередаче наружной стены.
  2. Затем выполняют проверку на отсутствие конденсации пара в толще стены.

Если проверка по п.2. показывает обратное, то приходится увеличивать толщину утеплителя. Чем толще полимерный утеплитель — тем меньше риск конденсации пара и влагонакопления в материале стены. Но, это приводит к увеличению расходов на строительство.

Особенно большая разница в толщине утеплителя, выбранного по двум вышеуказанным условиям, имеет место при  утеплении стен с высокой паропроницаемостью и низкой теплопроводностью. Толщина утеплителя для обеспечения энергосбережения получается для таких стен сравнительно маленькой, а для отсутствия конденсации — толщина плит должна быть неоправданно большой.

Поэтому, для утепления стен из материалов с высокой паропроницаемостью и низкой теплопроводностью выгоднее использовать минераловатные утеплители. Это относится прежде всего к стенам из дерева, газобетона, газосиликата, крупнопористого керамзитобетона.

Устройство пароизоляции изнутри обязательно для стен из материалов с высокой паропроницаемостью при любом варианте утепления и облицовки фасада.

Для устройства пароизоляции внутреннюю отделку выполняют из материалов с высоким сопротивлением паропроницанию — на стену наносят грунтовку глубокого проникновения в несколько слоев, цементную штукатурку, виниловые обои или используют паронепроницаемую пленку.

Все описанное выше относится не только к стенам, но и к другим конструкциям, ограждающим тепловой контур здания — чердачным и цокольным перекрытиям, мансардным крышам.

Посмотрите видео, в котором наглядно показаны теплофизические процессы в утепленных скатах крыши. Аналогичные процессы происходят и в наружных стенах зданий.

Прочитав эту статью, Вы узнали, как сделать стену сухой.

Стена должна быть еще и теплой. Об этом читайте в следующей статье.

Следующая статья:

Расходы на отопление и сопротивление теплопередаче.

Предыдущая статья:

Стены несущие, самонесущие и не несущие — какая разница?

Влажность на чердаке из распыляемой пены

  • Эллисон Бейлс
  • Блог

чердак качество воздуха в помещении изоляция проблемы с влажностью распыляемая пена

Изоляция из напыляемой пены

может решить проблемы, с которыми не могут справиться другие изоляционные материалы. Одной из таких проблем является перемещение корпуса здания с гипсокартонного потолка дома на линию крыши. Поступая таким образом, вы переносите чердак внутрь ограждения здания. Но что происходит с этим чердачным помещением, когда вы перемещаете его внутрь? Доктор Джо Лстибурек уже давно говорит, что мы не можем просто игнорировать пространство. Он говорит, что мы не должны называть это герметичным чердаком, инкапсулированным чердаком или невентилируемым чердаком. Мы должны называть это кондиционированным чердаком. Вот некоторые данные, чтобы показать, почему это так, по крайней мере, во влажном климате.

Пару лет назад нас вызвали для осмотра дома с изоляцией напыляемой пеной на линии крыши. Хозяева дома жаловались на легкий запах в доме в жаркие летние дни. Это была не новая работа с пеной. Они реконструировали свой дом пятью годами ранее, добавили второй этаж и утеплили чердак пенопластом с открытыми порами.

Поговорив некоторое время с одним из владельцев, мы посмотрели. Перед отъездом в первый день мы установили четыре регистратора данных для измерения температуры и относительной влажности. Они были размещены в следующих местах:

  • На открытом воздухе
  • Жилая площадь, второй этаж
  • Мансардный этаж
  • Чердачный конек

На приведенном ниже графике показаны точки росы для четырех местоположений.

Температура точки росы в четырех местах в доме с чердаком, утепленным пенопластом

Точка росы является лучшим показателем того, что происходит с влажностью, поскольку она показывает, изменяется ли фактическое количество молекул водяного пара с течением времени. Изменения относительной влажности не говорят вам, получаете ли вы больше или меньше водяного пара. Вы должны смотреть на относительную влажность и температуру, чтобы увидеть это.

Приведенный выше график вызывает много вопросов, но позвольте мне сказать несколько слов о том, что вы там видите.

  1. Точка росы на открытом воздухе колеблется от нижней примерно 64°F до верхней 74°F.
  2. Точка росы в помещении колебалась от 49°F до 54°F. Для справки, расчетные условия в помещении, рекомендованные Американскими подрядчиками по кондиционированию воздуха (ACCA), составляют 75°F и относительную влажность 50%. Точка росы для таких условий составляет 55° F. Судя по всему, жилая площадь приятная и сухая.
  3. Точка росы на мансардном этаже колеблется от 49°F до 70°F.
  4. Точка росы на коньке чердака колеблется от 48° F до 85° F.

Я вернусь с последующей статьей, чтобы написать об этом больше, но я укажу на два важных факта относительно приведенных выше данных:

  1. Влажность наверху чердака становится намного выше, чем влажность на пол мансарды.
  2. Влажность в верхней части чердака намного выше, чем на улице.

Что вы думаете?

Прочтите следующую статью: Высокая влажность на чердаке пены с брызги, часть 2

Связанные статьи

Связанные с Specampless.

Точка росы — более значимая мера влажности?

3 причины снять утепление чердачного перекрытия пенопластом чердак

Как НЕ модернизировать печь на чердаке с изоляцией из напыляемой пены

 

ПРИМЕЧАНИЕ. Комментарии модерируются. Ваш комментарий не появится ниже, пока не будет одобрен.

  • предыдущее сообщение: Оценка попытки установить воздуховоды внутри кондиционированного помещения
  • следующее сообщение: Падение тарифов на электроэнергию, отслеживание счетов и энергоэффективность

Конденсация, точка росы и кровля

Подготовлено с соавторами Томасом Дж. Тейлором, доктором философии, и Джеймсом Уиллитсом

За исключением крайне засушливого климата, в окружающем нас воздухе всегда присутствует некоторое количество водяного пара. Когда этот воздух вступает в контакт с холодной поверхностью, этот водяной пар конденсируется в виде жидкости на поверхности. Хорошим примером этого являются капли воды на стенке стакана с ледяной водой. Эти капли широко известны как «конденсация» и возникают, когда воздух становится слишком холодным, чтобы удерживать водяной пар, который в нем находится. Даже когда холодная поверхность недоступна, если температура воздуха резко падает, водяной пар конденсируется в виде тумана или тумана. Воздух может удерживать только определенное количество воды — больше при более высоких температурах и меньше при более низких температурах.

Давайте рассмотрим это немного подробнее, взглянув поближе на…

Относительная влажность

Мы знаем, что воздух содержит водяной пар, но нам нужно определить его количество. При любой температуре существует максимальное количество воды, которое может удерживать воздух. Когда мы измеряем, сколько воды на самом деле находится в воздухе, мы выражаем число в процентах от этого максимального количества. Для большинства людей относительная влажность от 50 до 60% очень удобна, но большинство из нас легко переносит от 30 до 70%. Относительная влажность ниже 30% заметно сухая, а выше 70% люди начинают комментировать, насколько влажно ощущается.

Давайте сравним Майами и Финикс, чтобы увидеть, как влияет относительная влажность. В Майами холодный напиток можно подавать, обернув его салфеткой, чтобы впитать конденсат, образующийся на стекле. Но в Фениксе на холодном стекле может быть так мало конденсата, что салфетка может и не понадобиться. Почему это? Относительная влажность является основным фактором, способствующим этому. Причина в том, что относительная влажность в Майами, вероятно, выше 65%, то есть воздух содержит 65% влаги, которую он способен удерживать. Напротив, воздух в Финиксе, вероятно, будет сухим с относительной влажностью около 35%, что приведет к образованию очень небольшого количества конденсата. Итак, напомним, относительная влажность — это отношение количества водяного пара в воздухе к тому, сколько он может содержать при данной температуре. «Относительная» часть относится к тому факту, что способность воздуха удерживать влагу изменяется в зависимости от температуры. Чем теплее воздух, тем большее количество влаги он может удерживать. Чем больше влаги он удерживает, тем больший объем конденсата образуется на холодной поверхности. Теперь поговорим о точке росы.

…способность воздуха удерживать влажность изменяется в зависимости от температуры.

Точка росы

Точка росы – это определенная температура при данной влажности, при которой водяной пар конденсируется. Давайте снова рассмотрим Майами и Финикс как две крайности. Летом относительная влажность в Майами может достигать 85% при температуре 80°F. Очевидно, что на охлажденном стакане для напитков образуется много конденсата. Но на самом деле не требуется большого падения температуры, чтобы достичь 100% относительной влажности и образования конденсата. Таким образом, на многих холодных поверхностях будет конденсат. При той же температуре в Финиксе (80°F) относительная влажность могла составлять 35%. Для образования конденсата температура должна быть намного ниже. На холодных поверхностях не будет конденсата.

Точка росы – это температура, при которой образуется конденсат. Это функция относительной влажности и температуры окружающей среды. Другими словами, количество водяного пара, находящегося в воздухе, и температура воздуха. Взгляните на приведенную ниже диаграмму (которая представляет собой очень упрощенную форму того, что на самом деле используется инженерами HVAC). Давайте выберем линию относительной влажности 40% в первом столбце и проследим по этой линии до столбца 70°F. Линия 40% и столбец 70°F пересекаются при температуре 45°F, что означает, что в среде с температурой 70°F и относительной влажностью 40% вода в воздухе будет конденсироваться на поверхности с температурой 45°F.

Температуры точки росы для выбранной температуры воздуха и относительной влажности

Диаграмма адаптирована из ASHRAE Psychometric Chart, 1993 ASHRAE Handbook — Fundamentals.

Итак, какое это имеет отношение к кровле? Итак, рассмотрите оболочку вашего здания: она отделяет внутреннюю кондиционированную среду от внешней. Фундамент, стены и крыша — все это системы, которые пересекаются, чтобы это произошло. Хотя это в некотором отношении относится ко всем системам, мы сосредоточимся на кровле. Изоляционный слой в кровельной системе противостоит потерям тепла или получению тепла извне, в зависимости от времени года. Внутри изоляционного слоя температура медленно меняется, пока не достигнет внешней среды. Давайте поговорим о здании зимой, чтобы проиллюстрировать это. Внутренняя температура составляет 70°F при относительной влажности 40%, как в нашем примере на диаграмме выше. По мере того, как вы продвигаетесь через изоляционный слой изнутри наружу, температура постепенно падает, пока не достигнет более низкой температуры снаружи. График этих температур называется температурным градиентом этой системы.

Теперь, если температура достигает 45°F в любой точке этой системы (температура точки росы на графике), то можно ожидать, что вода будет конденсироваться на ближайшей поверхности. Это показано на следующей диаграмме:


Напомним, что внутренний воздух содержит 40% всего водяного пара, который он может поддерживать. Но по мере того, как воздух мигрирует вверх через систему крыши, он становится холоднее до точки, когда он больше не может удерживать водяной пар и происходит конденсация. В приведенном выше примере это произойдет при температуре 45°F и непосредственно внутри изоляционного слоя.

Уроки для проектировщика крыш

Конденсат, представляющий собой жидкую воду, может негативно повлиять на здание во многих отношениях. Это может привести к потере R-значения изоляционного слоя из-за вытеснения воздуха внутри изоляции водой, а также к преждевременной деградации любого из компонентов кровельной системы, таких как гниющая древесина или ржавчина металла (включая конструктивные элементы). Это также может способствовать нежелательному биологическому росту, например плесени.

Тем не менее, можно предотвратить эти негативные последствия. Помните, что водяной пар должен попасть на поверхность или место, температура которого равна или ниже точки росы.

На схеме сборки крыши, показанной выше, ясно, что необходимо максимально предотвратить попадание внутреннего воздуха в крышу. Это подробно обсуждалось в предыдущем блоге GAF. Один из методов ограничения движения воздуха в крышу включает использование двух слоев пенопластовой изоляции, перекрывающих друг друга. Другой метод заключается в размещении замедлителя пара или воздушного барьера на теплой стороне изоляции. Замедлитель испарения/воздушный барьер может предотвратить попадание водяного пара в место, где он может конденсироваться.

Кроме того, следует внимательно осмотреть отверстия для вентиляционных отверстий и другие детали, требующие вырезания отверстий в изоляции. Если зазоры вокруг проходов недостаточно герметизированы, то внутренний воздух может быстро подниматься вверх через кровельную систему. В холодном климате это может привести к значительному образованию конденсата внутри и вокруг этих отверстий.

Кроме того, эффект вздутия крыши с механическим креплением может усугубить возможность образования конденсата, поскольку в систему крыши всасывается больше воздуха. Приклеенная кровельная мембрана может помочь ограничить движение воздуха и последующую конденсацию.

Важно помнить, что при проектировании оболочки необходимо учитывать относительную влажность, а также внутреннюю и внешнюю температуру летом и зимой.

Как правило, в коммерческих зданиях среда, спроектированная инженером по ОВиК, определяет внутреннюю температуру и относительную влажность с учетом комфорта жильцов, а также расчетную наружную температуру в зависимости от погодных условий в месте расположения здания. Эти и другие факторы помогают инженерам определить, какой тип и размер оборудования требуется зданию. Проектировщик ограждающих конструкций будет использовать эти значения, а также расчетное использование здания и местные нормы для определения конструкции ограждающих конструкций. Важно помнить, что относительная влажность, а также внутренняя и внешняя температура летом и зимой должны учитываться при проектировании оболочки. Дизайн оболочки, который работает в одном районе страны, может не работать в другой части страны, что может привести к неблагоприятным условиям и типам деградации, упомянутым ранее. Подумайте, как изменится ваш гардероб, если вы переедете из Миннеаполиса в Финикс (здесь мы связываем вашу одежду с оболочкой здания).

В идеальном мире местоположение здания было бы всей историей. К сожалению, использование здания может (и часто меняется) измениться. Факторы, которые могут неблагоприятно повлиять на температуру и влажность и, следовательно, на гигротермические характеристики оболочки, могут включать: резкое изменение количества людей, добавление кухонного или кухонного оборудования, добавление раздевалки для тренировок или душа, а также иногда даже то, что кажется незначительным, например, аквариум или дрова для камина. Это не исчерпывающий список, а несколько иллюстративных примеров для общего понимания. Хотите верьте, хотите нет, но даже изменение цвета внешних компонентов может способствовать большему или меньшему притоку солнечного света и эффективно изменять положение точки росы внутри оболочки здания.

Изменение точки росы и/или местоположения точки росы может привести к нежелательной конденсации и потенциальному повреждению.

Рассмотрим ситуацию, когда владелец решает инвестировать в повышение энергоэффективности своей собственности при замене крыши.

LEAVE A REPLY

Ваш адрес email не будет опубликован. Обязательные поля помечены *