Расчет плиты перекрытия пустотной плиты перекрытия: Кафедра промышленного и гражданского строительства — Методические указания, задания, вопросы
Расчет плиты перекрытия: монолитного, многопустотного видео
/в Плита перекрытия /от adminПеред постройкой многоэтажного здания, нужно обязательно рассчитать, сколько может выдержать плита перекрытия.
Любого кто занимается строительством должен интересовать вопрос какую нагрузку выдерживает плита перекрытия? Важно произвести точные расчеты, чтобы нагрузка на перекрытие не была слишком большой. смотрите статью по теме расчет балки на прогиб.
Виды и преимущества перекрытий
Важно, чтобы плита перекрытия была изготовлена с соблюдением времени на затвердение и температурного режима в заводских условиях. В этом случае она будет соответствовать ГОСТу. Сегодня производители выпускают плиты перекрытий не только пустотные, но и полнотелые. По этой причине так важно произвести расчет нагрузки или использовать пример.
Плиты полнотелые имеют большую стоимость и массу. Их применяют только для возведения наиболее важных объектов. Для домов будет достаточно пустотелых плит. Среди их достоинств можно выделить небольшую стоимость и легкий вес вместе с повышенным уровнем надежности. В результате получается несущая плита. При этом она может быть многопустотной. При этом расчет количества пустот будет таким, чтобы несущая способность не была нарушена.
Обратите внимание! У пустот есть полезная функция. Они необходимы для обеспечения тепло- и звукоизоляции постройки.
Расчет должен учитывать основные параметры плит. Например, размеры плит колеблются по длине от 1,18 — до 9,7 м. при этом ее ширина может составить от 0,99 до 3,5 м. Как правило, и в многоэтажном, и в частном строительстве домов применяют плиты длиной 6 метров и шириной от 1,2 до 1,5 м. Для их монтажа потребуется кран мощностью от 3-х до 5 тонн.
Особенности монолитной конструкции
- Использование монолитной конструкции возможно, если работу подъемного крана организовать на строительной площадке сложно. Также он подходит, если в проекте заложены нетрадиционные параметры и необычная архитектура.
- В результате особой прочности монолитной
Монолитное перекрытие
конструкции все элементы приобретают особую жесткость, в отличие от пустотных покрытий.
- Экономия денег на затраты электроэнергии, сварные работы по созданию стыков и работы по погрузке и разгрузке. Также уменьшаются расходы на приобретение строительных и расходных материалов.
- Все нужные материалы находятся в свободной продаже на строительных рынках и в магазинах.
- Материал не будет подвержен процессам гниения и не будет гореть.
- Нет стыков, благодаря чему повышаются звукоизоляционные свойства здания.
- Нижняя поверхность получается ровной и гладкой, так как легче будет проводить штукатурные работы.
- Этот метод возведения зданий дает возможность выполнять такие выносные конструкции, как балконы. При этом их основанием будет единая плита, имеющая межэтажные перекрытия. В результате балкон будет более надежным и прочным.
Но существует и недостаток.
Различные варианты нагрузок
Во всех перекрытиях можно выделить три основные части:
- Верхняя часть плиты, состоящая из стяжки, утеплителя и отделочного слоя.
- Нижняя часть, включающая подвесные элементы и отделку, если снизу располагается жилое пространство.
- Конструктивная часть, держащая две остальные части.
Нарезанные плиты перекрытия обладают такой же стойкостью к нагрузкам как и обычные.
Перекрытия представлены особыми конструктивными элементами. Например, нижняя и верхняя части создают статическую нагрузку. К ней относятся все элементы, подвешиваемые к потолочной поверхности. Это могут быть натяжные или подвесные потолки, тяжелые люстры и даже качели. К этой же категории относятся колонны, ванны и перегородки межкомнатные.
Можно выделить и динамическую нагрузку. Она получается от тех объектов, которые могут перемещаться непосредственно по перекрытию. Это могут быть не только люди, но и домашние животные. причем последние могут весить достаточно много.
Точечные и распределительные нагрузки. Можно выделить следующий пример: если повесить боксерскую грушу весом 200 кг на плиту, получается точечная нагрузка. Если же установить подвесные потолки, нагрузка получится распределительной. Если нужно провести расчет точечной или распределительной нагрузки, могут встречаться ситуации и сложнее. При монтаже ванны с повышенной емкостью 500 литров важно учесть не только распределительную, но и точечную нагрузку. Последнюю создает каждая ножка ванны.
Расчет возможных нагрузок на плиту
Важно узнать, сколько они выдержат. Для этого нужно выполнить подробнейший чертеж квартиры или дома. После этого необходимо просчитать вес всего перекрытия. Важно учитывать, какой материал перед вами. Так, это может быть не просто пустотный материал.
На середину плиты не должна приходиться основная нагрузка серьезных элементов, даже если внизу располагаются опорные элементы или капитальные стены. Необходимо приступить к расчету общей нагрузки, приходящейся для плит. Необходимо узнать массу конкретной плиты. Если взять плиту ПК-60-15-8, масса ее составит 2850 кг. Пример предполагает расчет площади для несущих плит. Полезная площадь рассчитывается по следующей схеме: 1,5 м х 6 м = 9 кв. м.
Плиты перекрытия могут иметь разные размеры и разную толщину, что влияет на их устойчивость к нагрузкам.
Затем необходимо понять, какой будет расчетная нагрузка, с которой справится перекрытие. Необходимо умножить площадь на максимальную нагрузку плит, которая приходится только на 1 кв. м. Производится следующий расчет: 800 кг/кв. м. х 9 кв. м. = 7200 кг. необходимо высчитать из этой массы и массу самих плит: 7200 – 2850 = 4350 кг.
Затем производится подсчет, какая масса уйдет на стяжку и утепление полов, а также на отделочный слой. Как правило, на все это уходит не более 150 кг на 1 кв. м. Пример расчета будет следующим: 150 кг/кв. м. х 9 кв. м. = 1350 кг. Затем производятся следующие расчеты: 4350-1350=3000 кг. В пересчете на метр квадратный это составляет 333 кг/кв. м.
Что будет обозначать данная цифра? Масса напольного покрытия и самой плиты уже определен. Поэтому данная цифра означает полезную нагрузку, подходящую для плит. Важно, чтобы не меньше 150 кг приходилось на нагрузки, которые будут привнесены в дальнейшем. Они могут быть не только статическими, но и динамическими.
Оставшаяся масса плит может применяться для монтажа межкомнатных перегородок или декоративных элементов. Если же расчетная масса превышает указанный параметр, отдайте предпочтение облегченному напольному покрытию.
Расчет нагрузок на плиту перекрытия делается на ее каждый погонный метр.
Этот вариант нагрузки необходимо рассчитывать с особой тщательностью и осторожностью. От того, как вы нагрузите определенную точку, во многом зависит продолжительность службы самого перекрытия. При этом не так важно, монолитный у вас пол. Конструкция может быть и многопустотной.
Пример расчета точечных нагрузок для плит выглядит следующим образом: 800 кг/кв. м. х 2 = 1600 кг. В результате на каждую точку приходится не больше 1600 кг нагрузки. Но важнее подсчитать нагрузки точечного характера, применяя коэффициент надежности.
Пример получается следующим. В жилых пространствах коэффициент составляет 1-1,2. В результате выходят следующие расчеты: 800 кг/кв. м. х 1,2 = 960 кг. Этот пример более безопасный, ведь речь ведется о продолжительной нагрузки на конкретную точку. Но важно учитывать, что серьезную нагрузку лучше размещать ближе к несущим стенам, ведь возле них армирование усиленно.
Плиты перекрытия можно делать своими руками. Чтобы сделать их прочнее делается армирование.
Вы планируете роскошный ремонт в доме старой постройки? В этом случае необходимо сразу избавиться от старого утепления и напольного покрытия. Затем нужно произвести примерную оценку веса. Новое покрытие для пола и стяжка подбираются таким образом, чтобы новое покрытие было равно весу старой верхней части перекрытия. При этом вы должны понимать, что конструкция может быть не только монолитной. Конструкция может быть многопустотной. Особенно остро эта проблема стоит для пустотных перекрытий.
Особенно осторожно на старых основах следует размещать сантехнические приборы с увеличенными объемами. Это могут быть как ванны на 500 литров, но и джакузи. В этом случае необходимо вызвать настоящего специалиста. Он проведет подробные расчеты, чтобы определить подсчеты для пустотных основ. Важно учитывать, что статический и кратковременный виды нагрузки будут различными.
Используя пример, вы можете провести соответствующие расчеты. Это позволит не только получит красивый интерьер, но и сделает ремонт безопасным.
Расчёт многопустотной плиты по предельным состояниям первой группы
2. Расчёт многопустотной плиты по предельным состояниям первой группы
Исходные данные. Многопустотная плита из тяжелого бетона класса В40 опирается поверху на железобетонные ригели каркаса, пролет ригелей – lp=5,9м. Нормативное значение временной нагрузки 3,5кПа. Требуется рассчитать и законструировать плиту перекрытия. Класс рабочей арматуры принять А-V.
2.1 Расчет плиты по предельным состояниям первой группы
2.1.1 Расчётный пролёт и нагрузки
Для установления расчётного пролёта плиты предварительно задаёмся размерами сечения ригеля:
hp=(1/12)*lp=(1/12)*590=50см, bp=0.5*hp=0.4*50=20см.
При опирании на ригель поверху расчётный пролёт плиты составит:
lo=l-bp/2=6,4-0,2/2=6,3м.
Рекомендуемые материалы
Подсчёт нагрузок на 1м2 перекрытия сводим в таблицу 1.
Таблица 1 – Нормативные и расчётные нагрузки на 1м2 перекрытия
На 1м длины плиты шириной плиты 2,1м действуют следующие нагрузки, Н/м: кратковременная нормативная pn=1050*2,1=2205; кратковременная расчетная р=1260*2,1=2646; постоянная и длительная нормативная qn=6130*2,1=12873; постоянная и длительная расчетная q=7074*2,1=14855,4; итого нормативная qn+pn=12873+2205=15078; итого расчетная q+p=14855,4+2646=17501,4.
2.1.2 Усилия от расчётных и нормативных нагрузок
Расчётный изгибающий момент от полной нагрузки:
M=(q+p)*l20*gn/8=17501,4*6,32*0.95/8=82487,4Н.м.
Расчетный изгибающий момент от полной нормативной нагрузки:
Mn=(qn+pn)*l20*gn/8=15078*6,32*0.95/8=71065,4Н.м.
То же, от нормативной постоянной и длительной временной нагрузок:
Mld=qn*l20*gn/8=12873*6,32*0. 95/8=60672,9Н.м.
То же, от нормативной кратковременной нагрузки:
Mсd=рn*l20*gn/8=2205*6,32*0.95/8=10392,6Н.м.
Максимальная поперечная сила на опоре от расчетной нагрузки:
Q=(q+p)*l0*gn/2=17501,4*6,3*0.95/2=52372,9Н.
То же, от нормативной нагрузки:
Qn=(qn+pn)*l0*gn/2=15078*6,3*0.95/2=45120,9Н.
То же, от нормативной нагрузки:
Qnld=qn*l0*gn/2=12873*6,3*0.95/2=38522,5Н.
2.1.3 Установление размеров сечения плиты
Плиту рассчитываем как балку прямоугольного сечения с заданными размерами bxh=210х22см (где b – номинальная ширина, h – высота плиты). Проектируем плиту одинадцатипустотной. В расчете поперечное сечение пустотной плиты приводим к эквивалентному двутавровому сечению. Заменяем площадь круглых пустот прямоугольниками той же площади и того же момента инерции.
Вычисляем:
h1=0.9*d=0.9*15.9=14.3см;
hf=hf’=(h-h1)/2=(22-14.3)/2=3.8см;
тогда приведенная толщина ребер равна:
bp=b=bf’-n*h1=207-11*14.3=49,7см,
где bf’=207см – расчетная ширина сжатой полки.
Приведенная толщина бетона плиты:
hred=h-(n*p*d2)/4b=22-(11*p*15.92)/(4*207)=11.5см>10 см.
Рабочая высота сечения h0=22-3=19см.
Толщина верхней и нижней полок hf=(22-15.9).0.5=3см.
Ширина ребер: средних – 2.9см, крайних – 3см.
Плита изготавливается из тяжелого бетона класса В40, имеет предварительно напрягаемую рабочую арматуру класса А-VI с электротермическим натяжением на упоры форм. К трещиностойкости плиты предъявляются требования 3-ей категории. Изделие подвергают тепловой обработке при атмосферном давлении.
Бетон тяжёлый класса В40
Призменная прочность бетона нормативная: Rbn=Rb,ser=29МПа, расчётная Rb=22МПа, коэффициент условий работы бетона gb2=0. 9; нормативное сопротивление при растяжении Rbtn=Rbt,ser=2.1МПа, расчётное Rbt=1.4МПа; начальный модуль упругости бетона Eb=32.5*103МПа.
Передаточная прочность бетона Rbp устанавливается так, чтобы при обжатии отношение напряжений sbp/Rbp£0.75.
Арматура продольная класса A—VI
Нормативное сопротивление Rsn=Rs,ser=980МПа,
Расчётное сопротивление Rs=225МПа,
Модуль упругости Es=1.9*105МПа.
Предварительное напряжение арматуры назначаем таким образом, чтобы выполнялись условия . При электротермическом способе натяжения:
Принимаем ssp=600МПа.
Определяем коэффициент точности натяжения арматуры
где n – число стержней напрягаемой арматуры, принимаем n=8.
.
При благоприятных влияниях предварительного напряжения gsp=1-0. 1=
=0.9. При проверке по образованию начальных трещин в верхней зоне плиты g’sp =1+0.1=1.1. Значение предварительного напряжения с учётом точности натяжения арматуры составит 0.9*600=540МПа.
2.1.5 Расчёт прочности плиты по сечению, нормальному к продольной оси
При расчёте прочности, сечение плиты принимается тавровым (полка нижней растянутой зоны в расчёт не вводится). Размеры сечения показаны на рисунке 2б.
Вычисляем:
Находим
Высота сжатой зоны сечения:
следовательно, нейтральная ось проходит в пределах сжатой полки, и сечение рассчитывается как прямоугольное шириной bf’=207см. Вычисляем характеристики сжатой зоны
ω=0,85-0,008·Rb=0,85-0,008·22·0,9=0,69
Вычисляем граничную высоту сжатой зоны
ξR=
где σSR=Rs+400- σSP2
σSP=0,6Rsn=0,6·785=471 МПа
σSP2=γsp· σSP·0,7=0,84·471·0,7=276,95 МПа
σSR=680+400-276,95=803,1 МПа
Поскольку соблюдается условие x<xR (0. 034<0.43), то расчётное сопротивление арматуры умножается на коэффициент условий работы gs6:
где h=1.15 – коэффициент, принимаемый равным для арматуры класса A-V.
Требуемую площадь сечения рабочей арматуры определяем по формуле:
где h=1-0.5x=1-0.5*0.058=0.971.
Принимаем в качестве предварительно напряжённой продольной рабочей арматуры три стержня арматуры класса A-V 3Æ16мм с общей площадью Asp=6,03см2. Арматура устанавливается в четвертом слева и крайних рёбрах плиты.
2.1.6 Расчёт прочности плиты по наклонным сечениям
По конструктивным требованиям в многопустотных плитах высотой не более 30см поперечная арматура не устанавливается, если она не нужна по расчету. Проверим необходимость постановки поперечной арматуры расчетом. Проверяем условие: Q£ 0.3jw1jb1Rb b h0,
где Q – поперечная сила на опоре от расчетной нагрузки; Q=52,37кН,
jw1=1, так как поперечная арматура отсутствует;
jb1=1-0. 01Rb=1-0.01*22=0.78.
Условие:
52,37<0.3*1*0.78*22*10-1*49,7*19,
52,37кН<486,13кН, выполняется,
следовательно, прочность плиты по наклонной полосе между наклонными трещинами обеспечена.
Поперечную арматуру в плите можно не устанавливать, если выполняются условия:
а) Qmax£2.5*Rbt*b*h0; Qmax=Q.
52,37<2.5*1.4*10-1*49,7*19,
52,37кН<330,51кН, условие выполняется.
б) Q1£Mb1/c, Q1=Qmax-q1*c=52,37-11,88*0.475=46,73кН,
где с — проекция наклонного сечения, принимаем:
с=2,5h0=2,5*19=47,5см;
q=gp*b*gf=8,334*1,5*0,95=11,88кН/м,
Мb1=jb4(1+jn)gb2Rbt*b*h02;
jb4=1.5- для тяжелого бетона; jn=0;
где Р=Asp(ssp-100)=5,96*(540-100)*0. 1=262кН – усилие предварительного обжатия,
100МПа – минимальное значение суммарных потерь предварительного напряжения.
Принимаем jn=0.5.
Мb1=1,5*(1+0,22)*0,9*1,4*10-1*49,7*192=4137кН*см.
Мb1/с=4137/47,5=87,09кН.
Условие Q1£Мb1/с:
46,73кН<87,09кН выполняется,
следовательно, поперечную арматуру в плите не устанавливаем.
На приопорных участках длиной l/4 арматуру устанавливаем конструктивно Æ4 Вр-I с шагом S=h/2=22/2=11см, в средней части пролёта поперечную арматуру не устанавливаем.
2.2 Расчет плиты по предельным состояниям второй группы
2.2.1 Геометрические характеристики сечения
При расчёте по 2-ой группе предельных состояний в расчёт водится двутавровое сечение плиты (рисунок 2в).
Площадь приведённого сечения:
расстояние от нижней грани до центра тяжести приведённого сечения:
момент инерции сечения:
момент сопротивления сечения:
упругопластический момент сопротивления по растянутой зоне
здесь g=1. 5 для двутаврового сечения при 2<bf/b=207/49,7=4,2<6,0.
Упругопластический момент по растянутой зоне в стадии изготовления и обжатия Wpl’=Wpl=20343см3.
Расстояния от ядровых точек – наиболее и наименее удалённой от растянутой зоны (верхней и нижней) – до центра тяжести сечения:
2.2.2 Потери предварительного напряжения
Расчёт потерь выполняем в соответствии с требованиями СНиП 2.03.01-84*. Коэффициент точности натяжения арматуры принимаем gsp=1.0.
Потери s1 от релаксации напряжений при электротермическом натяжении высокопрочных канатов:
s1=0.03*ssp=0.03*600=18МПа.
Потери s2 от температурного перепада между натянутой арматурой и упорами равны нулю, так как при пропаривании форма с упорами нагревается вместе с изделием.
Потери от деформации анкеров s3 и формы s5 при электротермическом способе равны нулю. Поскольку арматура не отгибается, потери от трения арматуры s4 также равны нулю.
Усилие обжатия
Эксцентриситет силы Р1 относительно центра тяжести сечения еор=у0-а=11-3=8см. Определим сжимающие напряжения в бетоне:
где Mg=q*l2/8=(2,07*3,0)*6,42/8=31,8кНм – изгибающий момент в середине пролета плиты от собственного веса,
l=6,4м – расстояние между прокладками при хранении плиты.
Устанавливаем значение передаточной прочности бетона из условия sbp/Rbp£0.75, но не менее 0.5В (В — класс бетона):
0,78МПа,
0,5 B=0,5*40=20МПа.
Принимаем Rbp=20МПа, тогда:
при расчёте потерь от быстронатекающей ползучести s6 при
<
Итак, первые потери slos1=s1+s6=18+0,79=18,79МПа.
С учётом потерь slos1:
Р1=Аsp(ssp-slos1)=5,96*(600-18,79)*10-1=346,4МПа.
Отношение .
Из вторых потерь s7…s11 при принятом способе натяжения арматуры учитываются только потери s8 от усадки бетона и потери s9 от ползучести бетона.
Для тяжёлого бетона классов В40 и ниже s8=40МПа.
Так как sbp/Rbp<0.75 то s9=127.9*sbp/Rbp=112,5*0,029=3,26МПа.
Вторые потери slos2=s8+s9=40+3,26=43,26МПа.
Полные потери slos=slos1+slos2=18,79+43,26=62,05МПа<100МПа, принимаем slos=100МПа.
Усилие обжатия с учётом полных потерь:
Р2=Аsp(ssp-slos)=5,96*(600-100)*10-1=298кН.
2.2.3 Расчёт по образованию нормальных трещин
Образование нормальных трещин в нижней растянутой зоне плиты не происходит, если соблюдается условие Mn=71,065кН*м£Mcrc(Mcrc – момент образования трещин):
Поскольку Mn<Mcrc (71,065<79,52), то в нижней зоне плиты трещины не образуются.
Проверим, образуются ли начальные трещины в верхней зоне плиты от усилия предварительного обжатия. Расчётное условие:
здесь Rbt,p=1МПа – нормативное сопротивление бетона растяжению, соответствующее передаточной прочности бетона Rbp=20МПа;
Р1 — принимается с учётом потерь только s1, Р1=346,4кН;
Mg – изгибающий момент в середине пролёта плиты от собственного веса, Mg=31,8кН*м.
Вычисляем: 1.12*346,4*(8-5,72)£1*10-1*20343,5+31,8, 884,57кН*см<2066,2кН*см.
Условие выполняется, значит, начальные трещины в верхней зоне плиты от усилия предварительного обжатия не образуются.
2.2.4 Расчёт прогиба плиты
Для однопролётной шарнирно опертой балочной плиты прогиб можно определить по формуле:
где 1/r – кривизна оси элемента при изгибе. Кривизна оси элемента, где не образуются трещины при длительном действии нагрузки:
где jb1=0. 85 – коэффициент, учитывающий снижение жесткости под влиянием неупругих деформаций бетона растянутой зоны;
jb2 – коэффициент, учитывающий снижение жёсткости (увеличение кривизны) при длительном действии нагрузки под влиянием ползучести бетона сжатой зоны при средней относительной влажности воздуха выше 40%, равна 2; jb2 – то же, при кратковременной нагрузке равна 1.
Так как в растянутой зоне плиты трещины не образуются, то кривизна оси (без учета влияния выгиба):
где – кривизна соответственно от кратковременных и от постоянных и длительных нагрузок,
Тогда прогиб будет равен:
От постоянной и длительной временной нагрузок:
Тогда прогиб будет равен:
Тогда полный прогиб будет равен:
2.3 Проверка панели на монтажные нагрузки
Панель имеет четыре монтажные петли из стали класса А-1, расположенные на расстоянии 70см от концов панели (рисунок 3а). С учётом коэффициента динамичности kd=1.4 расчётная нагрузка от собственного веса панели:
где собственный вес панели; bп – конструктивная ширина панели; hred – приведённая толщина панели; r — плотность бетона.
Расчётная схема панели показана на рисунке 3б. Отрицательный изгибающий момент консольной части панели:
Этот момент воспринимается продольной монтажной арматурой каркасов. Полагая, что z1=0.9*h0=0.9*19=17.1см, требуемая площадь сечения указанной арматуры составляет:
Если Вам понравилась эта лекция, то понравится и эта — 49 Кавитация.
что значительно меньше принятой конструктивно арматуры 3Æ16 А-II, Аs=5,96см2.
При подъёме панели вес её может быть передан на две петли. Тогда усилие на одну петлю составляет
Площадь сечения арматуры петли
принимаем конструктивно стержни диаметром 14 мм, Аs=1,539см2.
Расчет прочности на сдвиг предварительно напряженных многопустотных плит с использованием теории пластичности — Добро пожаловать в исследовательскую базу данных DTU
В этой статье рассматриваются расчеты прочности на сдвиг сборных предварительно напряженных пустотных плит. Такие плиты часто используются в качестве систем перекрытий в строительных конструкциях. Распространенным способом производства пустотных плит является использование метода экструзии, при котором длинные полосы плит выдавливаются, а затем распиливаются на блоки желаемой длины. По этой причине многопустотные плиты обычно не армируются сдвигом, и анкеровка предварительно напряженных прядей должна быть обеспечена склеиванием. Таким образом, пустотные плиты могут быть более критичны к сдвигу и разрушению анкеровки, чем обычные железобетонные плиты с двусторонним пролетом.
Язык оригинала | Английский |
---|---|
Журнал | Бетон в Австралии |
Том 9000 9 | 40 |
Номер выпуска | 2 |
Страницы (от-до) | 30-36 |
ISSN | 1440-656X |
Статус публикации | Опубликовано — 2014 |
Приглашенный доклад
Полный текст
- АПА
- Автор
- БИБТЕКС
- Гарвард
- Стандарт
- РИС
- Ванкувер
Хоанг, Л. К., Йоргенсен, Х. Г., и Нильсен, член парламента (2014). Расчет прочности на сдвиг предварительно напряженных многопустотных плит с использованием теории пластичности. Бетон в Австралии , 40 (2), 30-36.
@article{be3120545f7f48af9afc370a3b6e8427,
title = «Расчет прочности на сдвиг предварительно напряженных многопустотных плит с использованием теории пластичности»,
abstract = «Настоящая статья посвящена расчетам прочности на сдвиг сборных предварительно напряженных пустотных плит с .Такие плиты часто используются в качестве перекрытий в строительных конструкциях.Общим способом производства пустотных плит является использование метода экструзии, при котором длинные полосы плит выдавливаются, а затем распиливаются на блоки желаемой длины.По этой причине, многопустотные плиты обычно не армируются на сдвиг, и анкеровка предварительно напряженных прядей должна быть обеспечена склеиванием. Поэтому пустотные плиты могут быть более критичными к сдвигу и разрушению анкеровки, чем обычные двухсторонние пролетные железобетонные плиты». 0003
автор = «Хоанг, {Линь Цао} и Х.Г. Дж. Оргенсен и Нильсен, {Могенс Питер}»,
примечание = «Приглашенный доклад»,
год = «2014»,
язык = » English»,
том = «40»,
страницы = «30—36»,
журнал = «Бетон в Австралии»,
issn = «1440-656X»,
издатель = «Engineers Media Pty Ltd.»,
номер = «2»,
}
Хоанг, Л.С., Йоргенсен, Х.Г. и Нильсен, М.П. 2014, «Расчет прочности на сдвиг предварительно напряженных пустотных плит с использованием теории пластичности», Бетон в Австралии , том. 40, нет. 2, стр. 30-36.
Расчет прочности на сдвиг предварительно напряженных многопустотных плит с использованием теории пластичности. / Хоанг, Линь Цао; Йоргенсен, Х.Г.; Нильсен, Могенс Питер.В: Бетон в Австралии, Vol. 40, № 2, 2014, с. 30-36.
Результат исследования: вклад в журнал › статья в журнале › исследование › экспертная оценка
TY — JOUR
T1 — Расчет прочности на сдвиг предварительно напряженных пустотных плит с использованием теории пластичности
AU — Hoang, Linh Cao
AU — Jørgensen, H. G. 1 — 2014
N2 — Работа посвящена расчетам способность к сдвигу сборных предварительно напряженных многопустотных плит. Такие плиты часто используются в качестве систем перекрытий в строительных конструкциях. Распространенным способом производства пустотных плит является использование метода экструзии, при котором длинные полосы плит выдавливаются, а затем распиливаются на блоки желаемой длины. По этой причине многопустотные плиты обычно не армируются сдвигом, и анкеровка предварительно напряженных прядей должна быть обеспечена склеиванием. Таким образом, пустотные плиты могут быть более критичны к сдвигу и разрушению анкеровки, чем обычные железобетонные плиты с двусторонним пролетом.
AB — Этот документ посвящен расчетам прочности на сдвиг сборных предварительно напряженных многопустотных плит. Такие плиты часто используются в качестве систем перекрытий в строительных конструкциях. Распространенным способом производства пустотных плит является использование метода экструзии, при котором длинные полосы плит выдавливаются, а затем распиливаются на блоки желаемой длины. По этой причине многопустотные плиты обычно не армируются сдвигом, и анкеровка предварительно напряженных прядей должна быть обеспечена склеиванием. Таким образом, пустотные плиты могут быть более критичны к сдвигу и разрушению анкеровки, чем обычные железобетонные плиты с двусторонним пролетом.
M3 — Журнальная статья
SN — 1440-656X
VL — 40
SP — 30
EP — 36
JO — Бетон в Австралии
9 0002 JF — Бетон в АвстралииIS — 2
ER —
Международный журнал научных и технологических исследований
Международный журнал научных и технологических исследований |
Дом | О нас | Прицел | Редакция | Свяжитесь с нами |