Состав бетона марки 200: Состав бетона М200 и оптимальные пропорции раствора

Содержание

Бетон М200 — Соржа

Бетон М200 представляет собой искусственный строительный материал, получаемый из составленной в соответствии с ГОСТ 7473-2010 и уплотненной смеси, в состав которой входит цемент, щебень, песок и вода. Бетон марки М200 – один из наиболее универсальных видов. Марка М 200 соответствует классу В15. Состав и пропорции на единицу измерения равную 1 м3: цемент – 310 кг, щебень – 1218 кг, песок – 864 кг, вода – 158 л. Оптимальная температура застывания: от 15 до 20 градусов при влажности воздуха от 90%.

Технические характеристики

Состав бетона М200 на 1м3 нужно соблюдать строго. Если допустить ошибку при изготовлении, характеристики полученной смеси будут отличаться от требуемой.
Наиболее важные свойства материала указаны в таблице ниже.

Бетон В15 (М200), технические характеристикиЗначениеПояснения
Прочностьточная величина зависит от плотности гравия или щебня в составе. В среднем объемный вес бетона В15 составляет 2,4 тонны на кубЧаще всего плотность прямо пропорциональна прочности
Теплопроводность2,04 Вт/м°СБетон очень холодный материал, он плохо удерживает тепло, поэтому для наружных бетонных конструкций в большинстве случаев выполняют теплоизоляцию
ВодонепроницаемостьДля фундамента подойдет бетон B15 W4 — при сухих грунтах, W6 и W8 при нормальной почве.При наличии в грунте воды, потребуется выбирать более высокие марки по водонепроницаемости
МорозостойкостьДля наружных конструкций необходимо выбирать бетон марки В15 F50 — F150.Фундамент также считается наружной конструкцией, для внутренних морозостойкость не важна
ПодвижностьБетон М200 П4 или П5 подойдет при использовании бетононасоса, в остальных случаях можно использовать П2 и П3Для работы с насосом нужно выбирать более жидкую смесь. Это обеспечит бесперебойную работу техники. Бетон ниже П4 может привести к поломке бетононасоса.
Время схватывания/тверденияпримерно 2 часа/около 28 сутокПосле завершения схватывания смесь перестает быть жидкой, ее не получится уложить в опалубку. Твердение — это процесс набора прочности. Точная продолжительность зависит от температуры воздуха.

Сфера применения

  • Укладка тротуарной плитки.
  • Монтаж элементов приусадебного хозяйства: лавки, беседки и т.д.
  • Проведение коммуникаций: водопроводы, канализации, колодцы.
  • При создании несущих конструкций ЖБИ: площадки, перемычки и т.д.
  • Монтаж бетонного основания для подготовки к последующей установке конструкции и защиты от грунтовых вод.
  • В качестве монолитного фундамента при малоэтажном строительстве.

Бетон м200 (200, в15): состав, пропорции

Из многочисленного ряда материалов для возведения монолитных изделий на основе цемента наиболее распространенным является бетон М200. Популярность этой марки объясняется высокими прочностными и специальными качествами при относительно невысокой стоимости. Это обстоятельство обусловливает использование М200 в промышленном и частном строительстве.

М200 — популярный вид товарного раствора

Бетон марки М200 — главные характеристики

Предел прочности на сжатие — показатель, который служит основой для распределения бетонов по классам и маркам. М200 обозначает среднее значение крепости 200 кг/см².

Этому показателю соответствует класс обеспеченной прочности В15, подтверждающий, что в 95% случаев изделие выдержит нагрузку 15 МПа. Говорить о бетоне Б15 будет неправильно — в обозначении класса используется буква (В) латинского алфавита.

Бетонные смеси М200 характеризуются следующими показателями:

  1. Плотность. Определяется весом крупного наполнителя и его размером. Из легкого щебня получают растворы 1,5-1,6 т/м³. Монолиты тяжелого класса до 2,5 т/м³ изготавливают с применением зерен из скальных горных пород.
  2. Пластичность или подвижность. Влияет на удобоукладываемость смеси. Осадка растворной массы после снятия конуса — 5-15 см, что соответствует категориям П2, П3. При механизированной подаче, чтобы повысить текучесть у бетона b15, в него вводят добавки и получают П4.
  3. Морозостойкость (F). Способность сохранять прочность при неоднократных заморозках и оттаиваниях. Свойство необходимо для изделий, подвергающихся воздействию низких температур. Внутри зданий используют монолиты с показателем F до 150, для наружных конструкций — F200, F250.
  4. Водонепроницаемость. Эта характеристика указывает на возможность применения бетонных изделий в обводненных условиях. Индекс W2 предполагает необходимость дополнительной гидроизоляции. Для класса В15 показатели бывают также W4, W6, стойкие к гидравлическому давлению.

М200 пользуется популярностью в строительном мире. Это тяжелый бетон с высоким уровнем прочности.

При размере щебня <10 мм бетон считается мелкозернистым. Процесс твердения смеси до набора нужной прочности занимает 3-4 недели.

Состав бетона

Требования к бетонным смесям установлены стандартом ГОСТ 7473-2010. Компонентами раствора являются вяжущее вещество, наполнители и вода. Технические условия по материалам для производства монолитов изложены в регламенте на бетоны тяжелые и мелкозернистые — ГОСТ 26633-2012.

В состав М200 входят:

  1. Цемент как вяжущий материал. Применяются марки, изготовленные на основе силикатов кальция, называемые портландцементами, — ПЦ-400, ПЦ-500.
  2. Наполнители: мелкий — песок из частиц Ø1,1-3,5 мм и крупный — щебень, гравий размером 0,5-7 см. Ценится чистота зерен, примеси глинистых частиц нормируются и отсеиваются. На плотность смеси, прочность бетона влияет форма камней: отклонения от кубического овала называют лещадностью, она снижает качество изделий.
  3. Вода. Обязательным является требование к чистоте жидкости, отсутствию растворимых примесей. Вводится влага в песок и цемент дозированно при постоянном перемешивании до достижения раствором необходимой консистенции.

В рецепты М200 включают также химические и минеральные добавки, которые изменяют в лучшую сторону характеристики бетонной смеси. Назначение присадок — повлиять на прочность, пластичность, водопоглощение, морозостойкость, иные показатели.

Различают добавки гидрофобизирующие, воздухововлекающие, стабилизирующие, пластифицирующие.

Вариант расчета в ведрах бетона.

Пропорции

После того как приготовятся все компоненты смеси, ингредиенты дозируются в нужном для получения марки М200 соотношении.

В случае весового дозирования в килограммах песок (П), щебень (Щ), цемент (Ц) берут из расчета 2,8:4,8:1, если вяжущее вещество — ПЦ-400. При использовании ПЦ-500 дозировка меняется в сторону увеличения доли наполнителей и принимает вид 3,5:5,6:1.

Чтобы получить 1 куб бетона М200, понадобится следующее количество компонентов:

  • портландцемент М400 — 1 часть=280 кг;
  • песок — соответственно 2,8 и 784;
  • щебень — 4,8 и 1344 кг;
  • вода — 20%, или 190 л.

При использовании цемента ПЦ-500 весовые распределения изменятся, но количество жидкости в 1 м3 останется прежним. Для фундаментов раствор делают более жестким, уменьшая количество добавляемой воды.

Бетон 200 М: преимущества популярной марки

Бетон имеет так называемый низкий состав.

Достоинства монолита класса прочности В15 очевидны. Основной плюс — универсальность с точки зрения использования.Применяется профессиональными строителями и частниками при самостоятельном возведении фундаментов.

Другие преимущества перед иными марками:

  • невысокая стоимость при достаточной прочности изделий;
  • хорошая адгезия — способность монолита прилипать к стальной арматуре;
  • низкая теплопроводность конструкций, за счет чего экономятся средства на теплоизоляцию.

Предпочтение бетону М200 отдается, когда присутствуют умеренные нагрузки. Так, для устройства фундамента многоэтажного дома понадобится более высокая марка монолита.

В каких областях применяется

Используется твердеющий цементный раствор с классом прочности В15 везде, где необходимо возвести фундаменты под строительство зданий, сооружений, для монтажа оборудования и опор. Эта марка применяется для изготовления элементов дома — лестничных пролетов, перекрытий, монолитных стен.

Другие области:

  • обустройство отмосток по контуру зданий и бетонирование придорожных откосов, набережных ограждений;
  • заливка цементных стяжек в производственных зданиях, полов на открытых площадках и в хранилищах;
  • строительство подпорных стенок, тротуаров, подъездных путей к новостройкам, ограждений строительных территорий;
  • изготовление дорожных плит, бордюров, фундаментных блоков, колец для колодцев различного назначения, иных железобетонных изделий.

Реконструкция и реставрация разрушенных и восстанавливаемых объектов, усиление строительных конструкций — везде применяют марку М200. При самостоятельном приготовлении бетонных смесей необходимо следовать рекомендованным пропорциям компонентов и применять качественные ингредиенты.

состав, сколько нужно цемента на 1 куб, расход, рецепт, соотношения, количество раствора, как приготовить

Если вы хотите возвести надежный и качественный фундамент, то для этих целей вам понадобиться приготовить бетон М200, а для этого очень важно понимать, в каких пропорциях готовится состав. Именно бетон М200 считается самым оптимальным вариантом для обустройства стяжки и строительства частных домов. Но кроме этого бетон данной марки активно задействуют при изготовлении плит перекрытия, железобетонных поясов и других бетонных конструкций.

Приготовление

Как правило, бетон М200 применяют для стяжки пола и возведения основания. Причина в том, что для этой марки характерны высокие показатели прочности и стойкости к морозам. Кроме этого, материал прекрасно сочетается с арматурным каркасом. Если рассматривать бетон по восприятию нагрузки, то М200 считается среднепрочным материалом.

Какая марка бетон в25 можно узнать из статьи.

Бетон – это не что иное, как отвердевающий бетонный раствор и существуют различные маски раствора. Он обладает отличной пластичностью, которая достигается благодаря наличию в составе связующего компонента, затворителя и заполнителя различной фракционности.

Бывают случаи, когда в целях придания необходимых свойств в состав добавляют различные пластификаторы, стабилизаторы. Самым оптимальном вариантом в роли вяжущего компонента может выступать портландцемент М400 и М500.

Бетон м400 пропорции и другие технические данные указаны в данной статье.

В качестве заполнителя выступает мелкофракционный песок, у которого размер гранул достигает 0,14-3,5 мм. Заполнитель с крупными фракциями – это гравий с щебнем. Все представленные ингредиенты должны применяться в необходимой пропорции, только тогда удается получить максимальный результат. 

Если необходимо повысить прочность бетона, то выполняют его армирование при помощи стального каркаса. Перед тем как засыпать в смесь песок, необходимо его очистить от различного рода примесей. Для гравия должны быть характерны частицы, размер которых 50-70 мм. Примесь посторонних компонентов не должна превышать 1:100 всего объема материала. 

Когда вы собираетесь применять щебень, его стоит проверить, чтобы большая его часть его частиц обладала округлой формой. В этом случае не стоит применять плоские камни. Приготовление раствора осуществляется на водной основе с низким уровнем кислотности и небольшим включением сульфатов с солями. Благодаря наличию синтетических добавок удается повысить качество смеси для дальнейшего использования. 

Но для приготовления качественного продукта необходимо не только правильно подобрать все компоненты, но и совместить их в правильном соотношении. Приведем необходимое количество всех ингредиентов для бетона М200. Сколько цемента и других компонентов в нем содержится.

Каков состав бетона м200 указано в статье.

В этом случае состав его будет таков:

  • портландцемент – 265 кг;
  • песок – 860 кг;
  • гравий либо щебень – 1050 кг;
  • вода – 180 л;
  • пластификатор – 4,8.

Здесь указано время набора прочности бетона.

Если вы решили приготовить раствор собственными руками, то пользоваться такой пропорцией не удобно. Лучше всего использовать подход с соотношением частей. В этом случае необходимое количество ингредиентов будет выглядеть таким образом:

  • цемент – 1 часть;
  • песок – 2,8 части;
  • щебень – 2,8 части;
  • воде должно быть удалено 20% от общей массы смеси.

Бетон марки м200 пропорции и другие данные указаны в статье.

Приготовление для фундамента

При выборе бетонной смеси под основание необходимо принимать во внимание нагрузки, которые сможет на себя принять фундамент. Непосредственно нагрузки связаны с материалами, которые будут применяться для строительства дома, числа этажей, планируемого веса остальных конструктивных элементов. 

Применять бетон М200 можно для фундамента, на который будет вестись установка деревянного дома. Но здесь также можно воспользоваться маркой М150. Такие материала можно применять еще для фундамента под одноэтажные сооружения, для строительства которых применяют легкие ячеистые бетоны.

Бетон м200 характеристики и другие данные указаны в статье.

В целях увеличения прочностных характеристик для ленточного и монолитного вида оснований необходимо выполнить армирование. Кроме этого, бетона на фундаменте обязательно стоит покрыть гидроизоляционным слоем. Все компоненты соотносятся следующим образом: цемент:песок:щебень:вода = 1:2:4:0,5. При этом используют цемент не ниже М500.

Если необходимо получить 15 м3 бетона М200, то вам нужно приобрести 90 мешков цемента, песка – 9т, щебня – 18 т. Что касается воды, то она добавляется с таким расчетом: ½ ведра на 1 ведро цемента. Если объемы работ небольшие, то раствор для бетона стоит готовить ведрами.

В15 марка бетона и технические данные указаны в статье.

Таким образом, для 5 ведер М500 необходимо подготовит 10 емкостей песка с мелкими гранулами, 20 емкостей среднего щебня, а вода должна присутствовать в количестве 2,5 ведра.

Приготовление для других целей

Представленный продукт может быть использован не только при возведении фундамента. Порой его применяют совершенно для других целей. Например, он относится к базовым материалом при производстве плитки.

В качестве заполнителя в таком продукте будет выступать гравий, фракции которого имеют маленькие размеры. Если необходимо изготовить тротуарную плитку небольшого размера, то заполнить вообще не используют при приготовлении бетона.

Какова марка бетона для отмостки, можно узнать в данной статье.

Для этих целей необходимо использовать следующие пропорции: 1:3 (цемент: песок). При добавлении гравия необходимо взять его в количестве 1,5-2 части. Для получения цветного изделия стоит поместить в бетонный раствор пигментные красители.

Если необходимо выполнить стяжку пола, то пропорция ингредиентов будет такая: 1:3:0,5 (цемент:песок:вода). Количество мелкого гравия составит 3 части.

А про расход цемента на 1 куб раствора вы можете узнать из нашей статьи.

Сравнение с другими марками

Если необходимо получить качественный бетонный раствор, то очень важно четко соблюдать установленную пропорцию, а также весь процесс изготовления. Как правило, состав раствора зависит от назначения и прочности будущего строения.

Каков прогрев бетона в зимнее время можно узнать в данной статье.

Например, для изготовления бетона М100 необходимо применять цемент в меньшем количестве, чем для М 450. Отсюда можно сделать вывод, что для каждой марки бетона используются свои пропорции ингредиентов. 

С чем это связано? Причина в том, что цемент стоит во много раз больше, чем все остальные компоненты. По этой причине в состав М100 нет необходимости помещать такое же количество цемента, какое для создания бетона М450, ведь используют эти мари для различных целей. Бетон М450 способен выдерживать более большие нагрузки по сравнению с бетоном М200 или М100, следовательно, и пропорции при получении раствора будут отличаться.

Сколько мешков цемента необходимо на 1 куб бетона, можно узнать в данной статье.

Как правило, для приготовления товарного бетона применяют вяжущее вещество марко М400 и М500. Кроме этого, добавляют песок, щебень и прочие добавки, в том числе и противоморозные. Во время расчета пропорций бетона нужно принимать во внимание необходимые качества будущего изделия, а точнее стойкость к морозу, воде, подвижности.

Бетон М200 – это достаточно качественный и прочный материал, который имеет большую сферу использования. Основными характеристиками изделия остаются морозостойкость, долговечность и прочность. Но для того, чтобы все эти качества достигались, важно соблюдать все пропорции необходимых для получения бетона компонентов. Также не стоит забывать про и качество, так как некачественные ингредиенты приведет к получению непрочного бетона, который не может противостоять различным воздействиям.

Пропорции бетона М200 на 1м3 в ведрах: приготовление состава

Различные строительные растворы чаще всего можно встретить на стройплощадке. Для каждого вида работ выбирается свой особый состав, который должен гарантировать нужное итоговое качество. В данной статье мы рассмотрим пропорции бетона марки 200 на 1м3.

Из чего состоит строительный раствор

Общий раздел

Готовая к использованию строительная смесь имеет подвижную консистенцию.

Ее составляющими являются ингредиенты, взятые в правильных соотношениях, а именно:

  • цемент;
  • вода;
  • песок;
  • щебень.

Марка М200:

  • гарантирует надежность;
  • быстрое схватывание;
  • обладает малой теплопроводностью;
  • сохраняет свои свойства при температурах от +5 до +350ºС;
  • основное ее превосходство — прочность и безопасность конструкций.

Перед работой приготовьте все ингредиенты

Состав смеси

Для того что бы получить максимально качественный  раствор, необходимо правильно смешать все ингредиенты в установке или своими руками. Марки цемента отвечают его качеству, т.е. чем она выше, тем качественнее получится готовая смесь. Следовательно, чем выше ее показатель, тем меньше его нужно для приготовления строительного раствора объемом 1 м3.

Для возведения фундамента понадобится:

  • 1 доля цемента;
  • 4 доли щебня;
  • 0,5 доли воды;
  • 2 доли песка.

Варианты получения раствора

Состав и соотношение зависит:

  • от марки цемента и бетона;
  • свойств песка и щебня, пластификаторов.

На заводах учитывают множество свойств ингредиентов, используют различные марки бетонов от 50 до 1000. Эти цифры характеризуют максимальную прочность при сжатии  1 м3 ребром 20 мм спустя 28 суток. До 70 % смеси застывает уже в первую неделю.

Одним из важных факторов является добавление цемента в раствор в количестве до 1 кг и щебня  до 5 кг. Но, не рекомендуется добавление всего объема жидкости, поскольку в разные замесы может потребоваться различное количество жидкости. Поэтому для того, что бы получить нужную консистенцию смеси необходимо воду добавлять поэтапно.

Совет: вода остается важным компонентом для приготовления строительной смеси.  Поэтому она должна быть чистой.

Правильное соотношение – залог качественного раствора

Ингредиенты

Важными компонентами остаются вода и цемент, их основной задачей является  объединение всех составляющих в одну однородную массу.

Совет: при соблюдении соотношений необходимо учитывать влагопоглощающие свойства песка и щебня.

Этим можно предотвратить появление микротрещин в конструкции, а значит увеличить ее долговечность и надежность. Одной из самых важных свойств щебня и песка остается принятие на себя усадочного напряжения, что сохраняет прочность готового состава, предотвращает ползучесть и деформацию.

Необходимо внимательно отнестись к выбору марки бетона и цемента, учитывая тот факт, что последняя должна быть обязательно выше первой. Цена качественного материала высокая, чего не скажешь про наполнитель.

Существует мнение, что если добавить больше его в смесь чем нужно, то он получится прочнее. Это не так, ровно как то, что если класть меньше, для его экономии или использовать старый, который долго лежал без дела. При неправильном хранении он утрачивает свои свойства, у него может увеличиться водопроницаемость, что может привести к разрушению построек.

Совет: не используйте добавки, содержащие хлорид кальция, они сопутствуют появлению пятен и коррозии.

Материалы

Для приготовления раствора щебень нужно подбирать вдвое прочнее марки бетона, чтобы его месячная прочность была ниже, чем через год, а марка щебня была одна и та же на протяжении всего периода эксплуатации.

Вместо него можно использовать:

  • гравий;
  • известняк;
  • гранит;
  • песок.
ГравийЯвляется наиболее распространенным, его максимальная прочность 1000 кг/м³. Он довольно дешевый и прочный, имеет малый фон радиации. Его используют для производства бетона до М450.
ИзвестнякОбычно марка 600-800 кг/м³ является слабой к морозам. Его применяют для приготовления раствора М100 и М300.
ГранитСамый морозоустойчивый и прочный. Прочность его может достигать 1400 кг/м³. Отличается низким водопоглощением.
ПесокБывает разного размера:
  • большим;
  • средним;
  • мелким;
  • очень мелким;
  • тонким.

Очень большой — более 2,4 мм, самый тонкий – менее 1,2 мм, его не используют для изготовления смеси.

Готовый состав можно доставлять на стройплощадку

Приготовление

Для того что бы получить смесь правильной структуры необходимо соблюдать соотношение.

При получении той или иной консистенции следует учитывать такие параметры как:

  • прочность материала;
  • его требуемая пластичность;
  • соотношения;
  • свойства различных заполнителей;
  • марку цемента.

Инструкция рекомендует, что для получения 1 м3 бетона М200 нужно взять:

  • 330 кг цемента с прочностью 1300 кг/м³;
  • щебня 1250 кг с плотностью 1250 кг/м³;
  • песка 600 кг с плотностью 1400 кг/м³;
  • воды 180 л.

Если вам проще отмерять в ведрах, предварительно взвесьте по одному с каждым ингредиентом.

  1. При производстве 1 м3 сухой смеси для брусчатого фундамента используют те же соотношения, но воды нужно добавить только для того чтобы, увлажнить сухие компоненты раствора.
  2. Для кладки кирпича используют цемент и песок в соотношении 1:4, при этом постепенно добавляя воду для получения однородной смеси. Также из-за вероятности плохой погоды, целесообразным будет использование в соотношении 1:3.

На фото — таблица пропорций

От марки цемента зависит состав бетона. Для М400 соотношение будут выглядеть так: 1 часть цемента, песка –  2,8 части, а щебня понадобится 4,8 части. При М500 — 1:3,5:5,6 соответственно.

Вывод

В данном материале было подробно рассказано, какие требует пропорции бетон марки 200. Такие работы одни из самых трудозатратных, но без них любое здание не сможет простоять отмеренный ему срок. Поэтому так важно правильно соблюдать соотношения и подбирать нужные материалы (см.также статью «Особенности и пропорции приготовления бетона»).

Видео в этой статье поможет найти вам дополнительную информацию по этой тематике.

состав, приготовление, характеристики, пропорции, применение

Дата: 20 ноября 2017

Просмотров: 3454

Коментариев: 0

Сложно представить выполнение строительных мероприятий без использования бетонного раствора. В строительной отрасли применяются различные виды бетона, отличающиеся маркировкой, эксплуатационными характеристиками, а также сферой использования. Выбор оптимальной марки раствора связан со спецификой строительных работ и условиями эксплуатации бетонных конструкций. Популярен бетон М200. Благодаря повышенным прочностным характеристикам и высокой надежности он используется для возведения различных зданий, заливки оснований, а также формирования стяжки пола.

Бетон марки М200 – главные характеристики

Широкое применение бетонного раствора с маркировкой 200 связано с его свойствами, обусловленными соблюдением рецептуры. Благодаря высоким техническим характеристикам материал широко используется для решения задач различного уровня. Он отличается доступной ценой и лидирует среди остальных марок бетона в категории цена-качество.

К основным показателям относятся:

  • прочность. Параметр характеризует способность материала сохранять целостность под воздействием сжимающих нагрузок. Стройматериал классифицируется по показателю прочности, как B15. Это соответствует нагрузке 150 кг на квадратный сантиметр площади монолита;
  • морозостойкость. По устойчивости к воздействию отрицательных температур бетонный состав обозначается F200. Цифровой индекс характеризует количество циклов глубокого замораживания и полного оттаивания, в результате которых не образуется трещин в бетонном массиве;

Наиболее востребованным в строительном мире является бетонный раствор, применимый для всех видов работ

  • удельный вес. Плотность раствора изменяется в зависимости от веса используемого наполнителя. Применение легкого щебня позволяет уменьшить удельный вес до 1,6 тонны на метр кубический. При использовании тяжелого гравия плотность возрастает до 2,4 тонны на метр кубический;
  • пластичность. Это серьезная характеристика, определяющая удобство укладки раствора. Подвижная смесь лучше заполняет угловые зоны, легче поддается вибрационному уплотнению. По уровню подвижности материал классифицируется П2–П4. Это соответствуют осадке конуса от 5 до 20 см.

По степени водонепроницаемости и устойчивости к влаге раствор обозначается W 4. Благодаря показателям, который имеет марка 200, бетон применяется для возведения прочных фундаментов, обустройства покрытий, а также заливки устойчивых к водной среде конструкций.

Приобретение эксплуатационной прочности в зависимости от внешних факторов происходит на протяжении 3–4 недель. За этот период завершается процесс гидратации, испаряется влага и монолит способен воспринимать значительные нагрузки.

Состав бетона М200

Состав регламентирован требованиями государственного стандарта, что обеспечивает высокий уровень надежности и прочность бетонных конструкций. Контроль качества бетонного раствора осуществляется специальными лабораториями, которые функционируют на специализированных предприятиях. Возможны незначительные отклонения, связанные с крупностью применяемых ингредиентов, однако состав всегда остается постоянным.

Бетон м200 имеет так называемый низкий состав

Он включает:

  • портландцемент марки М400–М500. Он применяется в составе раствора как вяжущее вещество;
  • мелкий песок, прошедший предварительную очистку от инородных примесей. Является заполнителем;
  • щебень на основе гранита, гравия или известняка. В качестве заполнителя применяются различные виды фракций;
  • воду. Обеспечивает требуемую консистенцию бетонной смеси и вводятся порционно на этапе смешивания.

В зависимости от поставленных задач бетонная смесь может включать различные виды добавок:

  • гидрофобизирующие компоненты;
  • пластифицирующие вещества;
  • специальные стабилизаторы.

Качество бетонного состава является определяющим фактором, обеспечивающим долговечность монолита и его прочностные характеристики. Именно поэтому целесообразно приобретать состав только у проверенных предприятий-изготовителей, имеющих сертифицированные лаборатории.

Пропорции для бетона М200

Не всегда имеется возможность заказать готовую смесь на специализированном предприятии. Ряд застройщиков, занимающихся возведением частных строений, самостоятельно готовят раствор. Им важно знать, как приготовить бетон 200 марки. В зависимости от того, какой применяется цемент, может изменяться пропорция.

Технические характеристики бетонной смеси зависят от входящих в нее элементов и их соотношения

Бетон марки М200 готовится в следующих соотношениях:

  • при использовании цемента М400 необходимо смешивать песок, щебень и цемент в весовом соотношении 2,8:4,8:1. При использовании объемного дозирования эта пропорция незначительно изменяется и составляет 2,5:4,2:1;
  • на основе портландцемента М500 готовится раствор, который включает на 1 килограмм цемента 3,5 кг песка и 5,6 кг щебня. Объемная пропорция для этого вида цемента включает щебень, песок и цемент в соотношении 4,9:3,2:1.

Концентрация воды обычно изменяется в зависимости от влажности и крупности исходных материалов, а также необходимой степени подвижности раствора. Доля воды составляет порядка 20% от общего объема замеса. Если соблюдать рекомендуемые пропорции, бетон М200 будет качественным, что обеспечит длительный ресурс эксплуатации возводимых конструкций. Важно тщательно перемешать ингредиенты с помощью бетоносмесителя.

Бетон 200 М – преимущества популярной марки

Бетонный раствор с маркировкой 200 обладает рядом преимуществ.

Он отличается от других видов бетона:

  • широкой областью использования. Смесь применяется для промышленных целей и частного строительства;
  • доступной ценой. Благодаря пониженным затратам на приобретение раствора снижается сметная стоимость строительных работ;
  • повышенным контактом со стальной арматурой. Раствор обладает хорошей адгезией к металлу;
  • пониженным коэффициентом теплопроводности. Это позволяет уменьшить затраты на приобретение теплоизоляционных материалов.

Если строительные конструкции не подвергаются значительным нагрузкам, можно смело отдать предпочтение этой марке бетона.

Бетон м200 пользуется популярностью в строительном мире. Это тяжелый бетон с высоким уровнем прочности

В каких областях применяется бетон М 200

Бетонная смесь марки 200 применяется для различных целей:

  • возведения надежных фундаментов зданий. Прочность материала обеспечивает устойчивость возводимых строений;
  • обустройства дорожных покрытий, тротуаров и заливки стяжек. Материал после твердения устойчив к механическому воздействию;
  • бетонирования подпорных стен, а также изготовления лестничных маршей. Стройматериал отличается долговечностью, не образует трещин;
  • строительства малоэтажных зданий. На основе бетонной смеси могут возводиться несущие стены или изготавливаться перекрытия;
  • выполнения арматурных работ. Использование арматуры, с которой бетон хорошо контактирует, повышает прочность строительных конструкций;
  • заливки подъездных путей для транспортных средств. Раствор после твердения сохраняет целостность под воздействием значительных нагрузок;
  • частного строительства. На основе бетона строятся помещения для хранения транспорта, возводятся бани и беседки;
  • изготовления бордюров для автомобильных дорог, а также устройства отмостки по периметру строений. Материал также применяется для велодорожек;
  • производства дорожных плит. Материал модифицируется специальными добавками, повышающими стойкость к истиранию;
  • формирования бетонных подушек и устройства подбетонки. Монолит сохраняет целостность на проблемных почвах, склонных к пучению.

Благодаря широкой сфере использования материал популярен у профессиональных строителей и частных застройщиков. Он применяется везде, где необходимы следующие эксплуатационные характеристики – прочность, устойчивость к отрицательным температурам и влагостойкость.

Итоги

Принимая решение об использовании бетонного раствора с маркировкой 200 для выполнения конкретных строительных задач, следует обращать внимание на репутацию предприятия-изготовителя, наличие лабораторного контроля качества и соблюдение рецептуры. Это гарантирует соответствие характеристик требованиям стандартов. При самостоятельном приготовлении необходимо выполнять замес в бетономешалке, так как при ручном замесе сложно обеспечить однородность состава. Важно придерживаться пропорций, использовать качественные ингредиенты и соблюдать технологию.

На сайте: Автор и редактор статей на сайте pobetony.ru
Образование и опыт работы: Высшее техническое образование. Опыт работы на различных производствах и стройках — 12 лет, из них 8 лет — за рубежом.
Другие умения и навыки: Имеет 4-ю группу допуска по электробезопасности. Выполнение расчетов с использованием больших массивов данных.
Текущая занятость: Последние 4 года выступает в роли независимого консультанта в ряде строительных компаний.

характеристики и область применения, пропорции и состав, плюсы и минусы

Разновидностей бетона огромное множество. Выбирать его стоит из соображений о том, для чего он вам будет служить и где будет эксплуатироваться. Этот материал применяется как при наружных, так и при внутренних работах. Существует так называемый жаростойкий бетон, правда, применяется он исключительно лишь в металлургической промышленности.

Бетон разделяется по маркам и классам по прочности сжатия. Каждой марке соответствует определённый класс, при этом каждая из них применяется только в определенной области. Рассмотрим подробнее марку М200, которая относится к классу В15.

Данная марка применяется в процессе строительства зданий гражданского и промышленного назначения, а именно для заливки стяжек полов. С помощью него можно отливать ленточные и простые фундаменты. Если вы занимаетесь строительством частных домов, то данный материал прекрасно подойдет для изготовления лестниц, подпорных стен, а также с его помощью можно строить дорожки для пешеходов и небольшие площадки.

Технические характеристики бетона М200

Состав этой марки бетона имеет низкую плотность и поэтому его относят к категории легких. Его плотность и объемный вес полностью зависят от того, какой наполнитель применялся при изготовлении смеси. При этом данные параметры могут колебаться в пределах от 500 до 1800 кг/м3.

При изготовлении бетона М200, пропорции должны быть строго соблюдены. Значения установлены ГОСТ и соблюдают их все производители этого строительного материала. Для того чтобы приготовить бетон данной марки, необходимо смешать вместе цемент, песок и мелкий гравий. Гравий используется в качестве наполнителя, за счет этого повышается прочность и долговечность бетонного раствора. Для того чтобы он имел наиболее высокие характеристики и большую прочность, при его изготовлении в смесь добавляются различные добавки.

Подвижность бетона колеблется от П2 до П4, показатель морозостойкости равен F100, а водонепроницаемости — W4.

Область применения бетона марки М200

Материал данной марки настолько распространён, что нашел свое широкое применение в различных областях строительства.

  • Применяется для стяжки и изготовления бетонных полов. Так как он имеет высокий показатель устойчивости к различным факторам износа, то вполне подходит для данных целей. Помимо этого, данный вид работы проводится в помещении, значит, от состава не требуется дополнительной устойчивости к различным атмосферным явлениям.
  • Используется при создании фундаментов зданий. Прочность данной марки вполне сможет выдержать и высотное здание, однако, все же рекомендуется применять его для возведения фундаментов для невысоких домов. Чаще всего его используют для строительства загородных домов и дач.
  • Широко применяется для возведения железобетонных изделий, так как может обеспечить высокие эксплуатационные параметры. Блоки и плиты, изготовленные с помощью такого бетона, не рекомендуется использовать в местах с повышенной нагрузкой, однако, их можно использовать для создания лестниц и подпорных стен.
  • Применяется для возведения площадок, дорожек и других подобных конструкций, по той причине, что имеет невысокую стоимость.
  • Применяется для изготовления дорожных плит, так как превосходно сочетается с металлическим каркасом. Для изготовления таких плит требуется, чтобы износостойкость бетонного раствора была значительно выше, чем в любых других случаях, именно поэтому в процессе приготовления в смесь добавляются различные добавки.

Пропорции и состав бетона марки М200

Для того чтобы бетонная смесь получилась высокого качества и имела хорошие технические параметры, смешивать ее необходимо в заводских условиях, тем более, если вам требуется большое количество такой смеси. В заводских условиях бетон размешивается более равномерно, за счет чего качество его улучшается, происходит это благодаря тому, что данный процесс на заводе полностью автоматизирован. В составе бетонного раствора марки М200 присутствует:

  • цемент;
  • песок;
  • щебень.

Добавляется все в пропорции 1:2,8:4,8. Если рассматривать стандартные пропорции, то в его состав будет входить 30 кг цемента, 40 кг песка и 90 кг щебня (мелкого гравия). Для того чтобы смесь получилась нужной консистенции и высокого качества, объем воды должен составить около 20% от общей массы смесь.

Преимущества и недостатки бетона марки М200

Рассмотрим достоинства и недостатки бетона М200. Можно отметить его высокую прочность сжатия, по сравнению с марками меньшего класса. Данная марка имеет хорошие характеристики и область его применения очень широка, и цена на него остается наиболее приемлемой. Именно поэтому его выбирают большинство застройщиков как в частном строительстве, так и на производстве. Морозостойкость также значительно выше, чем у марок бетона с более низким классом, что позволяет применять его на открытом воздухе. Единственное, что может ограничить сферу применения данной марки, так это его водонепроницаемость, которая значительно ниже, чем у других марок.

Стоит помнить, что при заливке конструкций бетоном данной марки не стоит смесь разбавлять водой. Многие непрофессиональные работники делают это для улучшения текучести бетонного раствора, однако, необходимо знать, что разбавляя смесь водой, вы в итоге получаете раствор, марка которого на порядок, а то и на два порядка ниже. И это только в лучшем случае. В большинстве случаев, разбавляя раствор водой в итоге есть вероятность получить не бетон, а аморфный материал, который будет состоять из смеси тех компонентов, которые применяются для изготовления бетона.

Выбирая производителя бетона, для начала необходимо изучить рынок данной продукции. Ведь если столкнуться с недобросовестными производителями в итоге вы получите некачественную смесь, в результате чего все ваши труды по возведению тех или иных конструкций будут напрасны. Всегда выбирайте товар, который производится на крупных заводах, потому что в таких местах все компоненты, как правило, проходят контроль качества, в результате чего получается эффективная и качественная смесь бетона марки М200.

Отзывы

Занимались обустройством детской площадки на даче, решили сделать небольшую игровую зону, в виде беседки. Для заливки пола и для фундамента беседки использовали бетон м200. Выбрали именно эту марку, т. к. прочитали о ней много положительных отзывов, да и по цене нам как раз подошел именно этот бетон. К тому же он прекрасно подходит именно для этих целей.

Андрей

Мы вот строили дом и практически везде прораб рекомендовал брать бетон М200. Сфера деятельности у него широкая, подошел практически для всего, что было сделано из бетона.

Сергей

В загородном доме, лет 5 назад, строили летнюю кухню. Фундамент укладывали при помощи данного бетона. Рабочие сделали все на совесть и фундамент стоит до сих пор целый без единой трещины.

Евгений

Статья: бетон марки М200 — качество, выбор, состав

Качество бетона для фундамента

Закладка фундамента — этап строительства, когда точность расчетов имеет решающее значение. Под расчетами понимается кубатура, а также выбор марки бетона, отвечающей предстоящим нагрузкам. Фундамент предопределяет устойчивость конструкции. Это невидимое в строительстве звено и его основа.

Начать следует с понимания, что самостоятельно в бетономешалке не сделать качественный замес необходимых объемов. Теоретически это возможно, но на практике слишком трудоемко, высока вероятность ошибки в пропорциях. Неоднородно замешанная смесь в ходе эксплуатации более подвержена разрушению.

Природные материалы, строительные смеси, участвующие в процессе «приготовления» должны быть соответствующего качества: песок без примесей, щебень или гравий определенной фракции, высококачественный цемент, вода. Когда речь идет о малоэтажном строительстве, то купить составляющие, рассчитать правильно пропорции и приготовить готовое к употреблению «блюдо» — слишком затратно по времени. Неравномерно залитый бетон будет неравномерно застывать и может не набрать требуемой прочности. И это крайне нежелательно для целостности фундамента, консистенция и состав которого должны быть одинаковы.

Из чего состоит «правильный» бетон? Из соблюдения технологического процесса производства. Однородность консистенции без пустот, сгустков, четкость пропорций качественного сырья достигается в автоматическом режиме на бетонном заводе. Поставками именно такого бетона занимается торгово-транспортная компания «Экспедиция»

Выбор марки бетона

Можно сказать так: на фундаменте не экономят, но и переплачивать не стоит. Есть ли смысл покупать более дорогой и, естественно, более прочный состав, когда в нем нет необходимости, когда нужен просто достаточный по надёжности?

При выборе марки раствора есть факторы, сопоставив которые, можно принять верное решение:

  • вес конструкции строения — фундамент должен быть настолько прочным, чтобы выдерживать всего здания нагрузку, при этом закладывается определенный запас;
  • особенности грунта — глубина залегания грунтовых вод для выбора определенной влагостойкости бетона и сам состав грунта.

Осталось определиться с маркой.

Марка бетонаИспользованиеНесущая способность (допустимая нагрузка)
М100, М150 Ленточный фундамент на слабопучинистом грунте; заливка мелко- и среднезаглубленных оснований под каркасные и деревянные строения. До 100–130 кг/см²
М200, М250 Заливка свай, заглубленных ленточных фундаментов на пучинистых почвах под малоэтажное строительство До 200–260 кг/см²
М300, М400 Заливки свай, заглубленных ленточных фундаментов, свайных конструкций под кирпичные многоэтажные строения До 300–390 кг/см²

Строительство — точная наука. Поэтому расчеты не будут лишними.

Исходя из размеров и веса будущей постройки, можно определить марку раствора, подходящую для заливки фундамента. Для расчетов существует специальная формула.

Если у вас появились затруднения, во избежание ошибок можно обратиться к помощи специалистов, получить профессиональную консультацию.

М200

Многоэтажная застройка не может осуществляться без проекта с указанием марки бетона для фундамента. Чаще помощь требуется при малоэтажном частном домостроении.

Что такое малоэтажное строительство? Обычно это постройки по высоте 1–3 этажа, стоящие на ленточных фундаментах, заливных сваях. Даже если грунт слабопучинистый, например, скальной породы, марки М100, М150 будут слишком легкими, если строение более одного этажа.

Наиболее распространенной маркой для малоэтажной застройки признан бетон М200, выдерживающий нагрузку до 200 килограммов на один квадратный сантиметр.

Состав М200

Соотношение компонентов бетона М200 определено ГОСТом. Используется щебень фракций от 2 до 20, промытый очищенный песок, вода, цемент марки М400, М500, в качестве добавок — пластификаторы, стабилизаторы и гидрофобизаторы.

Почему именно бетон М200 так популярен среди частных застройщиков и коммерческих организаций? У него привлекательная цена при высоких технических показателях: плотность 1500–2500 кг/м3, морозостойкость, жесткость, водонепроницаемость. Последняя имеет показатель W2–W6, при котором дополнительная гидроизоляция не требуется. Устойчив к заморозкам, к жаре.

М200 имеет отличную сцепку с арматурой из металла. Поэтому, помимо заливки фундаментов, применяется в изготовлении дорожных плит, плит перекрытия, перемычек.

Бетон М200 предлагается на гравии, на щебне и в качестве раствора на стяжку. Бетон на гравии — более дешевый, так как его компонент — гравий, добывается менее затратным способом. Следует знать, что его показатели лещадности, то есть способность сцепки с составом, не столь высоки. Гравий имеет округлые формы, без острых выступов, за которые «цепляется» цемент. Бетон на щебне — прочный вид строительного материала, так как неровные края щебня обеспечивают идеальное сцепление с другими компонентами бетона.

Раствор на стяжку — это кладочный раствор для кирпичных колонн, бетонных блоков, перегородок, подверженных перепадам температур и воздействию влаги. У него высокие показатели прочности и водонепроницаемости. В качестве заполнителя используется только крупнозернистый песок, гравий или щебень отсутствуют.

Доставка бетона

Торгово-транспортная компания «Экспедиция» оперативно доставляет свежий бетон специальной техникой до объекта строительства.

Почему важна быстрая доставка? Бетонная смесь быстро застывает без вымешивания. Если не поддерживать ее движение, она начнет твердеть. ТТК «Экспедиция» доставляет свежий бетон в миксерах, автобетоносмесителях, обеспечивая сохранение его качества и такого важного показателя, как эластичность, облегчающего укладку.

Типы цемента

В строительных документах часто указывается тип цемента в зависимости от требуемых характеристик бетона или условий укладки. Некоторые заводы по производству цемента производят только определенные типы портландцемента. В чем разница между этими типами цемента и как они проверяются, производятся и идентифицируются на практике?

В самом общем смысле портландцемент получают путем нагрева источников извести, железа, кремнезема и глинозема до температуры клинкера (от 2500 до 2800 градусов по Фаренгейту) во вращающейся печи с последующим измельчением клинкера до мелкого порошка.Нагрев, происходящий в печи, превращает сырье в новые химические соединения. Таким образом, химический состав цемента определяется массовым процентом и составом исходных материалов извести, железа, кремнезема и глинозема, а также температурой и продолжительностью нагрева. Именно это изменение в источнике сырья и характеристиках завода, а также в процессах отделки (например, измельчение и возможное смешивание с гипсом, известняком или дополнительными вяжущими материалами) определяют производимый цемент.

Стандарты?

Для обеспечения согласованности между цементными заводами на цемент устанавливаются определенные химические и физические ограничения. Эти химические пределы определены множеством стандартов и спецификаций. Например, портландцементы и смешанные гидравлические цементы для бетона в США соответствуют требованиям Американского общества по испытаниям и материалам (ASTM) C150 (Стандартные спецификации для портландцемента), C595 (Стандартные спецификации для смешанных гидравлических цементов) или C1157 (Рабочие характеристики для Гидравлические цементы).

Некоторые государственные агентства ссылаются на очень похожие спецификации: AASHTO M 85 для портландцемента и M 240 для смешанных цементов. Эти спецификации относятся к стандартным методам испытаний, чтобы гарантировать, что испытания проводятся таким же образом. Например, ASTM C109 (Стандартный метод испытания прочности на сжатие для гидравлических цементных растворов с использованием 2-дюймовых кубических образцов) подробно описывает, как изготовить и испытать кубики раствора для испытания прочности на сжатие стандартизованным образом.

Различия в номенклатуре

В США могут применяться три отдельных стандарта в зависимости от категории цемента.Для портландцементов ASTM C150 описывает:

Тип цемента Описание
Тип I Нормальный
Тип II Умеренная сульфатостойкость
Тип II (MH) Умеренная теплота гидратации (и умеренная сульфатостойкость)
Тип III Высокая ранняя прочность
Тип IV Низкотемпературная гидратация
Тип V Высокая сульфатостойкость

Для смешанных гидравлических цементов, указанных в стандарте ASTM C595, используется следующая номенклатура:

Тип цемента Описание
Тип IL Портланд-известняковый цемент
Тип IS Портланд-шлаковый цемент
Тип IP Портланд-Поццонланский цемент
Тип IT Трехкомпонентный смешанный цемент

Кроме того, некоторые смешанные цементы обладают особыми эксплуатационными свойствами, подтвержденными дополнительными испытаниями.Они обозначаются буквами в скобках после типа цемента. Например, тип IP (MS) представляет собой портланд-пуццолановый цемент с умеренной сульфатостойкостью. Другие особые свойства обозначены (HS) для высокой сульфатостойкости; (А) для воздухововлекающих цементов; (MH) для умеренной теплоты гидратации; и (LH) для низкой теплоты гидратации. Обратитесь к ASTM C595 для более подробной информации.

Тем не менее, из-за интереса в отрасли к спецификациям, основанным на характеристиках, ASTM C1157 описывает цементы по их эксплуатационным характеристикам:

Тип цемента Описание
Тип GU Общее применение
Тип HE Высокая ранняя прочность
Тип MS Умеренная сульфатостойкость
Тип HS с высокой сульфатостойкостью
Тип MH с умеренной теплотой гидратации
Тип LH с низкой теплотой гидратации

Примечание: подробный обзор типов цемента для США и их характеристик см. В документе PCA «Проектирование и контроль бетонных смесей , EB001 или . характеристик цемента на свойствах бетона , EB226.


Требования к физическим и химическим характеристикам

Химические испытания подтверждают содержание и состав цемента, а физические испытания демонстрируют физические критерии.

У C150 / M 85 и C595 / M 240 как химические, так и физические свойства ограничены. В C1157 ограничения почти полностью связаны с физическими требованиями.

Химические испытания включают анализ оксидов (SiO 2 , CaO, Al 2 O 3 , Fe 2 O 3 и т. Д.) для расчета фазового состава цемента. Цементы типа II ограничены содержанием C150 / M 85 максимум 8% по массе трикальцийалюмината (цементная фаза, часто сокращенно C 3 A), что влияет на сульфатостойкость цемента. Некоторые оксиды сами по себе ограничены спецификациями: например, содержание магнезии (MgO) ограничено максимум 6% по весу для портландцементов, поскольку это может повлиять на прочность при более высоких уровнях.

Типичные физические требования к цементам: содержание воздуха, крупность, расширение, прочность, теплота гидратации и время схватывания.Большинство этих физических испытаний проводится с использованием раствора или пасты, созданной из цемента. Это испытание подтверждает, что цемент может хорошо работать с бетоном; однако характеристики бетона в полевых условиях определяются всеми ингредиентами бетона, их количеством, а также окружающей средой и используемыми процедурами обращения и укладки.

Хотя процесс производства цемента относительно схож в Северной Америке и на большей части земного шара, ссылки на спецификации цемента могут отличаться в зависимости от юрисдикции.Кроме того, методы испытаний также могут различаться, поэтому требования к прочности на сжатие (например) в Европе не «переводятся» напрямую на требования в Северной Америке. Заказывая бетон для строительных проектов, проконсультируйтесь с местным производителем бетона, чтобы убедиться, что используемый цемент соответствует требованиям, предъявляемым к условиям проекта и области применения, а также требованиям соответствующих спецификаций на цемент.

м Бетон марки 200

Email: [email protected]

  • Конструкция бетонной смеси Марка бетона М 20

    Пропорции окончательной смеси бетона марки М-20 становятся: -Реклама.Примечание: 1 Рекомендуемый выше дизайн смеси должен быть подтвержден фактическими кубическими испытаниями. 2 Дизайн смеси основан на качестве и классификации материалов, фактически поставленных клиентом.

  • Номинальная смесь и расчетная смесь бетона: знайте разницу

    16 декабря 2019 г. · M 20 определяется как марка бетона, в которой M обозначает смесь, а 20 обозначает прочность на сжатие бетонного куба после 28 дней выдержки. выдержка в Н / мм 2. Существуют различные марки бетона, такие как M10, M15, M20, M25, M30 и т. д.

  • Бетон М300 В22,5: сфера применения, характеристики, пропорции

    Марка бетона М300 В22,5: свойства, состав, подготовка При заливке фундамента частного дома практически любого типа рекомендуется использовать бетон М300 В22 .5. Его свойства оптимальны для условий нашей страны.

  • Марка бетона для фундамента частного дома …

    В частности, вы можете определить стойкость к возможным деформациям, выбрав определенную марку бетона для фундамента.Если речь идет о каменистом или песчаном грунте, то в этом случае достаточно бетона марки М200 или М250, но если есть вхождение глины, то лучшим вариантом будет использование бетона марки М350.

  • Бетон В15 (марка): состав, характеристики …

    18 мая 2021 г. · Бетон В15 (марка М200) относится к группе со средней степенью прочности 196 кгс / кв. См. Изготавливается с учетом ГОСТов на современном оборудовании, на автоматических линиях.В результате получается очень качественный материал, подходящий для строительства самых разных конструктивных элементов зданий.

  • Бетон для устройства фундамента: марка, пропорции …

    26.10.2020 · Определяется испытанием специального образца. Для фундамента марка М150, М200, марка портландцемента принята М300, М400. Песок. Песок для бетонной смеси используется как природного, так и искусственного происхождения (дробление горных пород). Для тяжелого бетона чаще всего используют кварцевые пески, как более прочные.

  • Проектирование бетонной смеси | Различные марки бетона

    17 мая 2017 г. · Чтобы облегчить понимание, мы находим конструкцию бетонной смеси из бетона марки M20. Соотношение бетонной смеси для бетона марки М20 составляет 1: 1,5: 3, что означает 1 часть цемента, 1,5 части песка (мелкий заполнитель) и 3 части заполнителя (щебня) по объему, а затем дозирование для смешивания. Чтобы узнать о конструкции бетонной смеси, выполните следующие действия: —

  • Различные марки бетона, их прочность и выбор…

    14 декабря 2017 г. · Какая марка бетона? Марка бетона определяется как минимальная прочность, которой бетон должен обладать после 28 дней строительства при надлежащем контроле качества. Марка бетона обозначается приставкой M к желаемой прочности в МПа. Например, для марки бетона с прочностью 20 МПа она будет обозначаться как M20, где M означает Mix.

  • Что такое бетонная смесь M20? — Ответы:

    M20 M относится к смешиванию, а 20 относится к прочности 20 н / мм2, а M200 к смешиванию 200 н / мм2.Пропорции смеси для бетона марки М20? 1: 2: 4. Каков состав товарного бетона марки М20? 1: 1,5: 3.

  • Высокопрочные свойства бетона, добавка и смесь …

    Время, необходимое для достижения определенной прочности, является важным экономическим и дизайнерским параметром в строительстве из высокопрочного бетона. Фактически, высокая начальная прочность может принести гораздо больше практических и экономических преимуществ, чем высокая прочность в более позднем возрасте, с точки зрения раннего снятия опалубки, повышения производительности сборных железобетонных изделий, раннего переноса предварительного напряжения и раннего применения услуг. нагрузки.

  • MasterSeal M 200 (Sonoguard) Самовыравнивающаяся гидроизоляция …

    Самовыравнивающаяся гидроизоляционная грунтовка MasterSeal M 200 (ранее — Sonoguard SL Base Coat). Однокомпонентная полиуретановая гидроизоляционная мембрана серого цвета. Ведро емкостью 5 галлонов. Цена / ведро. (196 г / л ЛОС, не может быть доставлен в районы SCAQMD в Южной Калифорнии)

  • Сорта бетона? Различные марки бетона? M10, M15 …

    28 июля, 2020 · Бетон марки M25, в отличие от M15 и M20, является стандартным типом бетона.Бетон марки М25 — это бетон более высокого сорта, чем М20. СВОЙСТВА БЕТОНА МАРКИ М25: М25 представляет собой смесь, состоящую из цемента, мелкого заполнителя и крупного заполнителя в соотношении 1: 1: 2: 1 цемент, один песок и два заполнителя.

  • Master Builders Solutions Строительная продукция

    Добро пожаловать в Master Builders Solutions Master Builders Solutions — мировой бренд передовых химических решений для строительства. Наш обширный портфель строительных химикатов включает добавки для бетона, решения для гидроизоляции, решения для ремонта и защиты бетона, растворы для повышения эксплуатационных качеств и решения для покрытия полов.

  • Бетон PSI | Прочность, испытания и его характеристики …

    22 августа 2020 г. · Когда бетон превысил 5 000 фунтов на квадратный дюйм, он использовался в определенных видах строительства и проектах, где требовался материал здания, который последним рвется, изнашивается и массивен при ударе. .. Использование силы PSI. Существенной частью получения прочности на сжатие является необходимость в соответствии с методологией PSI. Для типичного строительства, такого как железобетон, необходимо от 3,500 до 4,000

  • Цены на бетон — Gelgaudiškio gelžbetonis

    Марка бетона в соответствии с: Марка бетона в соответствии с: Цена м 3 (EUR), искл.НДС: C 6 / 7,5 S1: M100 (1-4) 66,96: C 6 / 7,5 S2: M100 (5-9) 71,41: C 8/10 S1: M150 (1-4) 74,29: C 8/10 S2: M150 (5-9) 77,17: C 8/10 S3: M150 (10-15) 82,91: C12 / 15 S1: M200 (1-4) 77,95 : C12 / 15 S2: M200 (5-9) 81,61

  • Значение бетона m20 и m200 — ВСЕ Интервью

    M20 означает обычный бетон. M обозначает смесь, а число (20) обозначает характеристику сжатия прочность бетона Н / мм2, что означает 20Н / мм2. И еще одна вещь, что у m200 нет бетона, было только 15 марок M10 M15 M20 M25

  • Типы расчета соотношения бетонных смесей и их сильные стороны…

    Пропорции бетонной смеси — это пропорции компонентов бетона, таких как цемент, песок, заполнители и вода. Эти соотношения компонентов смеси определяются в зависимости от типа конструкции и конструкции смеси. Однако строительные нормы и правила определяют номинальные и стандартные пропорции бетонной смеси для различных строительных работ, основанные на опыте и испытаниях.

  • Сборный бетон RCC Сборная клапанная камера, марка: M200 …

    Shreeji Molding — Предлагает сборную бетонную сборную клапанную камеру RCC, класс: M200 по 3000 рупий / комплект в Ахмедабаде, Гуджарат.Читайте о компании. Получите контактные данные и адрес |

  • Бетон В20 М250 — состав и плотность, пропорции …

    Марка В20 М250 почти не уступает М300, но все же отличается от более популярной М200. От последних его отличает другой уровень прочности. Итак, это 260кг / см2. Несмотря на преимущества этой марки, когда речь идет о заливке полосы

  • M200 Slope Masterseal: Masterseal Traffic Coating…

    Описание. M200 Slope Masterseal — это влагоотверждаемая бесшовная гидроизоляционная полиуретановая мембрана, наносимая жидкостью. В составе MasterSeal Traffic 1500MD система создает жесткие, постоянно эластомерные свойства, обеспечивает долговременную защиту от проникновения воды.

  • Конструкция бетонной смеси для марки M200 — тройная смесь …

    31 мая 2020 г. · Бетонная смесь Конструкция для бетона марки M200, тройная смесь с летучей золой и микрокремнеземом выглядит следующим образом; это образец смеси, сделанный для испытаний и никогда не использовавшийся в реальном строительстве, так как у меня никогда не было возможности сделать это.Цемент OPC 53, сорт 888 кг Летучая зола 118 кг Микрокремнезем 178 кг Вода Соотношение цемента (в / ц) 0,2 Свободная вода …

  • Соотношение бетонной смеси для различных марок бетона …

    M означает смесь. Смесь представляет собой бетон с заданными пропорциями цемента, песка и заполнителя. Число после M представляет прочность на сжатие этой бетонной смеси в Н / мм 2 через 28 дней. Например, для бетонной смеси марки М20 ее прочность на сжатие через 28 суток должна составлять 20 Н / мм 2.

  • Калькулятор цементного бетона | Калькулятор PCC | RCC …

    Используется для выравнивания, укладки фундаментов, плит, бетонных дорог и т. Д. PCC используется для создания непористого, жесткого, непроницаемого, твердого и выровненного основания для укладки RCC там, где земля мягкая и податливая. . PCC можно использовать над плоской подошвой кирпича или без плоской подошвы кирпича. PCC также используется в качестве наполнителя, например, кусковой бетон; это смесь PCC и боулдера.

  • M200 Masterseal: Masterseal Basecoat Самовыравнивающийся…

    1 бетон должен быть полностью затвердевшим (28 дней), структурно прочным, чистым и сухим (ASTM D 4263). Все бетонные поверхности (новые и старые) должны быть подвергнуты дробеструйной очистке, чтобы удалить предыдущие покрытия, цементное молоко и все прочие поверхностные загрязнения, а также обеспечить профиль для надлежащей адгезии. После ремонта бетона необходимо произвести дробеструйную очистку.

  • Модуль упругости бетона? [3 разных стандарта]

    4 марта 2019 г. · Как мы знаем, бетон демонстрирует разные свойства при разных соотношениях воды и цемента и имеет различную бетонную смесь (M15, M20 и т. Д.).Модуль упругости бетона Он определяется как отношение нормального напряжения к нормальной деформации ниже пропорционального предела

  • Ранний высокопрочный бетон Преимущества и проблемы

    Бетон порядка M200 и выше возможен в лаборатории условия. Учитывая такой уровень уверенности, промышленность сегодня предъявляет очень высокие требования к производителям цемента и добавок.

  • Расчет цементного песка и заполнителя — M20, M15, M10, M5…

    Прочность бетона во многом зависит от плотности бетона, поэтому нам не следует играть с соотношением песка и заполнителя. Я бы предложил соотношение 1: 2: 3 или 1: 1,5: 3 для бетона марки М20 и 1: 2: 4 или 1: 2,5: 3,5 для бетона марки М15. Если вы готовите бетон со своим рационом, в нем будет слишком много песка.

  • ИНСТРУКЦИЯ ПО УСТАНОВКЕ HYDRANT M-200

    низ расширяющейся части основания находится на уровне отметки. Если требуется бетонная плита, подготовьте отверстие вокруг гидранта для размещения бетонной плиты.При необходимости насыпьте и утрамбуйте гравий. Залить бетон до дна развальцованной части основания гидранта. При необходимости обработайте бетон. траншея, позволяющая обрезать лишнюю длину лески во время соединения.

  • MasterSeal M 200 (Sonoguard) Гидроизоляция для уклонов …

    MasterSeal M 200 Гидроизоляционная грунтовка для уклонов (ранее — Sonoguard Base Coat). Однокомпонентная полиуретановая мембрана серого цвета. Толстый материал для участков с большим уклоном. Ведро емкостью 5 галлонов. Цена / ведро. (203 г / л ЛОС, не отправляется в S.CALIF SCAQMD)

  • Мембраны и перекрытия настила — BASF

    система бетонного покрытия. При смешивании с заполнителем может использоваться как ремонтный раствор. MasterSeal 350 — легкая альтернатива бетонным и асфальтовым покрытиям. … настилы, внешняя фанера и механические помещения. Обеспечивает отличную атмосферостойкость. Акриловое покрытие MasterSeal 658

  • MasterSeal Traffic Deck Membrane — Master Builders

    уровней в бетонной плите.Чаще всего это происходит при использовании не вентилируемых решетчатых настилов, перекрытий на уровне и разделенных плит. C. Несовместимость с существующими покрытиями D. Неправильное смешивание. Невозможность предварительного смешивания отдельных компонентов в однокомпонентных системах. Неправильное соотношение при разделении двухкомпонентных единиц. E. Отверждение при высокой температуре может вызвать образование корки на

  • Высокопрочный бетон — Цемент

    . Высокопрочный бетон рекомендуется там, где важен уменьшенный вес или где архитектурные соображения требуют небольших опорных элементов.Высокопрочный бетон переносит нагрузки более эффективно, чем бетон нормальной прочности, также уменьшает общее количество размещаемого материала и снижает общую стоимость конструкции.

  • Каков состав бетона марки М200? — Смесь Quora

    сначала должна быть спроектирована в лаборатории на объекте с различными комбинациями, и то же самое должно быть испытано в течение 3 дней на прочность на сжатие. Обычно песок составляет от 40 до 55%, а крупный заполнитель — от 70 до 80%. НЕОБХОДИМО Пробная смесь на месте отливки куба n-тест через 3 дня…

  • какова пропорция бетона марок M200 и M300

    какова пропорция бетона марок M200 и M300. Вопрос опубликован / самер шейх. 1 ответов; 7989 Просмотров; Karrm Infrastructure, я тоже сталкивался. Ответы на электронную почту; какова доля бетона марок М200 и М300 .. Ответ / пижуш22. M200 = 1: 1,5: 3 (200 кг / см2) (m = 20) M300 = расчетная смесь. Это правильный ответ? 22 Да …

  • График прочности бетона: особенности, виды, технология и…

    Для предварительно напряженных железобетонных конструкций от М200 до 300 это значение составляет 40% от марки. Бетон марок от М400 до 500 имеет критическую прочность в пределах 30%. Перспективы упрочнения бетона. График прочности бетона (СНиП 52-01-2003) не ограничивается месяцем. Процесс отверждения может занять несколько лет.

  • MasterSeal M 200 Самостоятельное базовое покрытие 5 / галлон от Carter …

    MasterSeal M 200, однокомпонентная гидроизоляционная система, влагоотверждаемый полиуретан Рекомендуемое применение: Решения для автомобильного движения и пешеходного движения обеспечивает защиту от проникновения хлоридов, продлевает срок службы армирующей стали. Бесшовная эластомерная мембрана обеспечивает отличную прочность и превосходную стойкость к истиранию. Отсутствие швов…

  • Бетон — Gelgaudiškio gelžbetonis

    Марка бетона в соответствии с классом бетона в соответствии с: C 6 / 7,5 S1: M100 (1-4) C 6 / 7,5 S2: M100 (5-9) C 8/10 S1: M150 (1-4) C 8/10 S2: M150 (5-9) C 8/10 S3: M150 (10-15) C12 / 15 S1: M200 (1-4) C12 / 15 S2 : M200 (5-9) C12 / 15 S3: M200 (10-15)

  • Бетон М200: состав, пропорции, характеристики

    Бетон М200 — самый популярный в строительной отрасли. У него есть такие качества, как сила и надежность.Его можно использовать для строительства частных домов, заливки фундамента, он отлично подойдет для тротуаров и детских площадок.

  • Значение бетона M20 и M200

    C30 37 конкретное значение карьеры. В чем разница между бетоном C30 и C40 Это делается в ньютонах на квадратный миллиметр. Бетон класса C30 означает, что бетон. что мы имеем в виду c30 40 для гражданского бетона. Целевая средняя прочность бетона получается из Подробнее Получить цену Минимальный класс прочности.Подробнее

  • Что такое бетон марки М200? — Ответы

    Бетон 30 класса 1: 1: 2 Бетон 25 класса 1: 1,5: 3 Бетон 20 класса 1: 2: 4 Когда было изобретено огнестрельное оружие М200? Огнестрельное оружие M200 — это название винтовки, которая была впервые произведена компанией CheyTac LLC …

  • MasterProtect H 200 — Master Builders Solutions

    Бетон: 100175 футов2 / галлон (2,44,3 м2 / л) Кирпич: 100175 футов2 / галлон (2,44,3 м2 / л) Штукатурка: 60100 фут2 / галлон (1,52,4 м2 / л) Всегда используйте тестовую зону для определения фактического покрытия.Степень покрытия сильно зависит от пористости основания. ХРАНЕНИЕ Хранить в закрытых контейнерах в чистом, сухом месте при температуре от 35 до 110 ° F.

  • видов бетона: Типы бетона: Какой тип бетона больше всего подходит для вашего строительства или строительной деятельности?

    Раньше в строительстве широко использовался строительный раствор, а сегодня бетон является основным ингредиентом. Основное различие между раствором и бетоном состоит в том, что последний прочнее первого.Бетон представляет собой смесь песка (мелкий заполнитель), цемента, гравия или щебня (крупный заполнитель) и воды. С другой стороны, раствор использует песок в качестве единственного заполнителя.

    Почему бетон так важен в современном строительстве?
    Когда вы идете по дороге, вы можете видеть бетон повсюду. Он используется при строительстве огромных зданий, мостов, дорог, тротуаров, полов и буквально всего, что может видеть наш глаз. Короче говоря, везде, где есть конструкция, есть бетон.Во-первых, использование бетона важно в современном строительстве, потому что конструкции черпают свою прочность и устойчивость из бетона. Во-вторых, бетон недорогой, и его можно формовать в различных формах. Эта гибкость и универсальность делают бетон самым востребованным строительным материалом в мире.

    Бетон изготавливается из натуральных ингредиентов. Следовательно, он экологически чистый и пригоден для вторичной переработки. В качестве сухого заполнителя для приготовления нового бетона можно использовать измельченный вторичный бетон.Пока в мире ведутся строительные работы, спрос на бетон будет постоянным.

    Свяжитесь с ближайшими к вам ведущими дилерами по производству бетона и получите бесплатные расценки

    Различные виды бетона и их применение
    Обычно в строительстве используется двадцать четыре различных типа бетона в зависимости от типа конструкции.

    Обычный бетон — это самый простой вид бетона, не требующий армирования.Чаще всего используется смесь цемента, заполнителей и воды в пропорции 1: 2: 4. Плотность этого бетона составляет от 2200 до 2500 кг / кубический метр, тогда как его прочность на сжатие находится в диапазоне от 200 до 500 кг / квадратный сантиметр. Обычно простой бетон используется для устройства тротуаров, пешеходных дорожек и зданий на участках, не требующих высокой прочности на разрыв.

    Бетон нормальной прочности — Бетон нормальной прочности аналогичен обычному бетону, поскольку при его приготовлении используются те же ингредиенты.Начальное время схватывания составляет от 30 до 90 минут, в зависимости от свойств используемого цемента и погодных условий на месте. Прочность этого типа бетона составляет от 10 МПа до 40 МПа.

    Высокопрочный бетон — Высокопрочный бетон получают путем снижения водоцементного отношения до менее 0,35. Такой бетон имеет прочность более 40 МПа. Работа с высокопрочным бетоном представляет собой серьезную проблему из-за его более низкого уровня производительности.

    Быстрозащитный бетон — Как следует из названия, быстродействующий бетон приобретает свою прочность в течение нескольких часов после приготовления. Это обеспечивает быстрое строительство зданий и дорог. Одно из наиболее распространенных применений быстропрочного бетона — ремонт дорог.

    Бетон высокопрочный — Эти типы бетонный дисплей высокого уровня производительности. Они соответствуют определенным стандартам, таким как быстрое увеличение прочности, простота размещения, высокая проницаемость, высокая долговечность, механические свойства в течение срока службы и решение экологических проблем.

    Бетон со сверхвысокими характеристиками — Помимо обычных ингредиентов, используемых для производства бетона, для бетона со сверхвысокими характеристиками требуется микрокремнезем, кварцевая мука и мелкодисперсный кварцевый песок. Также можно использовать высокодисперсные восстановители воды, стальные или органические волокна для улучшения прочности смеси. Преимущество UHPC в том, что он не требует наличия стальной арматуры для усиления конструкции. UHPC имеет прочность на сжатие до 29000 фунтов на квадратный дюйм.

    Роликовый уплотненный бетон — Этот тип бетона требует укладки бетона и его уплотнения с помощью дорожных катков.Для этого типа бетона требуется меньше цемента, но он может обеспечить более высокую плотность.

    Асфальтобетон — Наземные дороги, аэропорты, автостоянки и насыпи плотин требуют асфальтобетона. Они производятся путем смешивания асфальта и заполнителей.

    Железобетон — Обычный бетон не обладает высокой прочностью на разрыв. Использование арматуры в виде стальных стержней, стержней, сеток или волокон может улучшить общую прочность бетона.RCC имеет огромное применение при строительстве колонн, перекрытий, мостов и других конструкций, требующих высокого уровня прочности.

    Товарный бетон — Товарный бетон — это бетон, который смешивается на центральном смесительном заводе и доставляется на строительную площадку в готовом к использованию состоянии. При использовании товарного бетона следует позаботиться о времени, необходимом для транспортировки, так как смесь может затвердеть, если произойдет неоправданная задержка.

    Штампованный бетон — Подъездные пути, террасы и внутренние полы, требующие эстетичного внешнего вида, обычно используют штампованный бетон.Этот архитектурный бетон позволяет создавать реалистичные узоры, такие как натуральный камень, плитка и гранит, с помощью профессиональных штамповочных подушек.

    Самоуплотняющийся бетон — Как следует из названия, этот тип бетона уплотняется своим весом без использования вибрации. Такая бетонная смесь отличается высокой удобоукладываемостью.

    Предварительно напряженный бетон — В мегабетонных проектах используются предварительно напряженные бетонные блоки, в которых стержни, используемые в бетоне, подвергаются напряжению до фактического приложения рабочей нагрузки.Процесс строительства требует, чтобы натянутые стержни были надежно размещены с каждого конца устройства. Это делает нижнюю часть конструкции более устойчивой к растяжению. Обычно сборка узлов предварительного напряжения происходит на строительной площадке. Строительство мостов, эстакад, тяжеловесных конструкций требует предварительно напряженного бетона.

    Сборный бетон — В небольших элементах, таких как бетонные блоки, столбы, бетонные перемычки, лестничные клетки и сборные стены, используется сборный железобетон.Преимущество сборного железобетона в том, что он изготавливается по индивидуальным техническим условиям. Сборка агрегатов происходит на строительной площадке.

    Торкрет-бетон — Торкрет-бетон отличается от других типов бетона способом его нанесения. Он попадает в конструкционный каркас с помощью насадки. Процесс включает съемку бетона под высоким давлением воздуха, что приводит к одновременной укладке и уплотнению.

    Легкий бетон — Бетон, имеющий плотность ниже 1920 кг / куб.м, называется легким бетоном.Некоторые из типичных заполнителей, используемых для производства легкого бетона, — это пемза, шлак и перлит. Он используется в таких приложениях, как строительство длиннопролетных мостовых настилов и их строительных блоков.

    Бетон высокой плотности — Также известный как тяжелый бетон, этот тип бетона имеет плотность в диапазоне от 3000 до 4000 кг / кубический метр. Бетон высокой плотности готовится с использованием тяжелых заполнителей, таких как бариты. Некоторые распространенные применения этого типа бетона включают строительство атомных электростанций, где обеспечение высокой устойчивости к любой утечке радиации имеет первостепенное значение.

    Полимербетон — В полимерном бетоне заполнители связываются с полимером, а не с цементом, что, в свою очередь, помогает уменьшить объем пустот в заполнителях. Существует три типа полимербетона, которые включают пропитанный полимером бетон, частично пропитанный полимербетон и полимерцементный бетон.

    Бетон с воздухововлекающими добавками — это особый тип бетона, в котором воздух, газ или пена специально вводятся в бетон до 6%.

    Limecrete — Limecrete предполагает использование известняка вместо цемента в процессе подготовки. Он находит применение в строительстве полов, куполов и сводов.

    Проницаемый бетон — В тротуарах и проездах используется проницаемый или проницаемый бетон, поскольку он позволяет ливневой воде проникать в землю. Такой бетон может решить проблемы с дренажем.

    Стеклобетон — В этом современном бетоне используется переработанное стекло в качестве заполнителя для повышения эстетической привлекательности конструкции.Этот бетон не только прочен, но и обеспечивает теплоизоляцию.

    Вакуумный бетон — Эта бетонная смесь содержит большую долю воды. Процесс их приготовления заключается в откачке излишков воды с помощью вакуумного насоса, не дожидаясь схватывания бетонной смеси. Этот процесс ускоряет период укрепления конструкции с 28 дней до примерно десяти дней.

    Перекачиваемый бетон — Высотное строительство требует закачки бетона на большую высоту.Следовательно, на этих строительных площадках используется перекачиваемый бетон, который является текучим по своей природе с высокой удобоукладываемостью, чтобы обеспечить перекачку бетонной смеси по трубам или гибким шлангам.

    Свяжитесь с ближайшими к вам ближайшими дилерами по производству бетона и получите бесплатные расценки

    Свойства бетона при повышенных температурах

    Огнестойкость бетонных конструктивных элементов зависит от тепловых, механических и деформационных свойств бетона. Эти свойства значительно зависят от температуры, а также от состава и характеристик бетонной смеси, а также от скорости нагрева и других условий окружающей среды.В этой главе описаны основные характеристики бетона. Обсуждаются различные свойства, которые влияют на характеристики огнестойкости, а также роль этих свойств в огнестойкости. Представлено изменение термических, механических, деформационных и откольных свойств в зависимости от температуры для различных типов бетона.

    1. Введение

    Бетон широко используется в качестве основного конструкционного материала в строительстве благодаря многочисленным преимуществам, таким как прочность, долговечность, простота изготовления и негорючие свойства, которыми он обладает по сравнению с другими строительными материалами.Бетонные конструктивные элементы при использовании в зданиях должны удовлетворять соответствующим требованиям пожарной безопасности, указанным в строительных нормах [1–4]. Это связано с тем, что пожар представляет собой одно из самых тяжелых условий окружающей среды, которым могут подвергаться конструкции; поэтому обеспечение соответствующих мер противопожарной безопасности для элементов конструкции является важным аспектом проектирования здания.

    Меры пожарной безопасности конструктивных элементов измеряются с точки зрения огнестойкости, которая представляет собой продолжительность, в течение которой конструктивный элемент проявляет сопротивление в отношении структурной целостности, стабильности и передачи температуры [5, 6].Бетон обычно обеспечивает лучшую огнестойкость из всех строительных материалов [7]. Эта превосходная огнестойкость обеспечивается материалами, составляющими бетон (например, цемент и заполнители), которые при химическом соединении образуют по существу инертный материал с низкой теплопроводностью, высокой теплоемкостью и более медленным ухудшением прочности с температурой. Именно эта низкая скорость теплопередачи и потери прочности позволяют бетону действовать как эффективный противопожарный щит не только между соседними помещениями, но и защищать себя от повреждений при пожаре.

    Поведение бетонного конструктивного элемента, подверженного воздействию огня, частично зависит от термических, механических и деформационных свойств бетона, из которого он состоит. Подобно другим материалам, теплофизические, механические и деформационные свойства бетона существенно изменяются в диапазоне температур, связанных с пожарами в зданиях. Эти свойства меняются в зависимости от температуры и зависят от состава и характеристик бетона. Прочность бетона существенно влияет на его свойства как при комнатной, так и при высоких температурах.Свойства высокопрочного бетона (HSC) изменяются в зависимости от температуры иначе, чем свойства бетона нормальной прочности (NSC). Это изменение более выражено для механических свойств, на которые влияют прочность, влажность, плотность, скорость нагрева, количество микрокремнезема и пористость.

    На практике огнестойкость конструктивных элементов оценивалась в основном с помощью стандартных огнестойких испытаний [8]. Однако в последние годы использование численных методов для расчета огнестойкости конструктивных элементов получает все большее распространение, поскольку эти методы расчета гораздо менее затратны и требуют много времени [9].Когда элемент конструкции подвергается определенному температурно-временному воздействию во время пожара, это воздействие вызовет предсказуемое распределение температуры в элементе. Повышенные температуры вызывают деформации и изменение свойств материалов, из которых изготовлен элемент конструкции. Зная о деформациях и изменениях свойств, обычные методы строительной механики могут применяться для прогнозирования характеристик огнестойкости конструктивного элемента. Наличие свойств материала при повышенной температуре позволяет использовать математический подход для прогнозирования огнестойкости элементов конструкции [10, 11].

    Очевидно, общая информация о свойствах бетона при комнатной температуре редко применима для расчета огнестойкости [12]. Поэтому крайне важно, чтобы практикующий специалист по пожарной безопасности знал, как расширить, исходя из априорных соображений, полезность скудных данных о свойствах, которые могут быть собраны из технической литературы. Кроме того, знание уникальных характеристик, таких как растрескивание бетона в результате пожара, имеет решающее значение для определения огнестойкости бетонных элементов конструкции.

    2. Свойства, влияющие на огнестойкость
    2.1. Общие сведения

    На огнестойкость железобетонных (ЖБИ) элементов влияют характеристики составляющих материалов, а именно, бетона и арматурной стали. К ним относятся (а) термические свойства, (б) механические свойства, (в) деформационные свойства и (г) специфические характеристики материала, такие как растрескивание бетона. Тепловые свойства определяют степень теплопередачи к элементу конструкции, тогда как механические свойства составляющих материалов определяют степень потери прочности и ухудшения жесткости элемента.Деформационные свойства в сочетании с механическими свойствами определяют степень деформаций и деформаций в элементе конструкции. Кроме того, растрескивание бетона в результате пожара может сыграть значительную роль в пожарных характеристиках элементов RC [13]. Все эти свойства меняются в зависимости от температуры и зависят от состава и характеристик бетона, а также арматурной стали [12]. Изменение свойств бетона, вызванное температурой, намного сложнее, чем изменение свойств арматурной стали, из-за миграции влаги, а также значительного различия ингредиентов в различных типах бетона.Таким образом, основное внимание в этой главе уделяется влиянию температуры на свойства бетона. Влияние температуры на свойства стальной арматуры можно найти в других работах [4, 12].

    Бетон доступен в различных формах, и его часто группируют по разным категориям в зависимости от веса (как обычный и легкий бетон), прочности (как бетон нормальной прочности, высокопрочного и сверхвысокопрочного бетона), наличия волокон (как простой бетон). и бетон, армированный фиброй), и производительность (как обычный бетон, так и бетон с высокими эксплуатационными характеристиками).Специалисты по пожарной безопасности также подразделяют бетон с нормальным весом на силикатный (кремнистый) и карбонатный (известняковый) бетон, в зависимости от состава основного заполнителя. Кроме того, когда небольшое количество прерывистых волокон (стальных или полипропиленовых) добавляется к бетонной смеси для улучшения характеристик, этот бетон называют фибробетоном (FRC). В этом разделе в основном обсуждаются различные свойства обычного бетона. Подчеркивается влияние прочности, веса и волокон на свойства бетона при повышенных температурах.

    Традиционно прочность на сжатие бетона составляла от 20 до 50 МПа, который классифицируется как бетон нормальной прочности (НБК). В последние годы стал широко доступен бетон с прочностью на сжатие в диапазоне от 50 до 120 МПа, который называют высокопрочным бетоном (HSC). Когда прочность на сжатие превышает 120 МПа, его часто называют бетоном со сверхвысокими характеристиками (UHP). Прочность бетона ухудшается с температурой, и на скорость ухудшения прочности сильно влияет прочность бетона на сжатие.

    2.2. Тепловые свойства

    Термическими свойствами, которые влияют на повышение и распределение температуры в бетонном конструктивном элементе, являются теплопроводность, удельная теплоемкость, температуропроводность и потеря массы.

    Теплопроводность — это свойство материала проводить тепло. Бетон содержит влагу в различных формах, и тип и количество влаги оказывают значительное влияние на теплопроводность. Теплопроводность обычно измеряется с помощью методов испытаний в «установившемся режиме» или «в переходных режимах» [14].Переходные методы предпочтительнее для измерения теплопроводности влажного бетона, чем стационарные методы [15–17], поскольку физико-химические изменения бетона при более высоких температурах вызывают прерывистое направление теплового потока. В среднем теплопроводность обычного бетона нормальной прочности при комнатной температуре составляет от 1,4 до 3,6 Вт / м- ° C [18].

    Удельная теплоемкость — это количество тепла на единицу массы, необходимое для изменения температуры материала на один градус, и часто выражается в терминах тепловой (теплоемкости), которая является произведением удельной теплоемкости и плотности.На удельную теплоемкость сильно влияют влажность, тип заполнителя и плотность бетона [19–21]. До 1980-х годов изменение удельной теплоемкости в зависимости от температуры определялось с помощью адиабатической калориметрии. С 1980-х годов дифференциальная сканирующая калориметрия (ДСК) была наиболее часто используемой техникой для построения графика кривой за одну развертку температуры при желаемой скорости нагрева [22, 23]. К сожалению, точность метода DSC в определении вклада явной теплоты в кажущуюся удельную теплоемкость может быть не очень хорошей (иногда она может составлять всего ± 20 процентов).Скорость повышения температуры в тестах DSC обычно составляет 5 ° C · мин -1 . При более высоких скоростях нагрева пики на кривых ДСК имеют тенденцию смещаться в сторону более высоких температур и становиться более резкими. Для температур выше 600 ° C также используется высокотемпературный дифференциальный термический анализатор (DTA) для оценки удельной теплоемкости.

    Температуропроводность материала определяется как отношение теплопроводности к объемной удельной теплоемкости материала [24]. Он измеряет скорость передачи тепла от открытой поверхности материала к внутренним слоям.Чем больше коэффициент диффузии, тем быстрее возрастает температура на определенной глубине в материале [12]. Подобно теплопроводности и удельной теплоемкости, коэффициент температуропроводности изменяется с повышением температуры в материале. Температуропроводность,, может быть рассчитана с использованием соотношения где — теплопроводность, — плотность, — удельная теплоемкость материала.

    Плотность в высушенном в печи состоянии — это масса единицы объема материала, включающей само твердое вещество и поры, заполненные воздухом.При повышении температуры такие материалы, как бетон, которые имеют большое количество влаги, будут испытывать потерю массы в результате испарения влаги из-за химических реакций. Предполагая, что материал изотропен в отношении своего дилатометрического поведения, его плотность (или массу) при любой температуре можно рассчитать по термогравиметрическим и дилатометрическим кривым [24].

    2.3. Механические свойства

    К механическим свойствам, определяющим огнестойкость элементов RC, относятся прочность на сжатие и растяжение, модуль упругости и деформационная характеристика составляющих материалов при повышенных температурах.

    Прочность бетона на сжатие при повышенной температуре имеет первостепенное значение для расчета огнестойкости. Прочность бетона на сжатие при температуре окружающей среды зависит от водоцементного отношения, переходной зоны раздела заполнитель-паста, условий отверждения, типа и размера заполнителя, типов добавок и типа напряжения [25]. При высокой температуре на прочность на сжатие сильно влияют прочность при комнатной температуре, скорость нагрева и связующие вещества в замесе (например, микрокремнезем, летучая зола и шлак).В отличие от термических свойств при высокой температуре, механические свойства бетона хорошо изучены. Снижение прочности в HSC не является постоянным, и, как сообщают различные авторы, наблюдаются значительные различия в потере прочности.

    Прочность бетона на растяжение намного ниже прочности на сжатие из-за легкости, с которой трещины могут распространяться под действием растягивающих нагрузок [26]. Бетон является слабым при растяжении, и для NSC предел прочности на разрыв составляет всего 10% от его прочности на сжатие, а для HSC коэффициент прочности на растяжение еще больше снижается.Таким образом, предел прочности бетона при растяжении часто не учитывается при расчетах прочности при комнатной и повышенных температурах. Однако это важное свойство, потому что трещины в бетоне обычно возникают из-за растягивающих напряжений, а структурное повреждение элемента при растяжении часто возникает из-за прогрессирования микротрещин [26]. В условиях пожара прочность бетона на растяжение может быть еще более важной в случаях, когда в бетонном элементе конструкции происходит выкрашивание из-за пожара [27]. Прочность бетона на растяжение зависит почти от тех же факторов, что и прочность бетона на сжатие [28, 29].

    Еще одно свойство, влияющее на огнестойкость, — это модуль упругости бетона, который уменьшается с температурой. При высокой температуре разрушение гидратированных цементных продуктов и разрыв связей в микроструктуре цементного теста снижает модуль упругости, и степень снижения зависит от потери влаги, ползучести при высокой температуре и типа заполнителя.

    2.4. Деформационные свойства

    Деформационные свойства, определяющие огнестойкость железобетонных элементов, включают тепловое расширение и ползучесть бетона и арматуры при повышенных температурах.Кроме того, переходная деформация, возникающая при повышенных температурах в бетоне, может усилить деформации в подверженных огню бетонных конструктивных элементах.

    Термическое расширение характеризует расширение (или усадку) материала, вызванное нагревом, и определяется как расширение (усадка) единицы длины материала при повышении температуры бетона на один градус. Коэффициент теплового расширения определяется как процентное изменение длины образца на градус повышения температуры.Расширение считается положительным, когда материал удлиняется, и отрицательным (усадкой), когда он укорачивается. Как правило, тепловое расширение материала зависит от температуры и оценивается с помощью дилатометрической кривой, которая является записью частичного изменения линейного размера твердого тела при постоянно увеличивающейся или понижающейся температуре [24]. Тепловое расширение является важным свойством для прогнозирования тепловых напряжений, возникающих в элементе конструкции в условиях пожара.На тепловое расширение бетона обычно влияют тип цемента, содержание воды, тип заполнителя, температура и возраст [15, 30].

    Ползучесть, часто называемая деформацией ползучести, определяется как пластическая деформация материала, зависящая от времени. При нормальных напряжениях и температурах окружающей среды деформации из-за ползучести незначительны. Однако при более высоких уровнях напряжения и повышенных температурах скорость деформации, вызванной ползучестью, может быть значительной. Следовательно, основными факторами, влияющими на ползучесть, являются температура, уровень напряжений и их продолжительность [31].Ползучесть бетона обусловлена ​​наличием воды в его микроструктуре [32]. Удовлетворительного объяснения ползучести бетона при повышенных температурах нет.

    Переходная деформация возникает при первом нагреве бетона и не зависит от времени. В основном это вызвано термической несовместимостью заполнителя и цементного теста [6]. Переходная деформация бетона, аналогичная деформации при высокотемпературной ползучести, представляет собой сложное явление, на которое влияют такие факторы, как температура, прочность, влажность, нагрузка и пропорции смеси.

    2,5. Выкрашивание

    Помимо термических, механических и деформационных свойств, еще одним свойством, которое оказывает значительное влияние на огнестойкость бетонного конструктивного элемента, является выкрашивание [33]. Это свойство уникально для бетона и может быть определяющим фактором при определении огнестойкости структурного элемента RC [34]. Отслаивание определяется как разрыв слоев (кусков) бетона с поверхности бетонного элемента, когда он подвергается воздействию высоких и быстро растущих температур, например, при пожарах.Отслаивание может произойти вскоре после воздействия быстрого нагрева и может сопровождаться сильными взрывами или может произойти на более поздних стадиях пожара, когда бетон стал настолько слабым после нагрева, что при образовании трещин куски бетона отваливаются от поверхности. конкретный член. Последствия ограничены до тех пор, пока степень повреждения невелика, но обширное выкрашивание может привести к ранней потере стабильности и целостности. Кроме того, при растрескивании более глубокие слои бетона подвергаются воздействию высоких температур, что увеличивает скорость передачи тепла внутренним слоям элемента, включая арматуру.Когда арматура подвергается прямому воздействию огня, температура в арматуре повышается с очень высокой скоростью, что приводит к более быстрому снижению прочности (емкости) элемента конструкции. Потеря прочности арматуры в сочетании с потерей бетона из-за растрескивания значительно снижает огнестойкость конструктивного элемента [35, 36].

    В то время как растрескивание может происходить во всех типах бетона, HSC более подвержен растрескиванию, вызванному огнем, чем NSC, из-за его низкой проницаемости и более низкого водоцементного отношения по сравнению с NSC.Вызванное огнем растрескивание также зависит от ряда факторов, включая проницаемость бетона, тип воздействия огня и прочность бетона на растяжение [34, 37–40]. Таким образом, информация о проницаемости и прочности бетона на растяжение, которые меняются в зависимости от температуры, имеет решающее значение для прогнозирования вызванного огнем растрескивания бетонных элементов.

    3. Термические свойства бетона при повышенных температурах

    Термическими свойствами, которые определяют температурно-зависимые свойства бетонных конструкций, являются теплопроводность, удельная теплоемкость (или теплоемкость) и потеря массы.На эти свойства существенно влияют тип заполнителя, влажность и состав бетонной смеси. Существует множество программ испытаний для определения термических свойств бетона при повышенных температурах [16, 41–44]. Подробный обзор влияния температуры на термические свойства различных типов бетона дан Khaliq [45], Kodur et al. [46] и Флинн [47].

    3.1. Теплопроводность

    Теплопроводность бетона при комнатной температуре находится в пределах 1.4 и 3,6 Вт / м ° К и зависит от температуры [18]. На рисунке 1 показано изменение теплопроводности НБК в зависимости от температуры на основе опубликованных данных испытаний и эмпирических зависимостей. Данные испытаний собраны Халиком [45] из разных источников на основе экспериментальных данных [16, 20, 21, 24, 44, 48] и эмпирических соотношений в различных стандартах [4, 15]. Вариации измеренных данных испытаний показаны заштрихованной областью на Рисунке 1, и это изменение в отчетных данных по теплопроводности в основном связано с содержанием влаги, типом заполнителя, условиями испытаний и методами измерения, используемыми в экспериментах [15, 18–20 , 41].Следует отметить, что существует очень мало стандартизованных методов измерения тепловых свойств. На рисунке 1 также показаны верхняя и нижняя границы значений теплопроводности в соответствии с положениями EC2, и этот диапазон относится ко всем типам заполнителей. Тем не менее, теплопроводность, показанная на Рисунке 1, согласно соотношениям ASCE, применима для бетона с карбонатными заполнителями.


    Общая теплопроводность постепенно уменьшается с температурой, и это снижение зависит от свойств бетонной смеси, в частности, от влажности и проницаемости.Эта тенденция к снижению теплопроводности может быть объяснена изменением содержания влаги с повышением температуры [18].

    Теплопроводность HSC выше, чем у NSC из-за низкого соотношения w / c и использования различных связующих в HSC [49]. Обычно теплопроводность HSC находится в диапазоне от 2,4 до 3,6 Вт / м · К при комнатной температуре. Теплопроводность бетона, армированного фиброй (как стальным, так и полипропиленовым), почти соответствует той же тенденции, что и у обычного бетона, и ближе к теплопроводности HSC.Таким образом, делается вывод об отсутствии значительного влияния волокон на теплопроводность бетона в диапазоне температур 20–800 ° C [27].

    3.2. Удельная теплоемкость

    Удельная теплоемкость бетона при комнатной температуре варьируется в диапазоне от 840 Дж / кг · К до 1800 Дж / кг · К для различных типов заполнителей. Часто удельная теплоемкость выражается в терминах теплоемкости, которая является произведением удельной теплоемкости и плотности бетона. Удельная теплоемкость чувствительна к различным физическим и химическим превращениям, происходящим в бетоне при повышенных температурах.Это включает испарение свободной воды при температуре около 100 ° C, диссоциацию Ca (OH) 2 на CaO и H 2 O между 400–500 ° C и кварцевое преобразование некоторых агрегатов при температуре выше 600 ° C [ 24]. Поэтому удельная теплоемкость сильно зависит от содержания влаги и значительно увеличивается с увеличением отношения воды к цементу.

    Халик и Кодур [27] собрали результаты измерений удельной теплоемкости различных бетонов из различных исследований [16, 20, 24, 41, 44, 48]. На рисунке 2 показано изменение удельной теплоемкости НБК в зависимости от температуры, о чем сообщалось в различных исследованиях, основанных на данных испытаний и различных стандартах.Удельная теплоемкость бетона остается почти постоянной до 400 ° C, затем увеличивается примерно до 700 ° C, а затем остается постоянной в диапазоне от 700 до 800 ° C. Из различных факторов тип заполнителя оказывает значительное влияние на удельную теплоемкость (теплоемкость) бетона. Этот эффект отражен в соотношениях ASCE для удельной теплоемкости бетона [15]. Бетон из карбонатного заполнителя имеет более высокую удельную теплоемкость (теплоемкость) в диапазоне температур 600–800 ° C, и это вызвано эндотермической реакцией, которая возникает в результате разложения доломита и поглощает большое количество энергии [12].Эта высокая теплоемкость в бетоне с карбонатным заполнителем помогает свести к минимуму растрескивание и повысить огнестойкость элементов конструкции.


    По сравнению с NSC, HSC демонстрирует несколько меньшую удельную теплоемкость в диапазоне температур 20–800 ° C [41]. Наличие волокон также оказывает незначительное влияние на удельную теплоемкость бетона. Для бетона с полипропиленовыми волокнами при сжигании полипропиленовых волокон образуются микроканалы для выпуска пара; и, следовательно, количество поглощенного тепла меньше при обезвоживании химически связанной воды; таким образом, его удельная теплоемкость снижается в диапазоне температур 600–800 ° C.Однако бетон со стальной фиброй показывает более высокую удельную теплоемкость в диапазоне температур 400–800 ° C, что может быть связано с дополнительным теплом, поглощаемым при обезвоживании химически связанной воды.

    3.3. Потеря массы

    В зависимости от плотности бетон обычно подразделяют на две основные группы: (1) бетон с нормальным весом с плотностью от 2150 до 2450 кг · м −3 ; и (2) легкие бетоны плотностью от 1350 до 1850 кг · м −3 . Плотность или масса бетона уменьшается с повышением температуры из-за потери влаги.На удержание массы бетона при повышенных температурах сильно влияет тип заполнителя [21, 44].

    На рис. 3 показано изменение массы бетона в зависимости от температуры для бетонов, изготовленных из карбонатных и кремнистых заполнителей. Потеря массы минимальна как для карбонатных, так и для кремнистых заполнителей до температуры около 600 ° C. Однако тип заполнителя оказывает значительное влияние на потерю массы бетона при температуре выше 600 ° C. В случае бетона из кремнистого заполнителя потеря массы незначительна даже при температуре выше 600 ° C.Однако при температуре выше 600 ° C бетон с карбонатным заполнителем испытывает больший процент потери массы по сравнению с бетоном с кремнистым заполнителем. Этот более высокий процент потери массы в бетоне с карбонатным заполнителем объясняется диссоциацией доломита в карбонатном заполнителе при температуре около 600 ° C [12].


    Прочность бетона не оказывает значительного влияния на потерю массы, и, следовательно, HSC демонстрирует ту же тенденцию потери массы, что и NSC. Потеря массы для бетона, армированного фиброй, такая же, как и для обычного бетона при температуре примерно до 800 ° C.При температуре выше 800 ° C потеря массы HSC, армированного стальным волокном, немного ниже, чем у простого HSC.

    4. Механические свойства бетона при повышенных температурах

    Механические свойства, которые имеют первостепенное значение при расчете огнестойкости, включают прочность на сжатие, прочность на растяжение, модуль упругости и реакцию на напряжение-деформацию при сжатии. Механические свойства бетона при повышенных температурах широко изучены в литературе по сравнению с термическими свойствами [12, 39, 50–52].Испытания механических свойств при высоких температурах обычно проводятся на образцах бетона, которые обычно представляют собой цилиндры или кубы разных размеров. В отличие от измерений свойств при комнатной температуре, когда размеры образцов указаны в соответствии со стандартами, высокотемпературные механические свойства обычно проводятся на широком диапазоне размеров образцов из-за отсутствия стандартизированных спецификаций испытаний для проведения испытаний механических свойств при высоких температурах [53, 54].

    4.1. Прочность на сжатие

    На рисунках 4 и 5 показано изменение отношения прочности на сжатие для NSC и HSC при повышенных температурах, соответственно, с верхней и нижней границами (заштрихованной области), показывающими изменение диапазона представленных данных испытаний.На этих рисунках также показано изменение прочности на сжатие, полученное с использованием Еврокода [4], ASCE [15] и Kodur et al. [46] отношения; На рис. 4 показано большое, но равномерное изменение скомпилированных данных испытаний для НБК в диапазоне температур 20–800 ° C. Однако на рис. 5 показано большее изменение прочности на сжатие HSC при температуре в диапазоне от 200 ° C до 500 ° C и меньшее отклонение выше 500 ° C. Это в основном связано с тем, что для HSC при температурах выше 500 ° C было зарегистрировано меньше точек данных испытаний, либо из-за возникновения растрескивания в бетоне, либо из-за ограничений в испытательной аппаратуре.Однако более широкий разброс наблюдается для NSC в этом диапазоне температур (выше 500 ° C) по сравнению с HSC, как показано на рисунках 4 и 5. Это в основном из-за большего количества точек данных испытаний, указанных для NSC в литературе и также из-за меньшей склонности НБК к растрескиванию под огнем. В целом разброс механических свойств бетона при сжатии при высоких температурах довольно велик. Эти отклонения от различных испытаний можно объяснить использованием различных скоростей нагрева или нагрузки, размера образца и отверждения, условий при испытании (содержание влаги и возраст образца) и использования добавок.



    В случае НБК прочность бетона на сжатие незначительно зависит от температуры до 400 ° C. NSC обычно очень проницаемы и позволяют легко рассеивать поровое давление за счет водяного пара. С другой стороны, использование различных связующих в HSC дает превосходную и плотную микроструктуру с меньшим количеством гидроксида кальция, что обеспечивает положительный эффект на прочность на сжатие при комнатной температуре [55]. Такие связующие, как использование шлака и микрокремнезема, дают наилучшие результаты по повышению прочности на сжатие при комнатной температуре, что объясняется плотной микроструктурой.Однако, как упоминалось ранее, компактная микроструктура очень непроницаема и при высоких температурах становится вредной, поскольку не позволяет влаге уходить, что приводит к нарастанию порового давления и быстрому развитию микротрещин в HSC, что приводит к более быстрому ухудшению прочности и возникновению. выкрашивания [27, 56, 57]. Наличие в бетоне стальной фибры помогает замедлить потерю прочности при повышенных температурах [44, 58].

    Среди факторов, которые непосредственно влияют на прочность на сжатие при повышенных температурах, — начальное отверждение, содержание влаги во время испытаний, а также добавление примесей и микрокремнезема в бетонную смесь [59–63].Эти факторы не рассматриваются в литературе, и отсутствуют данные испытаний, которые показывают влияние этих факторов на высокотемпературные механические свойства бетона.

    Другой основной причиной значительного разброса характеристик прочности бетона при высоких температурах является использование различных условий испытаний (таких как скорость нагрева и скорость деформации) и процедур испытаний (испытание на прочность в горячем состоянии и испытание на остаточную прочность) из-за отсутствия стандартизированных методов испытаний для проведения испытаний свойств [46].

    4.2. Прочность на растяжение

    Прочность бетона на растяжение намного ниже, чем прочность на сжатие, и поэтому предел прочности бетона на растяжение часто не учитывается при расчетах прочности при комнатной и повышенных температурах. Однако с точки зрения огнестойкости это важное свойство, потому что растрескивание в бетоне обычно происходит из-за растягивающих напряжений, а структурное повреждение элемента при растяжении часто возникает из-за развития микротрещин [26]. В условиях пожара прочность бетона на растяжение может быть еще более важной в случаях, когда в бетонном элементе происходит выкрашивание из-за пожара [27].Таким образом, информация о прочности на разрыв HSC, которая изменяется в зависимости от температуры, имеет решающее значение для прогнозирования вызванного огнем растрескивания в элементах HSC.

    На рисунке 6 показано изменение отношения прочности на разрыв NSC и HSC в зависимости от температуры, как сообщалось в предыдущих исследованиях и положениях Еврокода [4, 64–66]. Отношение прочности на разрыв при данной температуре к прочности на разрыв при комнатной температуре показано на рисунке 6. Заштрихованная часть на этом графике показывает диапазон изменения прочности на разрыв при расщеплении, полученный различными исследователями для NSC с обычными заполнителями.Снижение предела прочности НБК с температурой может быть объяснено слабой микроструктурой НБК, позволяющей образовывать микротрещины. При температуре 300 ° C бетон теряет около 20% своей начальной прочности на разрыв. Выше 300 ° C прочность на разрыв НБК снижается быстрыми темпами из-за более выраженного термического повреждения в виде микротрещин и достигает примерно 20% от его начальной прочности при 600 ° C.


    HSC испытывает быструю потерю прочности на разрыв при более высоких температурах из-за развития порового давления в плотных микроструктурированных HSC [55].Добавление стальной фибры в бетон увеличивает его прочность на разрыв, и это увеличение может быть на 50% выше при комнатной температуре [67, 68]. Кроме того, прочность на разрыв стального фибробетона снижается медленнее, чем у простого бетона, в диапазоне температур 20–800 ° C [69]. Эта повышенная прочность на растяжение может замедлить распространение трещин в конструкционных элементах из стального фибробетона и очень полезна, когда элемент подвергается изгибающим напряжениям.

    4.3. Модуль упругости

    Модуль упругости () различных бетонов при комнатной температуре варьируется в широком диапазоне, от 5,0 × 10 3 до 35,0 × 10 3 МПа, и зависит в основном от водоцементного отношения в смеси. , возраст бетона, метод кондиционирования, а также количество и характер заполнителей. Модуль упругости быстро уменьшается с повышением температуры, и частичное снижение существенно не зависит от типа заполнителя [70].Однако из других исследований [38, 71] выясняется, что модуль упругости бетонов с нормальным весом уменьшается с повышением температуры более быстрыми темпами, чем модуль упругости легких бетонов.

    На рисунке 7 показано изменение отношения модуля упругости при заданной температуре к модулю упругости при комнатной температуре для NSC и HSC [4, 19, 72]. Из рисунка видно, что тенденция потери модуля упругости обоих бетонов с температурой аналогична, но есть значительные различия в представленных данных испытаний.Модуль разрушения как в NSC, так и в HSC можно отнести к чрезмерным термическим напряжениям и физическим и химическим изменениям в микроструктуре бетона.


    4.4. Реакция на напряжение-деформацию

    Механический отклик бетона обычно выражается в виде соотношений напряжение-деформация, которые часто используются в качестве исходных данных в математических моделях для оценки огнестойкости бетонных конструктивных элементов. Как правило, из-за снижения прочности на сжатие и увеличения пластичности бетона наклон кривой напряжения-деформации уменьшается с повышением температуры.Прочность бетона оказывает значительное влияние на деформационную реакцию как при комнатной, так и при повышенных температурах.

    Рисунки 8 и 9 иллюстрируют стресс-деформационную реакцию NSC и HSC, соответственно, при различных температурах [72, 73]. При всех температурах и NSC, и HSC демонстрируют линейный отклик, за которым следует параболический отклик до пикового напряжения, а затем быстрый нисходящий участок до отказа. В целом установлено, что HSC имеет более крутые и линейные кривые деформации по сравнению с NSC при 20–800 ° C.Температура оказывает значительное влияние на реакцию напряжение-деформацию как NSC, так и HSC, как и скорость повышения температуры. Напряжение, соответствующее пиковому напряжению, начинает увеличиваться, особенно при температуре выше 500 ° C. Это увеличение является значительным, и деформация при пиковом напряжении может в четыре раза превышать деформацию при комнатной температуре. Образцы HSC демонстрируют хрупкую реакцию, о чем свидетельствует постпиковое поведение кривых напряжения-деформации, показанных на рисунке 9 [74]. В случае бетона, армированного фиброй, особенно со стальной фиброй, реакция на напряжение-деформацию более пластичная.



    5. Деформационные свойства бетона при повышенных температурах

    Деформационные свойства, включая тепловое расширение, деформацию ползучести и переходную деформацию, в значительной степени зависят от химического состава, типа заполнителя, а также химических и физических реакций, которые возникают в бетоне при нагревании [75].

    5.1. Термическое расширение

    Бетон обычно расширяется при воздействии повышенных температур. На рисунке 10 показано изменение теплового расширения НБК в зависимости от температуры [4, 15], где заштрихованная часть указывает диапазон данных испытаний, представленных различными исследователями [46, 76].Тепловое расширение бетона увеличивается от нуля при комнатной температуре до примерно 1,3% при 700 ° C, а затем обычно остается постоянным до 1000 ° C. Это повышение является значительным в диапазоне температур 20–700 ° C и в основном связано с высоким тепловым расширением, возникающим из-за составляющих заполнителей и цементного теста в бетоне. Тепловое расширение бетона осложняется другими факторами, такими как дополнительные изменения объема, вызванные изменением содержания влаги, химическими реакциями (дегидратация, изменение состава), а также ползучестью и микротрещинами в результате неоднородных термических напряжений [18].В некоторых случаях термическая усадка также может быть результатом потери воды из-за нагрева наряду с тепловым расширением, и это может привести к отрицательному изменению общего объема, то есть к усадке, а не к расширению.


    Еврокоды [4] учитывают влияние типа заполнителя на изменение теплового расширения, чем у бетона, в зависимости от температуры. Бетон из кремнистого заполнителя имеет более высокое тепловое расширение, чем бетон из карбонатного заполнителя. Тем не менее, положения ASCE [15] предоставляют только один вариант как для кремнистого, так и для карбонатного заполнителя бетона.

    Прочность бетона и наличие фибры умеренно влияют на тепловое расширение. Скорость расширения HSC и фибробетона снижается между 600–800 ° C; однако скорость теплового расширения снова увеличивается выше 800 ° C. Замедление теплового расширения в диапазоне 600-800 ° C объясняется потерей химически связанной воды в гидратах, а увеличение расширения выше 800 ° C объясняется размягчением бетона и чрезмерным развитием микро- и макротрещин [77 ].

    5.2. Ползучесть и переходные деформации

    Зависящие от времени деформации в бетоне, такие как ползучесть и переходные деформации, значительно усиливаются при повышенных температурах под действием сжимающих напряжений [18]. Ползучесть бетона при высоких температурах увеличивается из-за выхода влаги из матрицы бетона. Это явление еще более усиливается из-за рассеивания влаги и потери сцепления в цементном геле (C – S – H). Следовательно, процесс ползучести вызывается и ускоряется в основном двумя процессами: (1) движением влаги и обезвоживанием бетона из-за высоких температур и (2) ускорением в процессе разрыва сцепления.

    Переходная деформация возникает при первом нагреве бетона, но не возникает при повторном нагреве [78]. Воздействие высоких температур на бетон вызывает комплексные изменения влажности и химического состава цементного теста. Более того, существует несоответствие в тепловом расширении между цементным тестом и заполнителем. Таким образом, такие факторы, как изменения химического состава бетона и несоответствия в тепловом расширении, приводят к внутренним напряжениям и микротрещинам в компонентах бетона (заполнителя и цементного теста) и приводят к переходным деформациям в бетоне [75].

    Обзор литературы показывает, что имеется ограниченная информация о ползучести и неустановившейся деформации бетона при повышенных температурах [46]. Некоторые данные о ползучести бетона при повышенных температурах можно найти в работах Круза [70], Маречаля [79], Гросса [80] и Шнайдера и др. [81]. Андерберг и Теландерссон [82] провели испытания для оценки переходных деформаций и деформаций ползучести при повышенных температурах. Они обнаружили, что предварительно высушенные образцы при уровне напряжения нагрузки 45 и 67,5% были менее подвержены деформации в «положительном направлении» (расширению) под нагрузкой.При предварительном натяжении 22,5% образцы не показали значительной разницы в деформациях. Они также обнаружили, что влияние водонасыщенности не было очень значительным, за исключением свободного теплового расширения (предварительная нагрузка 0%), которое оказалось меньше для водонасыщенных образцов.

    Khoury et al. [78] изучали деформацию ползучести изначально влажного бетона при четырех уровнях нагрузки, измеренную во время первого нагрева со скоростью 1 ° C / мин. Важной особенностью этих результатов было то, что наблюдалось значительное сжатие под нагрузкой по сравнению со свободными (ненагруженными) тепловыми деформациями.Это сжатие называется «термической деформацией, вызванной нагрузкой», и считается, что фактическая термическая деформация состоит из общей термической деформации за вычетом термической деформации, вызванной нагрузкой.

    Шнайдер [75] также исследовал влияние переходных процессов и ограничения ползучести на деформацию бетона. Он пришел к выводу, что испытание на переходные процессы для измерения общей деформации или прочности бетона в наибольшей степени связано с пожарами в зданиях и, как предполагается, дает наиболее реалистичные данные, имеющие прямое отношение к пожару.Важные выводы из исследования заключаются в том, что (1) соотношение воды и цемента и исходная прочность не имеют большого значения для деформаций ползучести в переходных условиях, (2) соотношение заполнителя и цемента имеет большое влияние на деформации и критические температуры: чем тверже агрегат тем ниже тепловое расширение; поэтому общая деформация в переходном состоянии будет ниже; и (3) условия отверждения имеют большое значение в диапазоне 20–300 ° C: отвержденные на воздухе и высушенные в печи образцы имеют более низкие переходные процессы и деформации ползучести, чем образцы, отвержденные водой.

    Андерберг и Теландерссон [82] разработали основные модели ползучести и переходных деформаций в бетоне при повышенных температурах. Эти уравнения для ползучести и переходной деформации при повышенных температурах, предложенные Андербергом и Теландерссоном [82], имеют следующий вид: где = деформация ползучести, = переходная деформация, = 6,28 × 10 −6 с −0,5 , = 2,658 × 10 −3 K −1 , = температура бетона (° K) за время (с), = прочность бетона при температуре, = напряжение в бетоне при текущей температуре, = константа находится в диапазоне от 1.8 и 2.35, = термическая деформация и = прочность бетона при комнатной температуре.

    Обсуждаемая выше информация о высокотемпературной ползучести и переходной деформации в основном разработана для НБК. По-прежнему отсутствуют данные испытаний и модели влияния температуры на ползучесть и переходную деформацию в HSC и фибробетоне.

    6. Выкрашивание в результате пожара

    Обзор литературы представляет противоречивую картину возникновения выкрашивания в результате пожара, а также точного механизма выкрашивания в бетоне.В то время как некоторые исследователи сообщали о взрывных растрескиваниях в бетонных конструктивных элементах, подвергшихся воздействию огня, в ряде других исследований сообщалось о незначительном или полном отсутствии значительного отслаивания. Одним из возможных объяснений этой запутанной тенденции наблюдений является большое количество факторов, влияющих на скалывание, и их взаимозависимость. Тем не менее, большинство исследователей согласны с тем, что основными причинами возникновения растрескивания бетона в результате пожара являются низкая проницаемость бетона и миграция влаги в бетоне при повышенных температурах.

    Есть две общие теории, с помощью которых можно объяснить явление откола [83].

    (i) Повышение давления. Считается, что отслаивание вызвано увеличением порового давления во время нагрева [83–85]. Чрезвычайно высокое давление водяного пара, образующееся при воздействии огня, невозможно избежать из-за высокой плотности и компактности (и низкой проницаемости) более прочного бетона. Когда эффективное поровое давление (пористость, умноженная на поровое давление) превышает предел прочности бетона на разрыв, куски бетона отваливаются от элемента конструкции. Считается, что это поровое давление приводит к прогрессирующему разрушению; то есть, чем ниже проницаемость бетона, тем больше выкрашивание из-за пожара.Это падение бетонных кусков часто может быть взрывоопасным в зависимости от пожара и характеристик бетона [38, 86].

    (ii) Сдержанное тепловое расширение. Эта гипотеза предполагает, что отслаивание является результатом ограниченного теплового расширения вблизи нагретой поверхности, что приводит к развитию сжимающих напряжений, параллельных нагретой поверхности. Эти сжимающие напряжения снимаются при хрупком разрушении бетона (отслаивании). Поровое давление может сыграть значительную роль в возникновении нестабильности в виде взрывного термического выкрашивания [87].

    Хотя растрескивание может происходить во всех бетонах, считается, что высокопрочный бетон более подвержен растрескиванию, чем бетон нормальной прочности из-за его низкой проницаемости и низкого водоцементного отношения [88, 89]. Высокое давление водяного пара, возникающее из-за быстрого повышения температуры, не может исчезнуть из-за высокой плотности (и низкой проницаемости) HSC, и это повышение давления часто достигает давления насыщенного пара. При 300 ° С поровое давление может достигать 8 МПа; такое внутреннее давление часто бывает слишком высоким, чтобы ему могла противостоять смесь HSC, имеющая предел прочности на разрыв примерно 5 МПа [84].Осушенные условия на нагретой поверхности и низкая проницаемость бетона приводят к сильным градиентам давления вблизи поверхности в виде так называемого «засора влаги» [38, 86]. Когда давление пара превышает предел прочности бетона на разрыв, куски бетона отваливаются от элемента конструкции. В ряде тестовых наблюдений на колоннах HSC было обнаружено, что скалывание часто носит взрывной характер [19, 90]. Следовательно, отслаивание является одной из основных проблем при использовании HSC в строительстве и должно быть должным образом учтено при оценке противопожарных характеристик [91].Выкрашивание в колоннах NSC и HSC сравнивается на Рисунке 11 с использованием данных, полученных в результате натурных испытаний на огнестойкость нагруженных колонн [92]. Видно, что в колонне HSC, подвергшейся воздействию огня, растрескивание является весьма значительным.


    Степень отслаивания зависит от ряда факторов, включая прочность, пористость, плотность, уровень нагрузки, интенсивность пожара, тип заполнителя, относительную влажность, количество микрокремнезема и других примесей [34, 93, 94]. Многие из этих факторов взаимозависимы, и это делает прогноз выкрашивания довольно сложным.Изменение пористости в зависимости от температуры является наиболее важным свойством, необходимым для прогнозирования откольных характеристик HSC [33]. Noumowé et al. провели измерения пористости образцов НСК и ГСК с помощью ртутного порозиметра при различных температурах [88, 95].

    Основываясь на ограниченных испытаниях на огнестойкость, исследователи предположили, что растрескивание в HSC может быть минимизировано путем добавления полипропиленовых волокон в смесь HSC [85, 96–101]. Полипропиленовые волокна плавятся, когда температура в бетоне достигает примерно 160–170 ° C, и это создает в бетоне поры, достаточные для снижения давления пара, возникающего в бетоне.Другой альтернативой для ограничения образования сколов, вызванных возгоранием, в колоннах HSC является использование изогнутых стяжек, при которых стяжки загнуты под углом 135 ° в бетонную сердцевину [102].

    7. Соотношения высокотемпературных свойств бетона

    Существуют ограниченные определяющие соотношения для высокотемпературных свойств бетона в нормах и стандартах, которые могут использоваться для пожарного проектирования. Эти отношения можно найти в руководстве ASCE [15] и в Еврокоде 2 [4]. Kodur et al. [46] собрали различные соотношения, которые доступны для термического, механического и деформирования бетона при повышенных температурах.

    Существуют некоторые различия в определяющих соотношениях для высокотемпературных свойств бетона, используемых в европейских и американских стандартах. Основополагающие отношения в Еврокоде применимы к NSC и HSC, в то время как отношения в практическом руководстве ASCE применимы только к NSC. Основные соотношения для высокотемпературных свойств бетона, указанные в Еврокоде и руководстве ASCE, приведены в Таблице 1. В дополнение к этим основным моделям, Kodur et al.[93] предложили определяющие отношения для HSC, которые являются расширением отношений ASCE для NSC. Эти отношения для HSC также включены в Таблицу 1.


    NSC — ASCE Manual 1992 HSC — Kodur et al. 2004 [10] NSC и HSC — EN1992-1-2: 2004 [4]

    Соотношение напряжение-деформация

    .


    ,
    .
    .
    For, Еврокод допускает использование как линейной, так и нелинейной нисходящей ветви в численном анализе.
    Параметры этого уравнения см. В Таблице 2.

    Теплоемкость Бетон из кремнистого заполнителя

    Бетон из карбонатного заполнителя
    Бетон из кремнистого заполнителя

    Бетон из карбонатного заполнителя
    Удельная теплоемкость Дж / кг C)
    , для 20 ° C ≤ ° C,
    , для 100 ° C <≤ 200 ° C,
    , для 200 ° C <° C,
    , для 400 ° C <≤ 1200 ° C.
    Изменение плотности (кг / м 3 )
    = Контрольная плотность
    для 20 ° C ≤ ≤ 115 ° C,

    для 115 ° C <≤ 200 ° C,

    для 200 ° C <≤ 400 ° C,

    для 400 ° C <≤ 1200 ° C,
    Тепловая мощность =.

    Теплопроводность Бетон из кремнистого заполнителя

    Бетон из карбонатного заполнителя
    Бетон из кремнистого заполнителя
    .
    Бетон с карбонатным заполнителем
    Все типы:
    Верхний предел:,
    для 20 ° C ≤ ≤ 1200 ° C.
    Нижний предел:
    ,
    для 20 ° C ≤ ≤ 1200 ° C.

    Термическая деформация Все типы:
    .
    Все типы:
    .
    Кремнистые заполнители:
    , для 20 ° C ≤ ≤ 700 ° C.
    , для 700 ° C <≤ 1200 ° C,
    Известковые заполнители:
    , для 20 ° C ≤ ≤ 805 ° C.
    , для 805 ° C <≤ 1200 ° C.

    9068 9068 9068 9 60045 9068 0,038

    Темп.° F Темп. ° C NSC HSC
    Кремнеземист. Известняковая агг.
    класс 1 класс 2 класс 3

    20684

    1 0,0025 0,02 1 1 1
    212 100 1 0.004 0,0225 1 0,004 0,023 0,9 0,75 0,75
    392 200 0,95 0,0055 0,068 0,9 0,75 0,70
    572 300 0,85 0,007 0,0275 0,91 0,007 0.028 0,85 0,75 0,65
    752 400 0,75 0,01 0,03 0,85 0,01
    500 0,6 0,015 0,0325 0,74 0,015 0,033 0,60 0,60 0,30
    1112 0,025 0,035 0,6 0,025 0,035 0,45 0,45 0,25
    1292 700 0,3 0,30 0,30 0,20
    1472 800 0,15 0,025 0,04 0,27 0.025 0,04 0,15 0,15 0,15
    1652 900 0,08 0,025 0,0425 0,15 0,025 0,025 0,025 0,025
    1832 1000 0,04 0,025 0,045 0,06 0,025 0,045 0,04 0,075 0.04
    2012 1100 0,01 0,025 0,0475 0,02 0,025 0,048 0,01 0,038 9068 9068 9068 9068 9068 9068 9068 9068 9068 9068 9068 9068 9068 9068 9068 0 0 0 0

    В зависимости от прочности на сжатие Еврокод классифицирует HSC на три класса *.
    (i) класс 1 для бетона с прочностью на сжатие между C55 / 67 и C60 / 75,
    (ii) класс 2 для бетона с прочностью на сжатие между C70 / 85 и C80 / 95,
    (iii) класс 3 для бетона с сжатием прочность выше, чем C90 / 105.
    Обозначение прочности C55 / 67 относится к марке бетона с характеристической прочностью цилиндра и куба 55 Н / мм 2 и 67 Н / мм 2 , соответственно.
    * Примечание: где фактическая характеристическая прочность бетона, вероятно, будет более высокого класса, чем указанный в проекте; относительное снижение прочности для более высокого класса следует использовать для пожарного расчета.

    Основное различие между европейскими соотношениями высокотемпературных составляющих для бетона и ASCE заключается во влиянии типа заполнителя на свойства бетона.Еврокод специально не учитывает влияние типа заполнителя на теплоемкость бетона при высоких температурах. В Еврокоде такие свойства, как удельная теплоемкость, изменение плотности и, следовательно, теплоемкость, считаются одинаковыми для всех типов заполнителей, используемых в бетоне. Для теплопроводности бетона Еврокод предлагает верхнюю и нижнюю границы без указания того, какой предел использовать для данного типа заполнителя в бетоне. Кроме того, Еврокод классифицирует HSC на три класса в зависимости от его прочности на сжатие, а именно: (i) класс 1 для бетона с прочностью на сжатие от C55 / 67 до C60 / 75, (ii) класс 2 для бетона с прочностью на сжатие между C70 / 85. и C80 / 95, (iii) класс 3 для бетона с прочностью на сжатие выше, чем C90 / 105.

    8. Резюме

    Бетон при повышенных температурах претерпевает значительные физико-химические изменения. Эти изменения вызывают ухудшение свойств при повышенных температурах и создают дополнительные сложности, такие как растрескивание HSC. Таким образом, термические, механические и деформационные свойства бетона существенно изменяются в диапазоне температур, связанных с пожарами в зданиях. Кроме того, многие из этих свойств зависят от температуры и чувствительны к параметрам (методам) испытаний, таким как скорость нагрева, скорость деформации, температурный градиент и т. Д.

    На основании информации, представленной в этой главе, очевидно, что высокотемпературные свойства бетона имеют решающее значение для моделирования реакции железобетонных конструкций на пожар. Существует много данных о термических, механических и деформационных свойствах НБК и ГСК при высоких температурах. Однако данные о свойствах новых типов бетона при высоких температурах, таких как самоуплотняющийся бетон и зольный бетон, при повышенных температурах очень ограничены.

    Обзор свойств материалов, представленный в этой главе, представляет собой общий обзор имеющейся в настоящее время информации.Дополнительные подробности, относящиеся к конкретным условиям, при которых развиваются эти свойства, можно найти в цитированных ссылках. Кроме того, при использовании свойств материала, представленных в этой главе, должное внимание следует уделять свойствам замеса партии и другим характеристикам, таким как скорость нагрева и уровень загрузки, поскольку свойства при повышенных температурах зависят от ряда факторов.

    Заявление об отказе от ответственности

    Некоторые коммерческие продукты указаны в этом документе, чтобы надлежащим образом описать экспериментальную процедуру.Ни в коем случае такая идентификация не подразумевает рекомендаций или одобрения со стороны автора, а также не подразумевает, что идентифицированный продукт или материал является наилучшим из доступных для этой цели.

    Конфликт интересов

    Автор заявляет об отсутствии конфликта интересов относительно публикации данной статьи.

    Понимание роли заполнителей в бетоне

    Что такое бетонные заполнители и почему мы их используем?

    Термин «заполнители для бетона» охватывает множество продуктов, но обычно их называют «камень и песок» крупной и мелкой фракции.К крупнозернистым заполнителям относится любой материал размером более 4,75 мм. Грубый заполнитель также определяется как любой заполнитель, оставшийся на сите №4. Мелкие заполнители — это любой материал размером менее 4,75 мм, который может проходить через сито №4 и задерживаться на сите №200.

    Почему мы используем заполнители в бетоне? Есть много причин. Пожалуй, самая большая причина в цене. Использование заполнителя в качестве наполнителя может помочь производителям бетона сэкономить много денег. Цемент обычно стоит в семь или восемь раз дороже камня и песка.Цемент необходим, но прочность все же может быть сохранена при использовании хорошо измельченных заполнителей, которые стоят значительно дешевле. Заполнители составляют 60-80% объема бетона и 70-85% массы бетона.

    Заполнитель также очень важен для прочности, термических и упругих свойств бетона, стабильности размеров и стабильности объема. Цемент более подвержен усадке. Включение заполнителя в смесь может контролировать уровень усадки и предотвращать растрескивание.

    В чем важность выставления оценок?

    Если меньше цемента означает меньшую стоимость бетона на метр, почему бы просто не добавить заполнители очень большого размера, чтобы занять больше места? Здесь в игру вступает оценивание.Градуировка — это способ использования объектов разных размеров для заполнения пространства, которое не могут заполнить более крупные компоненты.

    В качестве примера предположим, что у вас есть коробка 2х2х2, которую вы хотите заполнить шариками. Сначала вы можете использовать шары для боулинга. Вместо того, чтобы просто сказать, что я занимал много места шаром для боулинга и оставил его там, вы решаете заполнить дополнительное маленькое пространство мячами для гольфа, а затем заполняете оставшееся шариками. Если вы использовали все шарики, все мячи для гольфа или все шары для боулинга, все эти решения оставили бы больше свободного места, чем нормировать некоторые из каждого.

    Теперь возьмем этот пример и заменим шары агрегатами разных размеров. Это та же концепция. Посмотрите на эту иллюстрацию и обратите внимание на количество цементной пасты, необходимое для каждого типа:

    Соотношение формы и содержимого

    При выборе агрегатов необходимо также учитывать их форму. Для грубых и острых заполнителей потребуется больше цементного теста, чем для круглых заполнителей. Острый заполнитель также будет труднее перекачивать, поэтому убедитесь, что заполнитель соответствует вашим потребностям.В идеале вам понравятся агрегаты сферической формы. Если они будут слишком удлиненными, они могут заклинить и заблокировать пустоты при заливке или перекачивании.

    Песок не может быть незамеченным компонентом бетона. Хотя камень обеспечивает прочность, песок также имеет важное назначение — удобоукладываемость. Умение формировать бетон в соответствии с потребностями клиента имеет жизненно важное значение. Следовательно, можно было по песку. Избыточное шлифование также используется при перекачивании бетона, чтобы обеспечить лучшую текучесть, а также при штамповке бетона для получения более мелких деталей.

    Важно понимать все составляющие бетона. Убедитесь, что ваши конструкции смеси учитывают назначение бетона, а не только прочность и стоимость.

    Пропорции смеси и механические свойства бетона, содержащего очень большое количество летучей золы класса F

    Основные характеристики

    Мы исследуем пропорции смеси и свойства бетона, содержащего очень большое количество летучей золы класса F (HVFA) .

    Рациональный метод расчета смеси был предложен для самого бетона HVFA.

    62 МПа Бетон с содержанием золы уноса 80% может быть получен с использованием 136 кг портландцемента.

    Отношение было сформулировано для прочности на изгиб и сжатие для всех марок бетона HVFA.

    Сам бетон HVFA оказался подходящим материалом как для строительства, так и для покрытия дорожных покрытий.

    Реферат

    Два типа золы-уноса класса F с потерей 4,6% и 7,8% при возгорании были использованы для экспериментального исследования бетона, содержащего очень большие объемы золы-уноса класса F (HVFA).Для бетона был разработан метод рационального расчета смеси с заменой цемента на 20–80% летучей золы. Испытания проводились на свойства свежего и затвердевшего бетона. Результаты испытаний показали, что время схватывания и содержание воздуха в зольном бетоне увеличиваются по мере увеличения уровня замещения летучей золы. Прочность на сжатие и изгиб бетонных смесей HVFA продемонстрировала непрерывное и значительное улучшение в позднем возрасте 91 и 365 дней. Соотношение было сформулировано для прочности на изгиб и сжатие для всех марок бетона HVFA.Бетонная смесь, содержащая летучую золу с низким LOI, показала лучшие механические свойства, чем у соответствующей смеси, содержащей летучую золу с высоким LOI. Эти результаты подтверждают возможность того, что до 80% летучей золы класса F можно использовать в качестве замены цемента в бетоне, используя рациональные пропорции смеси.

    Ключевые слова

    Дозирование смеси

    Летучая зола

    Механические свойства

    Усадка

    Рекомендуемые статьи Цитирующие статьи (0)

    Copyright © 2013 Elsevier Ltd.

    Рекомендуемые статьи

    Ссылки на статьи

    Описание приложения — Текучий наполнитель — Руководство пользователя по отходам и побочным продуктам при строительстве дорожных покрытий

    ПРОХОДЯЩИЙ НАПОЛНИТЕЛЬ Описание приложения

    ВВЕДЕНИЕ

    Текучий наполнитель относится к цементному раствору, состоящему из смеси мелкого заполнителя или наполнителя, воды и вяжущего материала (материалов), который используется в основном в качестве засыпки вместо уплотненной земли.Эта смесь способна заполнить все пустоты в неровных выработках и трудно поддающейся обработке. в достижимых местах (например, под трубами и вокруг них), самовыравнивается и затвердевает в течение нескольких часов без необходимости послойного уплотнения. Текучий наполнитель иногда называют наполнителем с контролируемой плотностью (CDF), материалом с контролируемой низкой прочностью (CLSM), тощей бетонной суспензией и безусадочным наполнителем.

    Текучая заливка определяется Американским институтом бетона (ACI) как самоуплотняющийся цементный материал, который находится в текучем состоянии при укладке и имеет прочность на сжатие 8.3 МПа (1200 фунтов / дюйм 2 ) или менее в течение 28 дней. Большинство современных применений для текучей заливки включают предел прочности на неограниченное сжатие 2,1 МПа (300 фунтов / дюйм 3 ) или меньше.

    Текучие заполняющие материалы в основном используются в нижних слоях грунта, например в траншеях инженерных сетей, где требуются низкая прочность и простота укладки. Текучая заливка обычно размещается с использованием обычных автобетоносмесителей. Во многих случаях эти материалы сконструированы таким образом, что после затвердевания они сопоставимы по прочности с окружающей почвой, что делает возможными выемку грунта в более позднее время.

    МАТЕРИАЛЫ

    Мелкие заполнители или наполнители (обычно песок) часто используются в текучих заполняющих смесях, которые производятся на заводах по производству товарных смесей, особенно в смесях CLSM с более высокой прочностью. Портландцемент и / или дополнительные вяжущие материалы и вода являются важными ингредиентами всех текучих смесей заполнения, поскольку именно гидратация этих вяжущих материалов позволяет текучей смеси заполнения затвердеть и развить прочность.

    Мелкий заполнитель или наполнитель

    Мелкозернистый заполнитель или наполнитель обеспечивает твердым телам прочность на сжатие, а также способность выдерживать нагрузки. Для целей данного обсуждения мелкие заполнители представляют собой материалы с размером частиц в диапазоне от 4,75 мм (сито № 4) до 0,075 мм (сито № 200), а наполнитель относится к материалам с диапазоном размеров менее 0,075 мм. (Сито № 200). Свойства мелкозернистого заполнителя или наполнителя, которые наиболее важны для его использования в текучем наполнителе, — это его градация и удельный вес.Композитный материал должен быть достаточно мелкодисперсным, чтобы улучшить сыпучесть смеси, но также может быть достаточно гранулированным, чтобы можно было слить часть избыточной воды из смеси до начального затвердевания.

    Песок является наиболее часто используемым текучим наполнителем, хотя использовались и другие материалы (например, зольный остаток угля, летучая зола, отработанный формовочный песок, карьерная мелочь и рукавная пыль). В зависимости от удельного веса текучего наполнителя кубический ярд текучего наполнителя может содержать от 680 до 1400 кг (от 1500 до 3000 фунтов) мелкозернистого заполнителя или наполнителя.

    Вяжущие материалы

    Можно использовать различные вяжущие материалы для производства подходящего вяжущего раствора с желаемой прочностью на сжатие и текучестью. Эти материалы можно разделить на три основные категории. Они включают портландцемент, пуццолановые материалы и самоцементирующиеся материалы.

    Портландцементы — это гидравлические цементы, которые затвердевают и затвердевают в результате реакции с водой посредством гидратации с образованием затвердевшей массы.Количество портландцемента в текучей заполняющей смеси вместе с водой и количеством добавленного портландцемента определяет предел прочности смеси. При более низком содержании цемента (от 3 до 5 процентов по массе) 28-дневная прочность на неограниченное сжатие текучей заполняющей смеси обычно находится в диапазоне от 0,5 до 1,0 МПа (от 75 до 150 фунтов / дюйм 2 ).

    Пуццолановые материалы — это материалы, состоящие из аморфного кремнеземистого или кремнисто-глиноземистого материала в тонкоизмельченной (порошкообразной) форме (по размеру схожей с частицами портландцемента), которые в присутствии воды вступают в реакцию с активатором (обычно гидроксидом кальция и щелочами). ) с образованием соединений, обладающих вяжущими свойствами.Описание различных видов пуццоланов и их спецификации приведены в ASTM C618. Самоцементирующиеся материалы — это материалы, которые вступают в реакцию с водой с образованием продуктов гидратации без какого-либо активатора.

    Угольная зола-унос часто используется в текучих смесях для засыпки в качестве вяжущего материала, поскольку ее мелкие частицы сферической формы значительно улучшают текучесть или сыпучесть смеси. Летучая зола, образующаяся при сжигании битуминозных углей, проявляет пуццолановые свойства и вступает в реакцию с оксидом кальция с образованием цементного теста.Летучая зола, образующаяся при сжигании суббитуминозного угля, проявляет самоцементные свойства и иногда используется вместо портландцемента в тех областях, где она легко доступна.

    Вода

    Количество воды в текучей наполняющей смеси напрямую влияет на текучесть и повышение прочности смеси. Необходимо добавить достаточное количество воды для смазки твердых частиц в смеси, чтобы достичь желаемой степени текучести, которая часто связана с оседанием смеси.При заданном содержании цемента увеличение содержания воды обычно приводит к небольшому снижению прочности смеси на сжатие с течением времени. Требования к воде для текучести смеси зависят от свойств поверхности твердых частиц в смеси. Диапазон от 250 до 400 литров на кубический метр (от 50 до 80 галлонов на кубический ярд) удовлетворит большинство комбинаций материалов.

    СВОЙСТВА МАТЕРИАЛА И МЕТОДЫ ИСПЫТАНИЙ

    Мелкий заполнитель или наполнитель

    Правильный размер и сортировка необходимы для мелкозернистого заполнителя или материала наполнителя, чтобы эффективно способствовать текучести текучей смеси наполнителя.Наиболее часто используемые наполнители — это песок и угольная зола (пуццолановая), причем выбор материала обычно определяется доступностью и сравнительной стоимостью. Удельный вес или удельный вес мелкозернистого заполнителя или наполнителя в значительной степени определяет удельный вес или удельный вес полученного текучего наполнителя. Ниже приводится список и краткие комментарии по некоторым из наиболее важных свойств мелкозернистого заполнителя или наполнителя, используемого в текучих смесях наполнителя.

    • Градация — мелкие частицы заполнителя или наполнителя должны быть тонко измельчены, чтобы предотвратить жесткую смесь (жесткая смесь с низкой текучестью, обычно возникающая из-за преобладания гранулированного материала) и иметь достаточный диапазон более мелких частиц для обеспечения текучести , стабильность и минимальное количество пустот в текучей заполняющей смеси.

    • Удельный вес — мелкодисперсный заполнитель или наполнитель должен находиться в диапазоне от относительно низкого до среднего удельного веса, чтобы способствовать текучести и препятствовать расслоению частиц в полученной текучей наполняющей смеси.

    В таблице 24-14 перечислены стандартные методы испытаний, используемые для оценки мелкозернистых заполнителей или материалов наполнителя для использования в текучем наполнителе.

    Таблица 24-14. Процедуры испытаний мелкого заполнителя или наполнителя.

    Имущество Метод испытаний Артикул
    Градация Гранулометрический анализ почвы ASTM D422
    Масса устройства Удельный вес и пустоты в агрегате ASTM D29
    Удельный вес почв ASTM D854

    Вяжущие материалы

    Тип вяжущих материалов, используемых в конструкции текучей заполняющей смеси, будет играть важную роль в определении конечной прочности на сжатие и текучести смеси.Некоторые из наиболее важных свойств вяжущих материалов, используемых в текучей заполняющей смеси, включают:

    • Тонкость помола — крупность цемента или дополнительных вяжущих материалов влияет на тепловыделение и скорость гидратации. Более мелкие материалы вступают в реакцию быстрее, что приводит к увеличению ранней прочности. Мелкость также влияет на удобоукладываемость, поскольку чем мельче материал, тем больше площадь поверхности и сопротивление трению пластичного бетона.

    • Время схватывания — время схватывания цементного теста является показателем скорости, с которой происходят реакции гидратации и увеличивается прочность.

    • Прочность на сжатие — прочность на сжатие зависит от состава и крупности цемента. Прочность на сжатие для различных цементов или цементных смесей устанавливают путем испытания кубиков раствора на прочность на сжатие.

    • Удельный вес — удельный вес не является показателем качества цемента, но требуется для расчета конструкции бетонной смеси.Удельный вес портландцемента составляет примерно 3,15.

    Таблица 24-15 предоставляет список стандартных лабораторных испытаний, которые в настоящее время используются для оценки конструкции смеси или ожидаемых характеристик вяжущих материалов для использования в текучих заполняющих смесях.

    Таблица 24-15. Процедуры испытаний цементных материалов.

    Имущество Метод испытаний Номер ссылки
    Общие характеристики Портлендский цемент ASTM C150
    Гидравлический цемент с добавками ASTM C595
    Расширяющийся гидравлический цемент ASTM C845
    Использование пуццолана в качестве минеральной добавки ASTM C618
    Тонкость Тонкость помола гидравлического цемента на 150 мм (No.100) и 75 мм (№ 200) сита ASTM C184 /
    AASHTO T128
    Тонкость помола гидравлического цемента и сырья по ситам 300 мм (№ 50), 150 мм (№ 100) и 75 мм (№ 200) мокрыми методами ASTM C786
    Тонкость помола гидравлического цемента на сите 45 мм (№ 325) ASTM C430 /
    AASHTO T192
    Тонкость помола портландцемента с помощью прибора для определения воздухопроницаемости ASTM C204 /
    AASHTO T153
    Тонкость помола портландцемента по мутномеру ASTM C115 /
    AASHTO T98
    Время схватывания Время схватывания гидравлического цемента иглой Вика ASTM C191 /
    AASHTO T131
    Время схватывания гидравлического цемента иглами Гиллмора ASTM C266 /
    AASHTO T154
    Время схватывания гидравлического цементного раствора модифицированной иглой Вика ASTM C807
    Прочность на сжатие Прочность на сжатие гидравлических цементных растворов (с использованием 2-дюйм.или 50 мм кубические образцы) ASTM C109 /
    AASHTO T106
    Прочность на сжатие гидравлических цементных растворов (с использованием частей призм, сломанных при изгибе) ASTM C349
    Удельный вес Плотность гидравлического цемента ASTM C188 /
    AASHTO T133

    Как отмечалось ранее, летучая зола из угля может использоваться несколькими способами в текучей засыпке, в зависимости от типа и количества используемой летучей золы.Пуццолановая летучая зола при использовании в относительно небольших количествах (15 процентов или менее по массе от общей массы смеси) может улучшить развитие прочности и улучшить сыпучесть смеси. При использовании в больших количествах (до 94 процентов от общей массы смеси) пуццолановая летучая зола также действует как наполнитель в смеси. Самоцементирующаяся летучая зола может использоваться в относительно небольших количествах (15 процентов или меньше от общей массы смеси) для повышения прочности или сокращения времени твердения в сочетании с портландцементом, или просто для использования в качестве замены или полной замены портландцемента. .В любом случае, наиболее важные свойства летучей золы (или других пуццоланов), используемой в текучих смесях наполнителя, включают:

    • Тонкость помола — частицы летучей золы должны быть достаточно мелкими, чтобы обеспечить достаточную площадь поверхности и для реакции с портландцементом или другими активаторами (такими как известь, пыль из обжиговой печи или цементная пыль), а также для повышения текучести текучая заполняющая смесь.

    • Пуццолановая активность — пуццолановая зола-унос должна состоять из достаточного количества диоксида кремния и оксида алюминия для химической реакции с доступным кальцием с образованием вяжущих соединений, в то время как самоцементирующаяся летучая зола должна содержать достаточное количество силиката кальция и магния и алюминатов для развития прочности в наличие воды.

    В Таблице 24-16 перечислены стандартные методы испытаний, используемые для оценки пуццоланов, включая летучую золу угля, на пригодность для применения в текучих наполнителях.

    Таблица 24-16. Пуццолановые методы тестирования.

    Имущество Метод испытаний Артикул
    Тонкость Отбор проб и испытание летучей золы или природных пуццоланов для использования в качестве минеральной добавки в портландцементном бетоне ASTM C311
    Пуццолановая активность Зола-унос и необработанный или кальцинированный природный пуццолан для использования в качестве минеральной добавки в портландцементном бетоне ASTM C618

    РАСХОДНАЯ СМЕСЬ ДЛЯ ЗАПОЛНЕНИЯ

    Текучие засыпные смеси обладают характеристиками высококачественной засыпки из уплотненного грунта после затвердевания, а при производстве, транспортировке и укладке напоминают очень работоспособную бедную бетонную смесь.Наиболее важными физическими характеристиками текучих заполняющих смесей являются развитие их прочности, текучесть, время отверждения, растекание и усадка, удельный вес, несущая способность, прочность на сдвиг и коррозионная стойкость.

    • Развитие прочности — наиболее важным свойством текучего наполнителя является его прочность, измеряемая как прочность на неограниченное сжатие. Развитие прочности текучих наполняющих смесей напрямую связано с компонентами смеси.

    • Текучесть — текучесть при размещении текучих заполняющих смесей в первую очередь зависит от содержания воды, хотя летучая зола улучшает текучесть так же, как летучая зола делает бетон более перекачиваемым.Чем выше содержание воды, тем более текучая смесь. Текучесть можно измерить одним из нескольких различных методов, включая испытания на оседание и конусность потока. Нормальный диапазон осадки для текучих заполняющих смесей составляет от 150 до 250 мм (от 6 до 10 дюймов). Этот диапазон спада соответствует времени потока от 30 до 60 секунд через стандартный конус потока.

    • Время затвердевания — время затвердевания текучих заполняющих смесей напрямую зависит от типа цемента, его содержания, содержания наполнителя (включая летучую золу), а также содержания воды и погодных условий.Затвердевание текучих смесей заполнения, содержащих 5 процентов цемента (этого достаточно, чтобы выдержать вес среднего человека), обычно можно ожидать примерно через 1–4 часа. Обычно в течение 24 часов строительное оборудование может перемещаться по поверхности текучей насыпи без видимых повреждений.

    • Растекание и усадка — некоторое растекание и усадка возможны в текучих заполняющих смесях с относительно высоким содержанием воды. Испарение сточной воды из таких смесей часто приводит к усадке текучей заливки.Усадка может происходить как в поперечном, так и в вертикальном направлении и может проявляться в виде усадочных трещин на верхней поверхности материала. После первоначального затвердевания в текучих смесях-наполнителях не ожидается усадки или оседания. Основная проблема, связанная с растрескиванием при усадке, скорее всего, связана с возможностью проникновения воды, замерзания и последующего повреждения от мороза.

    • Удельный вес — плотность или удельный вес текучих наполняющих смесей зависит в первую очередь от удельного веса наполнителя или заполнителя.Удельный вес смесей с высоким содержанием песчаного наполнителя обычно находится в диапазоне от 1900 до 2350 кг / м 3 (от 115 до 145 фунтов / фут 3 ). Удельный вес текучих наполняющих смесей, в которых зола-унос используется в качестве наполнителя, обычно находится в диапазоне от 1500 до 1900 кг / м 3 (от 90 до 115 фунтов / фут 3 ). В тех случаях, когда плохие грунтовые условия требуют использования легкого наполнителя, смеси CLSM с низкой плотностью могут быть получены путем введения предварительно отформованного пенообразователя, при этом более высокие дозировки приводят к большему снижению плотности смеси.Удельный вес смесей CLSM низкой плотности может составлять от 320 до 1300 кг / м 3 (от 20 до 80 фунтов / фут 3 ), в зависимости от количества предварительно сформованной пены, которая вводится в смесь во время дозирования.

    • Несущая способность — несущая способность текучих заполняющих смесей напрямую связана с их прочностью на неограниченное сжатие. Текучая заполняющая смесь с 28-дневной прочностью на неограниченное сжатие 1,0 МПа (150 фунтов / дюйм 2 ) имеет несущую способность приблизительно 9000 кг / м 2 (10 тонн / фут 2 ).Это примерно в три раза больше, чем несущая способность высококачественного, хорошо уплотненного гранулированного грунта. Поскольку прочность смеси на неограниченное сжатие со временем увеличивается, увеличивается и несущая способность.

    • Прочность на сдвиг — испытание текучей заполняющей смеси на прочность при трехосном сдвиге показало, что углы внутреннего трения варьируются от 20 градусов для смесей с мелким песком до 30 градусов для смесей с использованием бетонного песка. Было обнаружено, что когезия затвердевших текучих смесей наполнителя составляет примерно 30 процентов от прочности на неограниченное сжатие.

    • Коррозионная стойкость — следует избегать контакта жидкого наполнителя с металлическими трубами или бетоном, чтобы не вызвать коррозию этих материалов. Коррозия обычно связана с кислотностью (низкий pH) и низким удельным электрическим сопротивлением, хотя растворимость таких компонентов, как сульфаты, также влияет на коррозию. Текучий наполнитель обычно является слабощелочным, и его удельное сопротивление увеличивается по мере затвердевания материала и продолжения гидратации цемента, так что в течение нескольких дней текучий наполнитель обычно имеет удельное электрическое сопротивление, достаточное для устранения большинства проблем коррозии.

    Список стандартных методов испытаний, обычно используемых для оценки текучих наполнителей, приведен в Таблице 24-17.

    Таблица 24-17. Процедуры проверки текучести.

    Имущество Метод испытаний Список литературы
    Развитие силы Прочность связного грунта на неограниченное сжатие ASTM D2166
    Индекс прочности на неограниченное сжатие грунтов с химическим затиркой ASTM D4219
    Текучесть Осадка портландцементного бетона ASTM C143
    Поток раствора для предварительно заполненного заполнителя (метод конуса) ASTM C939
    Время отверждения Время схватывания бетонных смесей по сопротивлению проникновению ASTM C403
    Растекание и усадка Изменение высоты в раннем возрасте цилиндрических образцов из цементных смесей ASTM C827
    Масса устройства Удельный вес, текучесть и содержание воздуха в бетоне ASTM C138
    Прочность подшипника Калифорния Коэффициент несущей способности (CBR) лабораторно-уплотненных грунтов ASTM D1883
    Прочность на сдвиг Прочность неконсолидированных недренированных связных грунтов на сжатие при трехосном сжатии ASTM D2850
    Испытание грунтов на прямой сдвиг в условиях консолидированного дренажа ASTM D3080
    Коррозионная стойкость pH почвы для испытаний на коррозию ASTM G51
    Полевые измерения удельного сопротивления грунта с использованием четырехэлектродного метода Веннера ASTM G57
    Optimum SO 3 в портландцементе ASTM C563

    СПРАВОЧНИКИ ДЛЯ ДОПОЛНИТЕЛЬНОЙ ИНФОРМАЦИИ

    Американский институт бетона.

    LEAVE A REPLY

    Ваш адрес email не будет опубликован. Обязательные поля помечены *