Состав полистиролбетона: Состав полистиролбетона. Из чего состоит теплый бетон

Полистиролбетон своими руками: пропорции и рецептура

Структура полистиролбетона

Состоящий из гранулированного полистирола, цемента и различных добавок, полистиролбетон является легким строительным материалом с высокими теплоизоляционными свойствами. Как и многие другие виды растворов, его можно изготавливать самостоятельно.

В этой статье рассказывается о том, как сделать полистиролбетон своими руками: пропорции, компоненты смеси, последовательность их введения в раствор. Кроме того, вы узнаете о том, где и как применяется этот материал, каковы его свойства и характеристики.

Содержание статьи

  • Что нужно для изготовления рабочего раствора
  • Как делать
    • Перерасчет объемов
    • Последовательность замешивания
  • Свойства и назначение
    • Характеристики материала
    • Область применения
  • Калькулятор объема бетона
  • Заключение

Что нужно для изготовления рабочего раствора

В состав смеси для полистиролбетона, помимо цемента входит гранулированный пенополистирол. Или шарики пенопласта. Он обладает очень высокими теплосберегающими способностями. Заменяя им песок в растворе, можно получить материал с хорошими теплоизоляционными характеристиками.

На увеличенном фрагменте фото, видна структура материала

Они будут выше или ниже в зависимости от того, какие пропорции полистиролбетона будут выбраны. А выбор этот, в свою очередь, определяется областью применения готового раствора.

Об этом расскажем подробнее чуть ниже, а пока посмотрите, какова рецептура полистиролбетона, в каких соотношениях берутся все компоненты для его приготовления.

Плотность бетона (марка), кг/м3D200D300D400D500
 

Цемент марки М400

160 кг240 кг330 кг410 кг

Гранулированный полистирол

1 м31 м31 м31 м3

Смола древесная омыленная

0,8 л0,65 л0,6 л0,45 л

Вода

100 л120 л150 л170 л

Подробнее о каждом компоненте:

  • Если вместо М400 взять цемент более высокой марки, то в раствор можно добавлять песок в пропорции 2:1 (2 части цемента и 1 часть песка).
  • Пенополистирол можно купить в строительных магазинах, он продается в полиэтиленовых мешках объемом до 1 кубометра.

Наполнитель для теплого бетона

  • СДО – это специальная добавка, вовлекающая в смесь воздух, и образующая воздушные пузырьки, наличие которых повышает теплозащитные свойства материала.

Для справки. СДО не обязательно включать в рецепт полистиролбетона, но в этом случае он получится не таким теплым.

  • Пластификаторы. Они не включены в таблицу, так как их концентрация может быть разной в зависимости от производителя. Добавлять их следует в соответствии с  рекомендациями на упаковке.

Жидкий пластификатор Оптипласт

Обратите внимание. Этот компонент успешно можно заменить моющим средством для посуды или жидким мылом. Они добавляются в воду из расчета: 20 мл на 10 литров.

Как делать

Теперь, когда состав полистиролбетона своими руками нам известен, давайте разберемся с технологией изготовления.

Перерасчет объемов

Описанная выше рецептура изготовления полистиролбетона, дана для больших объемов, а все компоненты «привязаны» к кубометру наполнителя. В условиях индивидуального производства, замесить такой объем за один раз невозможно.

К тому же, расход цемента указан в килограммах, а все остальные составляющие в объемных единицах. Нам для удобства нужно привести их все к одной единице измерения.

Как правило, замешивая пенополистиролбетон или любой другой раствор в бетономешалке или вручную, для дозирования компонентов используют ведра. Вот их и возьмем за единицу.

  • В 10-литровое ведро входит 12 кг цемента.
  • Допустим, нам нужно изготовить раствор полистиролбетона D300.
  • На кубометр наполнителя его нужно 240 кг или 20 порций (240 : 12 = 20).
  • Все остальные значения из этого столбика таблицы тоже делим на 20, чтобы узнать объем каждого на один замес.
  • 1000 л : 20 = 50 л или 5 ведер полистирола.
  • 120 л : 20 = 6 л воды.
  • 650 мл : 20 = 32,5 мл СДО.

Итак, у нас получилось, что на ведро цемента нужно 5 ведер наполнителя и чуть больше половины ведра воды. Аналогично можно посчитать объемный состав пенополистиролбетона любой другой марки.

Последовательность замешивания

Чтобы изготовленный своими руками материал получился прочным и однородным, должна соблюдаться инструкция по очередности добавления компонентов в раствор.

  • Сначала нужно засыпать в барабан бетономешалки весь объем полистирола.

Засыпаем гранулы и включаем агрегат

  • Затем растворяем в воде пластификатор или моющее средство, и выливаем в бетономешалку примерно треть.

Вода с пластификатором

  • Ждем, когда все гранулы смочатся раствором. Это нужно для того, чтобы они хорошо сцепились с цементом.
  • Высыпаем во вращающийся барабан весь цемент, и выливаем оставшуюся воду.

Пенополистиролбетон: раствор почти готов

  • Вливаем воздухововлекающую добавку, и перемешиваем смесь в течение 2-3 минут.

Последний шаг – добавление СДО

Совет. Оставьте немного воды от общего объема, чтобы растворить в ней смолу перед добавкой в раствор.

Такая технология позволяет получить качественный строительный раствор, который можно использовать для разных целей. Но есть и другой способ.

Можно купить готовый полистиролбетон в мешках и просто смешать его с водой. Он продается комплектами, каждый из которых предназначен для производства раствора определенной плотности.

Для примера в таблице указаны цена и объемы сухих компонентов для приготовления теплого бетона Д300

Свойства и назначение

В строительстве полистиролбетон используется в виде свежего раствора или блоков, а сфера применения зависит от его особых свойств.

Характеристики материала

Этот материал можно поставить в один ряд с пено- и газобетоном. Он тоже обладает небольшой плотностью и малым весом. А от обычного бетона на основе песка или щебня, отличается высокими теплозащитными свойствами.

Придает эти особенности материалу, именуемому полистиролбетон, состав смеси. Точнее — вид наполнителя. Ведь пенопласт считается одним из самых легких и эффективных утеплителей.

Перечислю и другие его свойства, чтобы было понятно, почему он так активно используется в разных областях строительства. Это:

  • Высокая прочность на растяжение и сжатие, что позволяет возводить из него несущие стены;
  • Негорючесть;
  • Низкое водопоглощение, позволяющее даже при намокании сохранять низкую теплопроводность;
  • Морозостойкость, доходящая до 100 циклов;
  • Отличная адгезия (сцепляемость) с другими строительными материалами;
  • Более высокая, чем у ячеистых бетонов, эластичность;
  • Легкость обработки и отделки;
  • Устойчивость к таким атмосферным и биологическим воздействиям, как осадки, солнечные лучи, грибки и плесень.

Область применения

Выше были даны сведения о плотности, которой может обладать полистиролбетон: технология + составы + рецептура. Этот параметр в основном и определяет область применения материала.

Таблица определения марки теплого бетона для использования в разных целях

В зависимости от цели, используют раствор по-разному:

  • Для стяжки пола или устройства и утепления перекрытий – в жидком виде;
  • Для возведения стен из раствора делают блоки, заливая его в формы. Они могут быть любого размера;
  • Из полистиролбетона можно построить и монолитный дом, заливая раствор в опалубку с установленной в ней арматурой.

В отличие от цементно-песчаных смесей, бетон с легким наполнителем оказывает меньшую нагрузку на фундаменты и другие конструктивные элементы зданий. А при устройстве стяжек и перекрытий не требует применения парогидроизоляционных материалов, без которых не обойтись при утеплении пола минеральной ватой.

Все это удешевляет строительство, а дома получаются теплыми и прочными.


Калькулятор объема бетона

Площадь плиты м2.
Толщина плиты м.

Заключение

Если вы не совсем представляли себе, что такое пенополистиролбетон – состав материала, его свойства и применение, то теперь, надеемся, этот вопрос для вас отчасти прояснился. Как видите, изготовить его можно прямо на своей стройплощадке из доступных компонентов. Но и это не обязательно, так как готовые блоки можно купить практически в любом специализированном магазине или у производителя.

Если же вы все же решите сделать все сами, видео в этой статье вам поможет.

Состав полистиролбетона

При планировании строительства основной первым поднимается вопрос о выборе стройматериалов: для фундамента, стен, стяжки пола, других элементов постройки. И если хочется поставить здание с хорошими звуко-, теплоизоляционными свойствами без особых затрат, часто выбирается одна из разновидностей легкого бетона – полистиролбетон.

Что такое полистиролбетон

Отличительная черта этого материала заключается в замене традиционного наполнителя – щебенки, гальки или керамзита, на вспененный полистирол. Последний поставляется гранулами диаметром от 2,5 до 100 мм и составляет до 85% общего объема бетонной массы.

Особенности:

  • относительно небольшой вес;
  • простота механической обработки;
  • хорошие звуко-, теплоизоляционные свойства.

Плюс к этому материал полностью соответствует СНиП 21-01-97 по пожарной безопасности – слабо горит даже в открытом пламени, при нагревании почти не выделяет токсических веществ, почти не образует дыма.

Состав

Состоит полистиролбетон из «стандартных» компонентов – портландцемента и воды. В дополнение к ним добавляется пенообразующая добавка. Например, СДО, омыленная древесная смола, за счет которой добиваются лучшей адгезии поверхности полистирольных гранул с цементным раствором. При необходимости получить повышенную прочность в рецептуру дополнительно вносится песок (промытый, просеянный).

Типовой состав полистиролбетона (примерное соотношение):

  • портландцемент ;
  • гранулы полистирола;
  • вода (раствор с пластификатором) ;
  • пенообразующая добавка СДО .

Выпускаются и сухие готовые смеси в мешках, с заранее рассчитанным соотношением компонентов бетона. Их достаточно смешать с необходимым объемом воды, чтобы получить готовую смесь для заливки монолитной конструкции или формы под блоки из полистиролбетона.

Марки

В зависимости от содержания цемента, наличия в составе кварцевого песка на выходе получается полистиролбетон различных технических характеристик. Причина этому заключается в изменении объема по отношению к полистирольным гранулам. Именно они дают улучшенные параметры по звуко-, теплоизоляции, но одновременно снижают прочность, жесткость бетона.

Типовые характеристики марок:

  1. D400 и ниже – подходит для утепления, звукоизоляции кровли, межэтажных перекрытий, заливки стяжки жилых помещений, для возведения самонесущих монолитных стен.
  2. D400-D600 – универсальный полистиролбетон для строительства утепленных и прочных стен (с улучшенной нагрузочной способностью по сравнению с D400 и схожих марок).
  3. D800 и выше – подойдут в качестве замены другим легким бетонам, например, с керамзитом или известняком.

Последний вариант чуть хуже изолирует тепло и звук, зато обладает повышенной прочностью, на уровне классического бетона с щебнем. Правда, и обладает высоким весом, это учитывается при расчете нагрузки на перекрытия.

Разновидности

Функционально полистиролбетон делится на теплоизоляционный (ниже D400), теплоизоляционно-конструкционный (D400-D600), конструкционно-теплоизоляционный (от D800). Первый тип лучше подходит для холодного климата, хотя и позволяет меньшую нагрузку на стены-основание.

Полистиролбетон используется или в виде заранее сформированных блоков нужной формы, или в виде монолитной конструкции, заливаемой сразу на объекте, в опалубку. К последним относится фундамент, стяжка пола, несущие стены, перегородки. В обоих случаях здание не требует расходов на утепляющий материал.

Полистиролбетон дисперсно-армированный, модифицированный кремнеземсодержащей добавкой

[1] В.Н. Соков, Проектирование сложных паро-, тепло- и гидроизоляционных полистиролбетонов, Москва, (2015).

Академия Google

[2] Федюк Р. , Пак А., Гиневский В., Стоюшко Н., Гладкова Н. Экологическая опасность некоторых видов пенополистирола, Серия конференций ИОП: Земля и экология. 115(1) (2018) 012007.

DOI: 10.1088/1755-1315/115/1/012007

Академия Google

[3] Н.П. Лукутцова, А.А. Пыкин, Стабильность нанодисперсных добавок на основе метакаолина, Стекло и керамика. 71 (11-12) (2015) 383-386.

DOI: 10.1007/s10717-015-9693-7

Академия Google

[4] Л. Эвелсон, Н. Лукутцова, Некоторые практические аспекты фрактального моделирования структуры наномодифицированного бетона, Международный журнал прикладных инженерных исследований. 10 (19) 2015 40454-40456.

Академия Google

[5] ПРОТИВ. Лесовик, Л.А. Урханова, А.М. Гридчин, С.А. Лхасаранов, Композиционные вяжущие на основе перлитного сырья Забайкалья, Научно-исследовательский журнал прикладных наук. 9 (12) (2014) 1016-1020.

Академия Google

[6] Л.А. Сулейманова, В.С. Лесовик, К.Р. Кондрашев, К.А. Сулейманов, Н.П. Лукутцова, Энергоэффективные технологии производства и использования неавтоклавного ячеистого бетона, Международный журнал прикладных инженерных исследований. 10 (5) 2015 12399-12406.

Академия Google

[7] Р.С. Федюк, Ю.Г. Евдокимова, А.К. Смоляков, Р.А. Тимохин, Н.Ю. Стоюшко, В.О. Батаршин, Природное сырье Приморского края России для бетона. Серия конференций IOP: Науки о Земле и окружающей среде. 87(5) (2018) 052005.

DOI: 10.1088/1755-1315/87/5/052005

Академия Google

[8] Д. К.-С. Батаев, С.-А. Муртазаев, М.С. Садумов, М. Ш. Саламанова, С.А. Алиев, Цементобетонные композиты на основе обходного камня и отходов камнеобработки // Acta Technica CSAV (Ческословенская академия вед). 61 (4Б) (2016) 327-336.

Академия Google

[9] О.В. Журба, Э.Г. Щукина, Н.В. Архинчеева, М.Е. Заяханов, Е.А. Щукин, Конструкционный и теплоизоляционный полистирол на основе вторичного сырья // Строительные материалы. 3 (2007) 50-54.

Академия Google

[10] С.В. Клюев, Р.В. Лесовик, О.В. Казлитина, А.В. Нетребенко, Н.В. Калашников, А.А. Митрохин, Комбинированное дисперсное армирование мелкозернистых бетонов на основе техногенного сырья и нанодисперсного модификатора, Вестник БГТУ им. Шухов. 3 (2014) 47-53.

Академия Google

[11] Коротких Д.Н. Дисперсное армирование конструкции бетона при многоуровневом трещинообразовании // Строительные материалы. 3 (2011) 96-99.

Академия Google

[12] Л.А. Урханова, С.А. Лхасаранов, В.Е. Розина, С.Л. Буянтуев Мелкозернистый базальтофибробетон с нанокремнеземом // Строительные материалы. 6 (2015) 45-48.

Академия Google

[13] ПРОТИВ. Семенов, Т.А. Розовская, А.Ю. Губский, Р.Р. Гареева. Использование хризотиловых волокон в качестве армирующего волокна строительных растворов // Ресурсо-энергоэффективные технологии в строительном комплексе региона. 7 (2016) 93-97.

Академия Google

[14] НАПРИМЕР. Карпиков, Н.П. Лукутова, Е.А. Бондаренко, В.В. Кленов, А.Е. Зайцев, Эффективный мелкозернистый бетон с высокодисперсной добавкой на основе природного минерала волластонита, Материаловедческий форум. 945 (2019) 85-90.

DOI: 10.4028/www.scientific.net/msf.945.85

Академия Google

[15] Г. И. Бердов, Л.В. Ильина, В.Н. Зырянова, Влияние минеральных микронаполнителей на свойства композиционных строительных материалов, Новосибирск, 2013.

Академия Google

[16] К.А. Сарайкина, В.А. Голубев, Г.И. Яковлев, Сеньков С.А., Политаева А.И. Наноструктурирование цементного камня при дисперсном армировании базальтовым волокном // Строительные материалы. 2 (2015) 34-38.

Google Scholar

[17] Н.П. Лукутова, И.А. Кулеш, С.Н. Головин, С.А. Андрушин, Зависимость агрегатной устойчивости к бетону модифицирующих добавок на основе нанотрубок галлуазита в водной среде от характера стабилизатора, Материаловедческий форум. 945 (2019) 287-292.

DOI: 10.4028/www.scientific.net/msf.945.287

Академия Google

[18] Н. Лукутцова, А. Устинов, Добавка на основе биосилификированных нанотрубок, Международный журнал прикладных инженерных исследований. 10 (19) (2015) 40451-40453.

Академия Google

[19] А.А. Пыкин, Е.Ю. Горностаева, Н.П. Лукутова, Ю.С. Пыкина, Легкий бетон на основе гипсовых вяжущих, модифицированных микрокристаллической целлюлозой и кавитационно обработанными опилками, Материаловедческий форум. 945 (2019) 188-192.

DOI: 10.4028/www.scientific.net/msf.945.188

Академия Google

[20] Е.Ю. Горностаева, И.А. Ласман, Э.А. Федоренко, Е.В. Камоза А. Д. Древесно-цементные композиции со структурой, модифицированной на макро-, микро- и наноуровнях // Строительные материалы. 11 (2015) 13-16.

Google Scholar

Влияние размеров и расположения пенополистирола (EPS) на свойства легкого бетона

  • Mindess S, Young JF, Darwin D (2002) Concrete, 2nd edn. Прентис Холл, Нью-Йорк

    Google Scholar

  • «>

    Невилл А.М. (2012) Свойства бетона. Уайли, Чичестер

    Google Scholar

  • Нараянан Н., Рамамурти К. (2000) Структура и свойства газобетона: обзор. Cem Concr Compos 22: 321–329

    Артикул Google Scholar

  • Terzic A, Pezo L, Mitic V, Radojevic Z (2015) Свойства заполнителей на основе искусственной летучей золы влияют на характеристики легкого бетона. Ceram Int 41:2714–2726

    Артикул Google Scholar

  • Кокал Н.У., Озтуран Т. (2011) Характеристики легких заполнителей золы-уноса, изготовленных с использованием различных связующих и термообработок. Cem Concr Compos 33: 61–67

    Артикул Google Scholar

  • Коланджело Ф., Мессина Ф., Чоффи Р. (2015) Переработка летучей золы ТБО с помощью цементного двухэтапного холодного гранулирования: технологическая оценка производства легких искусственных заполнителей. J Hazard Mater 299:181–191

    Статья Google Scholar

  • Sales A, Souza FR, Santos WN, Zimer AM, Almeida FCR (2010) Легкий композитный бетон, изготовленный из шлама и опилок водоподготовки: тепловые свойства и потенциальное применение. Constr Build Mater 24: 2446–2453

    Артикул Google Scholar

  • Chabannes M, Benezet J-C, Clerc L, Garcia-Diaz E (2014) Использование сырой рисовой шелухи в качестве натурального заполнителя в легком изоляционном бетоне: инновационное применение. Constr Build Mater 70:428–438

    Статья Google Scholar

  • Чанг С.Ю., Абд Эльрахман М., Сикора П., Ручинска Т., Хорщарук Э., Стефан Д., Стефан Д. (2017) Оценка влияния дробленых и вспученных заполнителей отходов стекла на свойства материала легкого бетона с использованием изображений на основе изображений подходит. Материалы 10:1354

    Артикул Google Scholar

  • Mo KH, Ling T-C, Alengaram UJ, Yap SP, Yuen CW (2017) Обзор использования дополнительных вяжущих материалов в бетоне с легким заполнителем. Constr Build Mater 139:403–418

    Статья Google Scholar

  • Bouvard D, Chaix JM, Dendievel R, Fazekas A, Letang JM, Peix G, Quenard D (2007) Характеристика и моделирование микроструктуры и свойств легкого пенополистирола. Cem Concr Res 37: 1666–1673

    Артикул Google Scholar

  • Miled K, Roy RL, Sab K, Boulay C (2007a) Поведение при сжатии идеализированного легкого пенополистирола: влияние размера и характер разрушения. Mech Mater 36:1031–1046

    Статья Google Scholar

  • Печче М. , Серони Ф., Биббо Ф.А., Асьерно С. (2015) Поведение легкого бетона с пенополистиролом (EPS) при сцеплении стали с бетоном. Материнская структура 48:139–152

    Артикул Google Scholar

  • Саяди А.А., Тапиа Дж.В., Нейцерт Т.Р., Клифтон Г.К. (2016) Влияние частиц пенополистирола (EPS) на огнестойкость, теплопроводность и прочность на сжатие пенобетона. Constr Build Mater 112:716–724

    Статья Google Scholar

  • Бабу Д.С., Бабу К.Г., Ви Т.Х. (2005) Свойства легких бетонов на пенополистирольных заполнителях, содержащих летучую золу. Cem Concr Res 35: 1218–1223

    Артикул Google Scholar

  • Бабу Д.С., Бабу К.Г., Ви Т.Х. (2006) Влияние размера заполнителя полистирола на характеристики прочности и миграции влаги в легком бетоне. Cem Concr Compos 28:520–527

    Статья Google Scholar

  • «>

    Кан А., Демирбога Р. (2009 г.) Новый материал для производства легкого бетона. Cem Concr Compos 31: 489–495

    Артикул Google Scholar

  • Садрмомтази А., Собхани Дж., Миргозар М.А., Наджими М. (2012) Свойства пенополистирола с различной прочностью, содержащего микрокремнезем и золу рисовой шелухи. Constr Build Mater 35:211–219

    Статья Google Scholar

  • Miled K, Sab K, Roy RL (2007b) Влияние размера частиц на прочность легкого пенополистирола на сжатие: экспериментальное исследование и моделирование. Мех Матер 39:222–240

    Артикул Google Scholar

  • Liu N, Chen B (2014) Экспериментальное исследование влияния размера частиц EPS на механические свойства легкого бетона EPS. Constr Build Mater 68:227–232

    Статья Google Scholar

  • «>

    Cui C, Huang Q, Li D, Quan C, Li H (2016) Зависимость напряжения от деформации при осевом сжатии пенополистирола. Constr Build Mater 105: 377–383

    Артикул Google Scholar

  • Шаков А., Эффтинг С., Фольгерас М.В., Гутс С., Мендес Г.А. (2014) Механические и тепловые свойства легких бетонов с вермикулитом и EPS с использованием воздухововлекающих добавок. Constr Build Mater 57:190–197

    Статья Google Scholar

  • Чанг С.Ю., Эльрахман М.А., Стефан Д., Камм П.Х. (2016b) Исследование характеристик и реакции образцов изоляционного цементного теста с твердыми частицами Aer с помощью рентгеновской микрокомпьютерной томографии. Constr Build Mater 118: 204–215

    Артикул Google Scholar

  • Дори Р.А., Йоманс Дж.А., Смит П.А. (2002) Влияние скопления пор на механические свойства керамики. J Eur Ceram Soc 22:403–409

    Артикул Google Scholar

  • Wong RCK, Chau KT (2005) Оценка пространственного распределения воздушных пустот и заполнителей в бетоне при одноосном сжатии с использованием компьютерной томографии. Cem Concr Res 35: 1566–1576

    Артикул Google Scholar

  • Chung S-Y, Elrahman MA, Stephan D (2016a) Исследование влияния анизотропных пор на свойства материала изоляционного бетона с использованием компьютерной томографии и вероятностных методов. Energy Build 125:122–129

    Артикул Google Scholar

  • Лу Б., Торквато С. (1992) Функция линейного пути для случайных неоднородных материалов. Физика Рев. А 45:922–929

    Артикул Google Scholar

  • ISO 22007-2:2015 (2015) Пластмассы – определение теплопроводности и температуропроводности – часть 2: метод нестационарного плоского источника тепла (горячий диск)

  • «>

    EN 12390-4:2000 (2000) Испытание закаленный бетон — часть 4: прочность на сжатие; спецификация для испытательных машин

  • ABAQUS (2013) Версия 6.13. Системы Дассо. Потакет, Род-Айленд

  • Инкропера Ф.П., Девитт Д.П., Бергман Т.Л., Лавин А.С. (2006) Основы тепло- и массообмена. Уайли, Нью-Йорк

    Google Scholar

  • Jankowiak T, Lodygowski T (2008) Идентификация параметров конститутивной модели пластичности повреждения бетона. Найдено Civ Environ Eng 6:53–69

    Google Scholar

  • Kmiecik P, Kaminski M (2011) Моделирование железобетонных и композитных конструкций с учетом деградации прочности бетона. Arch Civ Mech Eng 11: 623–636

    Артикул Google Scholar

  • Jones MR (2001) Пенобетон для конструкционного использования. В: Материалы однодневного семинара по пенобетону: свойства, применение и последние технологические разработки. Loughborough University

  • Ramamurthy K, Nambiar EKK, Ranjani GIS (2009) Классификация исследований свойств пенобетона. Cem Concr Compos 31:388–396

    Статья Google Scholar

  • Сингх Х., Гокхале А.М., Тамирисакандала С., Либерман С.И. (2008) Расчет линейного распределения вероятности пути на основе изображений для представления микроструктуры. Mater Sci Eng A 474:104–111

    Статья Google Scholar

  • Tewari A, Gokhale AM, Spowart JE, Miracle DB (2004) Количественная характеристика пространственной кластеризации в трехмерных микроструктурах с использованием двухточечных корреляционных функций. Acta Mater 52: 307–319

    Артикул Google Scholar

  • LEAVE A REPLY

    Ваш адрес email не будет опубликован. Обязательные поля помечены *