Расчет нагрузки фундамента калькулятор онлайн: Калькулятор Вес-Дома-Онлайн v.1.0 — Сбор нагрузок на фундамент

Калькулятор расчета нагрузки на свайный или столбчатый фундамент

Свайный фундамент может выручить в тех обстоятельствах, когда никакой другой тип основы под строящееся здание невозможен или же становится чрезвычайно сложным и невыгодным. Сваи, заглублённые ниже уровня промерзания грунта и достигшие плотных его слоев, способны выдержать очень серьезную нагрузку. Безусловно, это требует правильных расчётов их несущей способности и, исходя из этого и общей нагрузки – количества и схемы расстановки.

Калькулятор расчета нагрузки на свайный или столбчатый фундамент

Это, кстати, касается и столбчатого фундамента – возможности опор не безграничны, и чрезвычайно важно правильно распределить нагрузку на них. Значит, необходимо каким-то образом оценить, какую же весовую и эксплуатационную нагрузку будет оказывать планируемое к постройке здание на подобное основание. Быстро и с достаточной степенью точности это поможет сделать калькулятор расчета нагрузки на свайный или столбчатый фундамент.

Ниже будут приведены необходимые пояснения по порядку проведения расчетов.

Калькулятор расчета нагрузки на свайный или столбчатый фундамент

Перейти к расчётам

 

Укажите запрашиваемые значения и нажмите «Рассчитать суммарную нагрузку на свайный фундамент»

СТЕНЫ ДОМА
Площадь стен указывается суммарно, при желании — можно с вычетом оконных и дверных проемов.
(Доступно введение двух вариантов, например, для несущих внешних и внутренних стен. Если вариант не используется, оставьте значение площади по умолчанию — 0)

 

Стены, тип №1

Материал стен

— кирпичная кладка в полкирпича (120 мм)- кирпичная кладка в 1 кирпич (250 мм)- кирпичная кладка в 1.5 кирпича (380 мм)- стены из газосиликатных блоков марки D600, толщина 300 мм- бревенчатый сруб, диаметр 240 мм- стены из бруса, толщина 150 мм- каркасные стены с утеплением, толщина 150 мм- стены из сэндвич-панелей толщиной 150 мм, с утеплением из минеральной ваты- стены из сэндвич-панелей толщиной 150 мм, с утеплением из пенополистирола или пенополиуретана

Площадь стен, м²

 

Стены, тип №2

Материал стен

— кирпичная кладка в полкирпича (120 мм)- стены из газосиликатных блоков марки D600, толщина 300 мм- бревенчатый сруб, диаметр 240 мм- стены из бруса, толщина 150 мм- каркасные стены с утеплением, толщина 150 мм- каркасные перегородки из гипсокартона- перегородки из сэндвич-панелей толщиной 50-80 мм, с утеплением из минеральной ваты- перегородки из сэндвич-панелей толщиной 50- 80 мм, с утеплением из пенополистирола или пенополиуретана

Площадь стен, м²

ПЕРЕКРЫТИЯ
Если в перекрытии есть проем, например, для межэтажной лестницы, то его следует исключить из общей площади
(Доступно введение двух вариантов, например, для межэтажного и чердачного перекрытия.

Если вариант не используется, оставьте значение площади по умолчанию — 0)

 

Перекрытие, тип №1 (межэтажное)

Тип перекрытия

— перекрытие межэтажное или цокольное по деревянным балкам с утеплителем плотностью до 200 кг/м³- плита перекрытия пустотная- плита перекрытия монолитная

Площадь перекрытия, м²

 

Перекрытие, тип №2 (чердачное)

Тип перекрытия

— перекрытие чердачное по деревянным балкам с утеплителем плотностью до 200 кг/м³- плита перекрытия пустотная- плита перекрытия монолитная

Площадь перекрытия, м²

СТРОПИЛЬНАЯ СИСТЕМА И КРОВЛЯ
При выборе типа кровли автоматически будет учитываться и средний вес стропильной системы с обрешеткой.
Одновременно к весу крыши будет добавлено ориентировочное значение снеговой нагрузки, в зависимости от региона строительства и крутизны скатов

Общая площадь кровли, м²

Тип кровли

— листовая сталь, профнастил, металлочерепица- мягкая полимер-битумная кровля в два слоя- абесто-цементный шифер- керамическая черепица

Укажите зону, в соответствии с картой-схемой

IIIIIIIVVVIVII

Угол уклона скатов кровли

— до 25 градусов — от 26 до 59 градсов — 60 градусов и круче

РОСТВЕРК
Если для обвязки свай используется деревянный брус, то его можно просто учесть в площади стены — большой ошибки не будет.
Ростверк из металлопроката или железобетона лучше принять в расчет дополнительно

Учитывать в расчете ростверк?

— нет, он учтен в конструкции стен — да, добавить в расчет массу ростверка

Пояснения по проведению расчетов

Безусловно, предложенный алгоритм не претендует на профессиональную точность, но при планировании небольших домов и хозяйственных построек на загородном участке вполне может помочь оценить складывающуюся картину.

Нагрузка, выпадающая на свайный фундамент, в первую очередь включает массу самой постройки, планируемой к возведению.

В калькуляторе предусмотрено внесение площадей стен и указание материала их изготовления. При желании, чтобы получить более корректный результат, можно исключить из площади оконные и дверные проемы. Подсчет площадей стен необходимо провести отдельно, согласуюсь с имеющимся планом или хотя бы наметками на будущее строительство.

Правильно рассчитать площадь поможет специальная публикация портала.

Расчет площадей – быстро и точно

Даже простейшие геометрические формулы иногда подзабываются, и это не говоря о более сложных случаях. Ничего страшного: откройте по ссылке статью, специально посвященную расчету площадей – там изложен порядок вычислений, размещены удобные калькуляторы.

Цены на винтовые сваи

винтовые сваи

Внешние стены и внутренние капитальные перегородки могут отличаться и толщиной, и материалом изготовления. Поэтому пользователю предоставляется возможность внесения двух вариантов стен. Если такой необходимости нет, то просто в поле ввода площади оставляется значение «0».

Далее, следуют поля ввода параметров перекрытий, где также предусмотрены два возможных варианта, например, для пола первого этажа и для чердачного перекрытия. В программу расчета уже внесены необходимые поправки на эксплуатационные нагрузки на перекрытия – вес мебели и других предметов обстановки, динамическое воздействие от находящихся в доме людей и т.

п.

Следующий блок ввода данных – это параметры крыши. При выборе типа кровли сразу будет учтена и средняя масса стропильной системы. Кроме того, на кровлю зимой оказывается немалая нагрузка от выпавшего снега. Чтобы учесть этот фактор, необходимо указать зону своего региона по уровню снеговой нагрузки (по предложенной карте-схеме), и крутизну скатов кровли.

Карта-схема для определения своей зоны по среднестатистическому уровню снеговой нагрузки на кровлю

Сваи или столбы соединяются брусом обвязки либо ростверком. Если применяется деревянная обвязка, то не будет большой ошибкой просто включить ее в площадь стен. Но в том случае, когда устраивается ростверк из металла или даже железобетонной ленты – имеет смысл принять его во внимание дополнительно. При выборе этого пути расчета откроются дополнительные поля ввода данных – длины ростверка и материала его изготовления.

Итоговый результат будет выдан в килограммах и тоннах. Получив это значение и зная несущий потенциал опоры, несложно будет определиться и с количеством свай или столбов.

Как оценивается несущая способной винтовых свай?

Этот параметр зависит от особенностей грунта на предполагаемой глубине залегания винтовой части опоры и от размерных параметров самой сваи. Подсчитать

несущую способность винтовой сваи поможет специальный калькулятор, к которому ведет указанная ссылка.

Понравилась статья?
Сохраните, чтобы не потерять!

Оцените:

  1. 5
  2. 4
  3. 3
  4. 2
  5. 1

3.7

Особенности и методики расчета нагрузки на фундамент, формулы расчета, онлайн калькулятор

Содержание

  1. Расчет нагрузки на фундамент
  2. Типы нагрузок
  3. Формула расчета
  4. Онлайн калькулятор нагрузки
  5. Советы по расчетам

При проведении строительных работ по возведению сооружений различного типа достаточно важно выполнить расчет нагрузки, оказываемой на фундамент.

Этот показатель необходим для того, чтобы спроектировать фундамент: геометрические размеры, тип, площадь подошвы и многие другие моменты. Результатом проводимого расчета становится показатель нагрузки на квадратный метр грунта.

Расчет нагрузки на фундамент

Типы нагрузок

В независимости от того, какое сооружение, оно так или иначе оказывает давление на основание грунт. В результате этого происходит проседание и последующая деформация важных несущих конструкций. Расчет оказываемого давления проводится с учетом того, какие есть их разновидности.

Различают следующие силы, которые воздействую на основание:

  1. Статическая – вес основной конструкции и многих других ее элементов определяют давление, которое появляется.
  2. Динамическая – еще один тип нагрузки, которую также учитывают при расчете. Возникает дополнительное давление на основаниепри различных колебаний, которые возникают по причине работы различных устройств.

При умеренном климате следует учитывать и нагрузку, которая возникает при выпадении большого количества осадков. Примером назовем снег на крыше – он может создавать сильное давление на основание.

Еще при выполнении расчетов следует учитывать давление, которое оказывается предметами в доме. Этот показатель также следует учитывать.

Совокупность этих показателей и определяет то, какое давление будет оказываться на фундамент.

Есть довольно много формул расчета оказываемой нагрузки на дно. Зачастую при расчете требуется следующая информация:

  1. Глубина залегания грунтовых вод и тип почвы.
  2. Регион, в котором проводятся строительные работы.
  3. Планировка зданий, тип кровли и используемого материала при создании стен, этажность.
  4. Материалы, из которых изготавливаются важные элементы конструкции.

Примером можно назвать следующие входные данные:

  • Здание одноэтажное.
  • При возведении несущих конструкций используют полнотелый кирпич, толщина которых составляет 40 см.
  • Габариты дома составляют 10 на 8 метров.
  • Перекрытие подвала представлено железобетонными плитами.
  • Перекрытие первого этажа представлено железобетонными балками, поверх которых укладываются деревянные доски.
  • Крыша представлена двускатной конструкцией. Материал представлен металлочерепицей, уклон составляет 25 градусов.
  • Тип грунта суглинки, пористость которых составляет 0,5
  • Предполагается создать фундамент из мелкозернистого фундамента, толщина будет равна толщине стен.

Рассчитывается несколько показателей. Примером можно назвать определение площади основания. Она определяется с учетом несущей способности грунта.

Формула расчета

Сама формула, по которой определяется площадь основания, выглядит следующим образом:

S > Уn · F / (Уc · R0)

В данной формуле используется коэффициент условий работ (Уc), а также коэффициент надежности (Уn), который в данном случае 1,2. Важным показателем можно назвать нагрузку (F), представленная сочетанием показателей веса дома и веса фундамента, а также других нагрузок.

В формуле R0указывает расчетное сопротивление грунта под основанием фундамента. Кроме учитывается площадь основания, которая обозначается буквой S.

При использовании данной формулы получают расчетный показатель площади основания, которого должно быть достаточно. На практике берется большее значение для обеспечения запаса прочности. Вся необходимая информация, касающаяся табличных данных, берется их таблиц. Примером назовем коэффициент условной работы, который зависит от типа грунта.

Вес конструкции зависит от площади конструкции, а также плотности используемого материала. Зная площадь основания и плотность, к примеру, используемого бетона, вычисляется оказываемое давление.

Глубина залегания зависит от уровня залегания грунтовых вод и промерзания почвы. При этом для каждого типа фундамента показатель глубины залегания существенно отличается.

Расчет нагрузки на грунт представляет собой сочетание нескольких показателей:

  1. Давление, оказываемое стенами. Рассчитывается она путем перемножения показателя объема стен и удельного веса, который берется из таблицы. Полученный результат делят на длину всех сторон периметра и умножают на показатель толщины.
  2. Стоит учитывать тот момент, что на грунт оказывает влияние и вес фундамента. Он представлен произведением объема конструкции на удельную плотность. Для того чтобы рассчитать нагрузку на один квадратный метр грунта, следует разделить полученный результат на площадь основания.
  3. Кровля также оказывает давление на основание. Провести расчет этого показателя достаточно сложно, так как давление распределяется между сторонами фундамента, на которые опираются стропила. В случае двускатной крыши это обычно две противоположные стороны. Оказываемое давление определяется следующим образом: проекция крыши, которая отнесена к площади нагруженной стороны фундамента, умножается на удельный показатель веса материала.
  4. При проведении расчетов учитывается и нагрузка, которая оказывается снегом. Площадь снежного покрова зависит от площади кровли. Оказываемое воздействие заключается в делении площади снежного покрова на площадь нагруженных сторон фундамента, после чего результат умножается на удельную снеговую нагрузку.

В целом расчеты довольно сложны и точно существенно теряется в случае выбора коэффициентов. Также не стоит забывать о допущении математических ошибок. Именно поэтому следует использовать онлайн-калькуляторы, которые в последнее время пользуются большой популярностью.

Онлайн калькулятор нагрузки

Рассчитать рассматриваемый показатель можно путем использования специальных онлайн-калькуляторов. Примером можно назвать сервис: http://prostobuild.ru/onlainraschet/204-raschet-nagruzki-na-fundament.html или http://www.gvozdem.ru/stroim-dom/kalkulyatory/sbor-nagruzok-na-fundament.php.

Особенностями второго онлайн-калькулятора назовем следующие моменты:

  1. Программа учитывает планировку сооружения и тип используемых материалов при строительстве.
  2. Рассматриваются все нагрузки, который оказываются на основание. Данный онлайн-калькулятор позволяет рассчитывать нагрузку стен, кровли, отделочных и других материалов.

На рассматриваемом сервисе есть поля, в которых указывается важная информация, а также таблицы с важной информацией, нужные формулы и многое другое.

Советы по расчетам

Вышеприведенная информация определяет то, что расчеты довольно сложны. При получении не круглых чисел рекомендуется брать значения с запасом, так как нужно создавать фундамент с запасом.

Также после появления онлайн-калькулятора не рекомендуется вычислять нужные показатели самостоятельно по формулам, так как подобным образом можно избежать погрешностей и других проблем.

В заключение отметим, что все строительные работы по возведению сооружений и созданию оснований предусматривают выполнение расчетов. Если этого не проводить, то есть вероятность сильной просадки, что станет причиной повреждения несущих и других конструкций.

Load Intensity on Foundation given Settlement Calculator

✖Settlement in foundation is vertical movement of foundation due to applied load.ⓘ Settlement in foundation [P]

AlnAngstromArpentAstronomical UnitAttometerAU of LengthBarleycornBillion Light YearBohr RadiusCable (International) Cable (UK)Cable (US)CaliberCentimeterChainCubit (Greek)Cubit (Long)Cubit (UK)DecameterDecimeterEarth Distance from MoonEarth Distance from SunEarth Equatorial RadiusEarth Polar RadiusElectron Radius (Classical)EllExameterFamnFathomFemtometerFermiFinger (Cloth)FingerbreadthFootFoot (US Survey)FurlongGigameterHandHandbreadthHectometerInchKenKilometerKiloparsecKiloyardLeagueLeague (Statute)Light YearLinkMegameterMegaparsecMeterMicroinchMicrometerMicronMilMileMile (Римская) Миля (Обзор США) Миллиметр Миллион Светового Года Гвоздь (Ткань) Нанометр Морская Лига (int) Морская Лига Великобритании Морская Миля (Международная) Морская Миля (Великобритания) ParsecОкуньP etameterPicaPicometerPlanck LengthPointPicaQuarterReedReed (Long)RodRoman ActusRopeRussian ArchinSpan (ткань)Sun RadiusTerameterTwipVara CastellanaVara ConuqueraVara De TareaЯрдYoctometerYottameterZeptometerZettameter

+10%

-10%

✖coefficulving от внутреннего трения зависит от угла внутреннего трения. Зависит от коэффициента. 10%

-10%

✖depth of Leting -это более длинное размер опоры. Ⓘ Глубина фундамента [D]

Alnangstromarpentastrony Cabletaterab )Cable (US)CaliberCentimeterChainCubit (Greek)Cubit (Long)Cubit (UK)DecameterDecimeterEarth Distance from MoonEarth Distance from SunEarth Equatorial RadiusEarth Polar RadiusElectron Radius (Classical)EllExameterFamnFathomFemtometerFermiFinger (Cloth)FingerbreadthFootFoot (US Survey)FurlongGigameterHandHandbreadthHectometerInchKenKilometerKiloparsecKiloyardLeagueLeague (Statute)Light YearLinkMegameterMegaparsecMet erMicroinchMicrometerMicronMilMileMile (Roman)Mile (US Survey)MillimeterMillion Light YearNail (Cloth)NanometerNautical League (int)Nautical League UKNautical Mile (International)Nautical Mile (UK)ParsecPerchPetameterPicaPicometerPlanck LengthPointPoleQuarterReedReed (Long)RodRoman ActusRopeRussian ArchinSpan (Cloth)Sun RadiusTerameterTwipVara CastellanaVara ConuqueraVara De TareaYardYoctometerYottameterZeptometerZettameter

+10%

-10%

✖width of the Feting -это более короткий размер опоры. Ширина опоры [b]

Alnangstromarpentastronomical Muteattomtome intecborhorborecorborhborecorborecorborecorborhorborhorborhorborhorborhorborhorborhorborhornausterausterausterautom RadiusCable (международный) кабельный (британский) кабельный (США) CalibercentImeterChaincubit (греческий) Cubit (Long) Cubit (Великобритания) декаметрийсциметер -расстояние от расстояния на лунеарт от радисо -радиусел -эллексомеров (классический) (классический). Статут)Световой годСсылкаМегаметрМегапарсекМикродюймМикрометрМикронМилМиляМиля (Римская)Миля (Обзор США)МиллиметрМиллион Светового ГодаГвоздь (Ткань)НанометрМорская Лига (внутр)Морская Лига ВеликобританииМорская Миля (Международная)Морская Миля (Великобритания)ПарсекПетаметрПикаПикометрПланк ДлинаПо intPoleQuarterReedReed (Long)RodRoman ActusRopeRussian ArchinSpan (ткань)Sun RadiusTerameterTwipVara CastellanaVara ConuqueraVara De TareaYardYoctometerYottameterZeptometerZettameter

+10%

-10%

✖coefifulving -зависит от сплоченности, обычно определяемой тестами нагрузки подшипника. 10%

-10%

✖Интенсивность нагрузки определяется как нагрузка, приложенная к единице площади.ⓘ Интенсивность нагрузки на фундамент с учетом осадки [q ф ]

Атмосфера ТехническаяАттопаскальБарБарьеСантиметр ртутного столба (0 °C)Сантиметр водяного столба (4 °C)СантипаскальДекапаскальДеципаскальДин на квадратный сантиметрЭксапаскальФемтопаскальФут морской воды (15 °C)ФемтопаскальФут морской воды (15 °C)ФемтопаскальФут морской воды (60 °F)ГигапаскальГрамм силы на квадратный сантиметрГектопаскальДюйм ртутного столба (32 ° F) Дюйм ртутного столба (60 °F) Дюйм водяного столба (4 °C) Дюйм водяного столба (60 °F) Килограмм-сила на квадратный сантиметр Килограмм-сила на квадратный метрКилограмм-сила на квадратный миллиметрКилоньютон на квадратный метрКилопаскальКилофунт на квадратный дюймКип-сила на квадратный дюймМегапаскальМетр Морская водаметр воды (4 °C)микробармикропаскальмиллибармиллиметр ртутного столба (0 °C)миллиметр воды (4 °C)миллипаскальнанопаскальньютон на квадратный сантиметрньютон на квадратный метрньютон на квадратный миллиметрпаскальпетапаскальпикопаскальпьезафунт на квадратный дюймфунт на квадратный футфунт-сила на квадратный футфунт-сила на квадратный дюймфунты на квадрат FootStandard AtmosphereTerapascalTon-Force (длинный) на квадратный фут-тонна-сила (long) на квадратный дюйм Тонна-сила (короткая) на квадратный футТонна-сила (короткая) на квадратный дюйм торр

⎘ Копировать

👎

Формула

Перезагрузить

👍

Интенсивность нагрузки на фундамент с учетом осадочного решения

ШАГ 0: Сводка предварительных расчетов

ШАГ 1: Преобразование входных данных в базовые единицы

Осадка в фундаменте: 5 миллиметров —> 0,005 метра (проверьте преобразование здесь)
Коэффициент, зависящий от внутреннего трения: 10 — > Преобразование не требуется
Глубина фундамента: 15 метров —> 15 метров Преобразование не требуется
Ширина основания: 2 метра —> 2 метра Преобразование не требуется
Коэффициент, зависящий от сцепления: 10 —> Преобразование не требуется

ШАГ 2: Вычислите формулу

ШАГ 3: Преобразуйте результат в единицы измерения

825000 Паскаль —> 0,825 Мегапаскаль (проверьте преобразование здесь)

< 2 Калькуляторы осадки под фундамент

Интенсивность нагрузки на фундамент с учетом формулы осадки

Интенсивность нагрузки = (Осадка в фундаменте*Коэффициент, зависящий от внутреннего трения)*(1+(2*Глубина основания)/Ширина основания)+((Осадка в основании*Коэффициент зависимости от сцепления)/Ширина основания)
q f = (P*C 1 )*(1+(2*D)/B)+((P*C 2 )/B)

Что такое интенсивность нагрузки?

Фундаменты распределяют нагрузки надстройки на большую площадь так, чтобы интенсивность нагрузки на ее основание (т. е. общая нагрузка, деленная на общую площадь) не превышала безопасную несущую способность подпочвенного слоя.

Как рассчитать интенсивность нагрузки на фундамент с учетом осадки?

Интенсивность нагрузки на фундамент с учетом данных Калькулятор осадки использует Интенсивность нагрузки = (Осадка в фундаменте * Коэффициент, зависящий от внутреннего трения) * (1+(2 * Глубина фундамента) / Ширина фундамента) + ((Осадка в фундаменте * Коэффициент, зависящий от сцепление)/ширина основания) для расчета интенсивности нагрузки. Интенсивность нагрузки на фундамент с учетом формулы осадки определяется как нагрузка, приложенная к единице площади грунта. Интенсивность нагрузки обозначается как q f символ.

Как рассчитать нагрузку на фундамент с учетом осадки с помощью этого онлайн-калькулятора? Чтобы использовать этот онлайн-калькулятор для Интенсивности нагрузки на фундамент с учетом осадки, введите Осадка в фундаменте (P) , Коэффициент, зависящий от внутреннего трения (C 1 ) , Глубина фундамента (D) , Ширина фундамента (B) & Коэффициент, зависящий от сцепления (C 2 ) и нажмите кнопку расчета. Вот как можно объяснить расчет интенсивности нагрузки на фундамент с заданной осадкой с заданными входными значениями -> 0,084127 = (0,005*10)*(1+(2*15)/2)+((0,005*10)/2) .

Часто задаваемые вопросы

Что такое интенсивность нагрузки на фундамент с учетом осадки?

Интенсивность нагрузки на фундамент с учетом формулы осадки определяется как нагрузка, приложенная к единице площади грунта, и представляется как q f = (P*C 1 )*(1+(2*D)/B) +((P*C 2 )/B) или Интенсивность нагрузки = (Осадка в фундаменте*Коэффициент, зависящий от внутреннего трения)*(1+(2*Глубина фундамента)/Ширина фундамента)+(( Осадка в фундаменте*Коэффициент зависит от сцепления)/Ширина основания) . Осадка в фундаменте — это вертикальное перемещение фундамента из-за приложенной нагрузки, Коэффициент, зависящий от внутреннего трения, зависит от угла внутреннего трения, Глубина фундамента — это больший размер фундамента, Ширина фундамента — это меньший размер фундамента и зависит от коэффициента на сцепление, обычно определяемое испытаниями несущей плиты под нагрузкой.

Как рассчитать нагрузку на фундамент с учетом осадки?

Интенсивность нагрузки на фундамент с учетом формулы осадки определяется как нагрузка, приложенная к единице площади грунта, рассчитывается с использованием Интенсивность нагрузки = (Осадка в фундаменте*Коэффициент, зависящий от внутреннего трения)*(1+(2*Глубина основания)/Ширина основания)+((Осадка в основании*Коэффициент зависимости от сцепления)/Ширина основания) . Для расчета Интенсивности нагрузки на фундамент с учетом осадки необходимы Осадка в фундаменте (P) , Коэффициент, зависящий от внутреннего трения (C 1 ) , Глубина фундамента (D) , Ширина фундамента (B ) & Коэффициент зависит от сцепления (C 2 ) . С помощью нашего инструмента вам необходимо ввести соответствующее значение для осадки фундамента, коэффициента, зависящего от внутреннего трения, глубины фундамента, ширины фундамента и коэффициента, зависящего от сцепления, и нажать кнопку расчета. Вы также можете выбрать единицы измерения (если есть) для ввода (ов) и вывода.

Доля

Скопировано!

Расчет нагрузок для проектирования колонн и фундаментов

Дизайнер

Как рассчитать суммарные нагрузки на колонну и соответствующий фундамент?

Эта статья написана по просьбе моих читателей. Студенты-инженеры обычно путаются, когда дело доходит до расчета нагрузок для проектирования колонн и фундаментов. Ручной процесс прост.

Типы нагрузок на колонну
  1. Собственный вес колонны x Количество этажей
  2. Собственный вес балок на погонный метр
  3. Нагрузка на стены на погонный метр
  4. Общая нагрузка на плиту (Стабильная нагрузка + Постоянная нагрузка + Собственный вес)

Колонны также подвержены изгибающим моментам, которые необходимо учитывать при окончательном расчете. Лучший способ спроектировать хорошую конструкцию — использовать передовое программное обеспечение для проектирования конструкций, такое как ETABS или STAAD Pro. Эти инструменты намного опережают ручную методологию проектирования конструкций и настоятельно рекомендуются.

В профессиональной практике есть несколько основных допущений, которые мы используем для расчетов структурных нагрузок.

Вы можете нанять меня для проектирования конструкций. Свяжитесь со мной.

Для колонн

Собственный вес бетона составляет около 2400 кг на кубический метр, что эквивалентно 240 кН. Собственный вес стали составляет около 8000 кг на кубический метр. Даже если предположить большой размер колонны 230 мм x 600 мм с 1% стали и стандартной высотой 3 метра, собственный вес колонны составляет около 1000 кг на этаж, что эквивалентно 10 кН. Итак, в моих расчетах я предполагаю, что собственный вес колонны находится в пределах от 10 до 15 кН на этаж.

Для балок

Расчеты аналогичны приведенным выше. Я предполагаю, что каждый метр балки имеет размеры 230 мм x 450 мм без учета толщины плиты. Таким образом, собственный вес может составлять около 2,5 кН на погонный метр.

Для стен

Плотность кирпича варьируется от 1500 до 2000 кг на кубический метр. Для стены толщиной 6 дюймов, высотой 3 метра и длиной 1 метр мы можем рассчитать нагрузку на погонный метр, равную 0,150 х 1 х 3 х 2000 = 9.00 кг, что эквивалентно 9 кН/метр. С помощью этой методики можно рассчитать нагрузку на погонный метр для любого типа кирпича.

Для автоклавных газобетонных блоков, таких как Aerocon или Siporex, вес на кубический метр составляет от 550 до 700 кг на кубический метр. При использовании этих блоков для строительства нагрузка на стену на погонный метр может быть снижена до 4 кН/метр , что может привести к значительному снижению стоимости строительства.

LEAVE A REPLY

Ваш адрес email не будет опубликован. Обязательные поля помечены *