Расчет ленточного армирование фундамента: Расчет арматуры для ленточного фундамента частного дома

Содержание

ленточный, свайный, плитный, таблицы, формулы

Армирование фундамента частного дома — обязательная операция, применяемая в строительстве объектов со значительной нагрузкой на основание. Металлический каркас, помещенный в тело бетона, воспринимает усилия на растяжение и изгиб, помогает равномерно распределять напряжения в конструкции, компенсировать деформации, уменьшить раскрытие трещин. Но чтобы это действительно было так, нужно знать как рассчитать арматуру на ленточный фундамент, только в этом случае можно получить действительно прочное основание.

Армирование фундаментаИсточник festima.ru

Перед тем как рассчитать арматуру на фундамент, определяют несущую способность грунтов по СНиП 2.02.01-83*. Это нужно, чтобы выяснить, какую максимальную нагрузку выдержит грунт. В соответствии с этим выбирают конструктивное решение основания — ленточное, столбчатое, свайное или плитное.

Расчет арматуры для фундамента

Для армирования оснований используют рифленый и гладкий стальной прокат класса А400 или А500 — для рабочих стержней, А240 — для конструктивных элементов.

Расчет проводят по нормативам СНиП 52-01-2003 и актуализированным правилам СП 63.13330.2012 с учетом всех видов нагрузок, действующих на фундамент, и вида основания.

СНиП 52-01-2003Источник meganorm.ru

Армируют пространственными или плоскими каркасами из продольных, поперечных и соединительных стержней. Первые воспринимают нагрузку на растяжение по верхней части и подошве, вторые — распределяют ее между горизонтальными и вертикальными элементами. Для устойчивости при изготовлении и монтаже используют конструктивные связи.

Основы расчета ленточного фундамента

Самый распространенный вид основания в индивидуальном строительстве — ленточный монолитный. Он несложен в возведении, достаточно прочен и обладает необходимой жесткостью. Его устраивают в виде мелкозаглубленной или заглубленной конструкции.

Важное значение для расчета арматуры для фундамента имеет глубина заложения, действующие нагрузки и ширина рабочего сечения основания.

Ленточный фундаментИсточник eurohouse.ua

Определение глубины заложения

Отметку подошвы основания выбирают в зависимости от вида грунта:

  • при глинистых, пылеватых и мелкопесчаных почвах фундамент опирают на непромерзающий слой ниже уровня грунтовых вод;
  • при непучинистых и слабопучинистых грунтах отметка подошвы не должна быть ниже, чем 0,5 м от верха существующего уровня земли;
  • при наличии подвала ленточное основание заглубляют на 0,5 м ниже пола, столбчатое — на 1,5 м.

Тип грунта, положение УГВ и присутствие слабых линз — плывунов — определяют бурением или выкопкой шурфов. Глубина промерзания почвы в каждом регионе указана в СНиП «Строительная климатология».

Сбор нагрузок

На этом этапе расчета суммируют все возможные нагрузки, действующие на фундамент:

  • собственный вес;
  • массу стен, плит перекрытия, крыши, кровли, полов и отделки;
  • воздействие от людей, сантехнического оборудования, мебели, перегородок, находящихся внутри здания;
  • нормативную снеговую нагрузку.

Вся информация содержится в таблицах СНиП 2.01.07-85* «Нагрузки и воздействия».

Суммарную величину распределяют на погонные метры в ленточных фундаментах, на количество опор — в свайных или столбчатых.

Ширина подошвы

Армирование ленточного фундаментаИсточник guru-remonta.ru

Ширина подошвы — величина, которая помогает рассчитать арматуру на фундамент ленточный. При кирпичных массивных стенах применяют Т-образные ленты, свесы которых за счет большей площади опирания уменьшают давление на грунты. Более легкие каркасные и пенобетонные строения возводят на основаниях с прямоугольным сечением.

При расчете размера подошвы учитывают предельное давление на грунт и нагрузку от строения на несущие участки фундаментных балок. В малоэтажном строительстве, как правило, используют конструкции шириной 20-40 см.

Расчет ленточного основания

Для ленточных монолитных фундаментов частных домов применяют упрощенный расчет армирования по минимальному допустимому сечению арматуры, которая воспринимает растягивающие усилия.

Порядок расчета

Согласно СНиП суммарная площадь поперечного сечения стальных стержней Sа должна составлять не менее 0,1% от рабочего сечения бетонной конструкции — Sб:

Находят Sб как произведение высоты сечения фундамента h0, равной глубине заложения, на его ширину b:

Для продольного армирования используют стержни диаметром от 8 мм. Найти требуемое количество круглых профилей можно по Таблице 1, значение Sа округляют в большую сторону:

Таблица 1 Источник yurlkink.ru

Существуют ограничения по минимальному размеру арматуры — на участках более 3 м длиной применяют стержни диаметром от 12 мм.

Требуемый метраж арматуры определяют по чертежу с размерами фундамента с запасом 5%. Массу находят по таблицам сортамента стали.

Пример расчета

Требуется рассчитать армирование ленточного фундамента для частного дома размером 6х12 м из газосиликатных блоков. Глубина заложения 70 см, ширина ленты 40 см.

  1. Площадь сечения основания 70х40=2800 см².
  2. Минимальная суммарная площадь арматуры 2800х0,001=2,8 см².
  3. По Таблице 1 возможны варианты — 4 стержня диаметром 10 мм, 3 — 12 мм или 2 прутка с размером сечения 14 мм.
  4. В нормативе указано, что при длине стороны более 3 м минимальный диаметр арматуры 12 мм. Чтобы распределение нагрузки от строения было равномерным, устанавливают стальной каркас из двух горизонтальных сеток, каждая из которых содержит два стержня диаметром 12 мм.
  5. Поперечную арматуру подбирают по высоте каркаса. Если она менее 80 см, используют проволоку для хомутов диаметром 6 мм. Одновременно выполняются условия, при которых этот размер более ¼ сечения продольных стержней (12/4=3 < 6).
  6. Количество стали в метрах определяют исходя из габаритов сооружения. Общая протяженность ленты 6+6+12+12=36 м (если есть несущая перегородка, ее длину суммируют).
  7. Потребуется: 4х36 = 144 п.м. арматуры диаметром 12 мм.
  8. Хомуты устанавливают с шагом 40 см, их количество: 36/0,4=90 штук.
  9. Размер одного: (70х2+40х2)/1,15 =191 см, где 1,15 — коэффициент для перевода периметра сечения в длину хомута.
  10. Длина проволоки для соединительных элементов: 90х1,91 = 171,9 м.

С учетом запаса 5 % на вязку и резание требуется:

  • арматура Ø 12 мм 144х1,05=151,2м,
  • проволока Ø 6 мм 171,9х1,05=180,5 м.

Просто и быстро расчет арматуры на фундамент можно выполнить с помощью онлайн калькуляторов, размещенных на сайтах интернета.

Очень подробно о работе одного из специальных приложений по расчету рассказывают в этой видеоинструкции:

Правила армирования ленточных оснований

Самый простой вариант — равномерно нагруженный фундамент на непучинистом непросадочном грунте. Подошва расположена выше уровня промерзания и УГВ.

В этом случае ширину основания принимают равной толщине стены дома. Армирование только конструктивное, для подстраховки от непредвиденного замачивания грунта. Используют гладкую или рифленую арматуру диаметром 8-12 мм, поперечно связывают стержнями того же размера сечения или меньшего с шагом 30-40 см.

Вертикально в теле бетона устанавливают противоусадочные сварные или вязаные сетки из проволоки небольшого диаметра (6-8 мм) и шагом не более 20 см.

Варианты армирования ленточного основанияИсточник it.decorexpro.com
Арматура для фундамента: разновидности, способы укладки и вязки, расчет количества, фото

Второй случай — усиленная нагрузка на фундамент или более слабые грунты. Форма сечения ленты — в виде перевернутой буквы Т.

Армирование проводят аналогичным способом, но поперечные стержни рассчитывают на давление от отпора грунта. Оно может разрушить подошву при свесах фундамента, превышающих ширину стенки основания в 1,5 раза. Шаг установки хомутов — не более 20 см, располагают под продольной арматурой, чтобы увеличить рабочую высоту сечения.

Третий вариант — сочетание больших нагрузок на фундамент и неблагоприятных грунтовых условий: пучинистости, наличия плывунов, карстов, высокого УГВ.

Чтобы избежать появления трещин и разрушения основания в результате просадок грунта, армирование проводят по усиленной схеме. Диаметр стержней — 12-16 мм, шаг — не более 20 см. По подошве укладывают 1-2 ряда сеток, в верхней части фундамента — каркас в виде балки. Через каждые 30-40 см продольную арматуру связывают хомутами или закрепляют шпильками, чтобы зафиксировать ее положение в пространстве.

Онлайн калькулятор ленточного фундамента

Чтобы узнать примерную стоимость ленточного фундамента, воспользуйтесь следующим калькулятором:

Расчет для свайного основания

Свайные фундаменты представляют собой погруженные в грунт опоры (цельнометаллические или буронабивные), передающие нагрузку от здания и соединенные по верху стальным, железобетонным или деревянным ростверком.

Cвайный фундаментИсточник stroyfora. ru

Буронабивные основания применяют в частном строительстве:

  • при возведении каркасных или деревянных зданий с небольшой массой;
  • при слабых грунтах, где другие основания выполнить невозможно — торфяники, болота, сильнопучинистые влажные почвы;
  • в условиях сложного рельефа — на холмистой, овражистой местности.

Недостаток, который приводит к удорожанию стоимости строительства, — холодный цоколь и невозможность устройства пола по грунту. Преимущество — отсутствие земляных работ. Сваи вкручивают специальной буровой установкой или пробуривают отверстия в земле с последующим монтажом опалубки, армированием и бетонированием. При несыпучих грунтах раствор заливают сразу в скважину.

Армирование свайного фундаментаИсточник housepic.ru

Схема расчета арматуры для свайного буронабивного фундамента.

  1. Определяют тип грунта с помощью ГОСТа «Грунты. Классификация».
  2. Рассчитывают постоянную и временную нагрузку (СНиП «Нагрузки и воздействия»).
  3. Из ВСН 5-71 выбирают несущую способность грунта в зависимости от его структуры.
  4. По имеющимся сведениям находят нагрузку R на погонный метр ростверка, разделив суммарную массу на периметр здания.
  5. Определяют несущую способность сваи по формуле Р = (0,7х R х S)+(U х0.8 х fin х li), где
  • R — несущая способность грунта,
  • S — площадь конечного участка опоры,
  • U — периметр сечения сваи,
  • fin — сопротивление грунта, определяемое по таблице ВСН 5-71,
  • li — высота слоя почвы, оказывающей сопротивление боковой поверхности сваи.

Расстояние между опорами определяют по формуле I = P/Q, где Р — несущая способность сваи (п.5), R — погонная нагрузка на ростверк (п.4). Количество свай определяют исходя из расчетного расстояния между опорами и размеров строения. Армируют конструкции вертикальным каркасом из не менее, чем 4 стержней диаметром от 10 до 16 мм с горизонтальной обвязкой из гладкой арматуры Ø 6-8 мм. По верху оставляют выпуски длиной 25-30 см.

Ростверк рассчитывают как конструкцию, аналогичную ленточному фундаменту.

Онлайн калькулятор свайного фундамента

Чтобы узнать примерную стоимость фундамента типа «ростверк на сваях», воспользуйтесь следующим калькулятором:

Расчёт армирования плитного основания

Армирование плиты подбирают с учетом ее толщины. Если она меньше 15 см, укладывают одну сетку с ячейкой 15-20 см, при большем значении — две. Каркас сваривают из стержней диаметром 12-16 мм, соединяют с верхним слоем арматуры вертикальными хомутами с размерами сечения до 10 мм.

Плитный фундаментИсточник keysdom.ru

Расчет плиты выполняют по Своду Правил 50-101-2004 и «Руководству по проектированию плитных фундаментов». Он заключается в определении несущей способности по удельной нагрузке на грунт и изгибающих усилий.

Ширина фундаментной плиты больше размера дома на 10 см. Для арматурной сетки определяют количество стержней в обоих направлениях. Если используют два каркаса, удваивают число прутков.

Чтобы найти, сколько потребуется арматуры для соединений, определяют число сочленений в сетке. Его умножают на длину хомута, равную толщине плиты за вычетом защитного слоя бетона.

Армирование плитного фундаментаИсточник stankotec.ru

Теперь можно рассчитать необходимое количество арматуры, заложив запас около 5%. По сортаменту стали находят ее вес.

Онлайн калькулятор плитного фундамента

Чтобы узнать примерную стоимость плитного фундамента, воспользуйтесь следующим калькулятором:


Армирование фундамента стеклопластиковой арматурой: как рассчитать и особенности связывания

Заключение

Фундамент — наиболее ответственная часть строительства. Неправильный расчет может привести деформациям и растрескиванию стен, разрушению всего здания. Перед тем, как рассчитать арматуру для фундамента, исследуют грунты на несущую способность и определяют нагрузки на основание. По возможности это дело лучше доверить профессионалам: затраты на заказ подобных услуг небольшие, а вот чувство уверенности стоит многого.

Арматура ленточного фундамента. Выбор, расчет и установка.

Ленточный фундамент – один из самых эффективных видов бетонного фундамента. Это все благодаря своей конструкции, представляющей из себя замкнутый бетонный контур, армированный металлическими прутами. При подготовке и заливке, возникает логичный вопрос: как сделать арматуру для ленточного фундамента?

Бетонная основа ленточного фундамента – достаточно прочная, но совершенно непластичная структура. Она способна выдерживать огромное вертикальное давление, но при растяжении на изгибах, а также при перепадах температур и воздействии других негативных факторов, бетон имеет свойство деформироваться и трескаться. Для того предотвращения этого и используют армирование.

Поскольку, именно металлический каркас принимает на себя основной вес конструкции, армированный фундамент очень прочный. Однако при армировании крайне важно не только правильно произвести расчеты и определить, какая арматура нужна для ленточного фундамента, но и безошибочно выполнить все этапы данного процесса. Только тогда вы сможете быть уверенны, что бетонная конструкция будет надежно выполнять свои функции.

Этапы работ при сборке каркаса и заливке


1. Этап проектирования. Проводятся исследования грунта, затем в зависимости от результата определяются материалы и тип фундамента, его глубина. На этапе проектирования постройки необходимо точно рассчитать количество, диаметр и то, какая арматура нужна для ленточного фундамента. Лента под фундамент, чаще всего, достаточно узкая. Стандартная ширина составляет 0.3 – 0.45 м, а высота варьируется в пределах 0.7 – 0.85. При таких параметрах бетонной основы, оптимальный диаметр составляет 12-14 мм. Диаметр также может изменяться в зависимости от используемых материалов.

2. Подготовка земельного участка к строительным работам. Участок тщательно расчищается, после этого снимается верхний шар грунта. С помощью колышков, вбитых в землю, делается разметка будущей бетонной конструкции и ее арматурного каркаса.

3. Подготовка траншеи. Траншея выкапывается, ее основание уплотняется. Затем дно траншеи заполняется слоем песка толщиной в 10-15 см и смачивается водой для большей плотности. Поверх песка также иногда укладывают тонкий слой щебня. Делается это для предотвращения пагубного воздействия подземных вод на бетон и повышения амортизационных свойств арматуры.

4. Сборка опалубки. Опалубка собирается из деревянных щитков до нужной высоты, затем изнутри прокладывается пергаментом для того, чтобы после застывания бетона ее легче было демонтировать.

5. Сборка арматурного каркаса. Как сделать арматуру для ленточного фундамента?

5.1. На расстоянии 50 мм от опалубки через каждые полметра вертикально устанавливаются металлические прутья по длине равные глубине траншеи.

5.2. На дне делается 2-3 нижних ряда арматуры.

5.3. Верхний и нижний ряды вместе с поперечными прутьями прикрепляют к вертикальным штырям.

5.4. Вся конструкция связывается или сваривается.

​6. Заливка бетона. Бетон заливается послойно, каждый слой уплотняется глубинным вибратором. После этого на протяжении 4-5 дней бетон застывает и опалубку снимают, а фундаментную ленту  покрывают слоем гидроизоляции.

Важно сделать вентиляционные отверстия. Они повышают эластичность и подвижность конструкции, тем самым увеличивая ее надежность. Помимо этого, они также препятствуют коррозии.


 

Какую арматуру используют для ленточного фундамента?


В начале работ, прежде всего, следует определить, какая арматура нужна для ленточного фундамента. Существует два вида стальных стержней – рифленые монтажные и рабочие с гладкой поверхностью. Монтажные стержни с маркировкой А1, как правило, используются для сборки основы каркаса и там, где нет больших нагрузок. Для укрепления используется рабочая арматура с маркировкой А3, обладающая хорошим сцеплением с бетонной основой и в, зависимости от типа выступов на поверхности, нужна для выполнения различных функций.

Существует три основных типа рифленой арматуры:

  • С серповидными выступами – сопротивление деформации растяжения.
  • С кольцевыми выступами – усиление сцепления с бетонной основой.
  • С обоими типами выступов.
     

При выборе арматуры нужно учитывать и то, как вязать арматуру для ленточного фундамента. Специалисты рекомендуют использовать проволочную вязку при сборке арматурного каркаса, однако можно прибегнуть и к сварке. В таком случае обратите внимание на маркировку. Только арматура с маркировкой «С» пригодна для сварки.

Маркировка арматуры для ленточного фундамента

А1 – гладкие стержни.

A2, A3, A4 – рифленые стержни. Наиболее популярный из них — А3.

С — можно использовать сварку.

К — антикоррозийное покрытие.

После того как вы определили какая арматура нужна для фундамента ленточного типа необходимо вычислить общее количество материалов, которые будут использоваться при сборке каркаса.

Как рассчитать арматуру для ленточного фундамента?


Расчет необходимого количества арматуры производится в несколько этапов.

1. Определение того, какая арматура нужна для ленточного фундамента необходимого типа конструкции, который присутствует у вас.

2. Вычисление общей длины. К примеру, если ваш фундамент представляет собой прямоугольник со сторонами 8 м и 6 м, и двумя перегородками по 4 м, то его длина составит (8+6+4)*2 = 36 м.

3. Полученный результат умножаем на 4, так как в большинстве случаев используется система из четырех стержней.  36*4 = 144 м.

4. Следует учитывать, что в процессе укладки в ленточный фундамент арматура при установке накладывается, прибавляем еще 10% и получаем 158 м. Это и есть длина горизонтальных прутов.  

5. Далее необходимо рассчитать длину для вертикальных и поперечных элементов каркаса. Для этого понадобится ширина и высота конструкции. Находим периметр. Так для ширины в 30 см и высоты 70 см, он будет равен двум метрам.

6. Теперь необходимо для каждой из стен высчитать количество таких прямоугольников, если учитывать, что интервал между ними – 50 см. 36*2=72 (на каждый метр по 2 прямоугольника). Прибавляем еще 8 для углов и получаем 80 прямоугольников.

7. Умножаем 80 прямоугольников на ранее найденный их периметр. 80*2=160 м.

8. Если ответом на вопрос как вязать арматуру для ленточного фундамента является проволочная вязка, то необходимо также высчитать количество нужной проволоки.

Итог: 160 м. поперечных и вертикальных прутьев и 158 м. горизонтальных.

Имейте в виду, что вертикальную арматуру углубляют в землю. Так что к полученному значению нужно прибавить еще пару метров.


 

Как сделать арматуру для ленточного фундамента надежной?


Наперёд предугадать в какую сторону будет деформироваться фундамент невозможно, поэтому укреплять его следует как снизу, так и сверху. Для этого в нижней и в верхней части каркаса горизонтально укладывают продольную арматуру. После этого устанавливаются поперечные и вертикальные прутья. Каркас, выполненный таким образом, представляет собой отдельные прямоугольные ячейки, каждую из которых следует собирать еще перед тем как укладывать арматуру в ленточный фундамент, а затем соединять с другими ячейками. При установке ячейки в ров, под горизонтальные элементы каркаса необходимо подкладывать кирпичи для предотвращения соприкосновения с грунтом и последующей коррозии.

Важно знать, как укладывать арматуру в ленточный фундамент при строительстве на недостаточно надежном грунте. В таком случае горизонтальную арматуру стоит устанавливать в два-три раза чаще.

Как связать арматуру для ленточного фундамента?


Перед сборкой арматурного каркаса нужно определиться также с тем, каким способом соединять между собой металлические прутья – сваркой или вязкой? И если вязкой, то как вязать арматуру для ленточного фундамента?

Сварка быстрее и легче, чем связывание проволокой, но имеет ряд недостатков, таких как повышенная склонность материала к коррозии и потеря им первоначальных свойств. Проволочная вязка, в отличии от сварки, не связывает арматурные прутья между собой намертво, делая всю конструкцию более подвижной и пластичной. Из недостатков этого способа можно выделить гораздо большие временные затраты, чем в случае со сваркой. Для ускорения процесса можно использовать самозатягивающиеся хомуты или специальные пистолеты, в которых проволока автоматически подается со специальной катушки.

Принцип вязки проволоки в следующем: на пересечении прутков проволока сначала затягивается, а затем концы скручиваются плоскогубцами. На одну связку уходит около 0,3 м вязальной проволоки. При изготовлении каркаса арматуры выбирают именно проволоку из стали диаметром 0,8-1,2 мм.

Армирование ступенек и углов


Как сделать арматуру для ленточного фундамента, если участок не идеально ровный и присутствуют различные перепады высот? Фундаментную ленту на таком участке заливают в виде ступенек. Такие ступеньки армируются необычным способом, а слегка усложненным. Каркас такой ступеньки продлевают на один метр. Затем в верхней части устанавливаются прутья длинной два метра, а поперечные горизонтальные элементы укладываются с шагом в 150 см.

Особое внимание следует уделить тому, как укладывать арматуру в ленточный фундамент при армировании углов. Именно угловые зоны подвергаются наибольшей деформации, направленной в разные стороны. Ошибки при сборке армирующего каркаса на углах приводят в дальнейшем к негативным последствиям. Фундамент с большей вероятностью будет трескаться и расслаиваться. Так как именно на углах соединяются разные части каркаса, фундамент с неправильно выполненным угловым армированием будет представлять собой просто отдельные фрагменты и не будет в полной мере выполнять свои функции. 

Для того, чтобы обеспечить надежность необходимо в местах стыков арматуры использовать дополнительные изогнутые стержни. Для поперечных прутов используется в два раза меньший шаг, устанавливаются дополнительные вертикальные прутья.

Обратите внимание, что углы армируются таким образом, что изогнутые части уходят в противоположные стены.

Предыдущая запись Следующая запись

Расчет армирование ленточного фундамента — Профилированный брус

Достаточно просто сделать правильно ленточный фундамент собственными руками для своего деревянного дома, коттеджа или бани. Для начала следует изучить основные особенности состава ленточного фундамента для дома или бани, выяснить, как выполняется его армирование, определиться с расчетами и подготовить сам бетон для заливки фундамента.

Создание ленточного фундамента обычно выбирают для того, чтобы построить здания, под ними будет располагаться подвал или какое-либо теплое подполье. Делать устройство самого ленточного фундамента небольшого заложения собственно для дома, бани или дачи при постройке в сухих грунтах, тоже, на самом деле, правильное решение. Тут необходимо определиться насколько глубоко промерзают грунты на участке. Грунты, промерзающие глубоко, относят к пучинистым, такое строительство станет достаточно затратным из-за большого количества работ.

Содержание статьи:

Правильный расчет армирования

Для того, чтобы анализ грунта был выполнен правильно, необходимо правильно рассчитать  само армирование и строительство фундамента под деревянный дом. Выяснив состав грунтов на участке, получится очень точно совершить нужные расчеты, подобрать дома для строительства, точно сделать его глубину заложения, определиться с количеством бетона для заливки, а также арматуры непосредственно для армирования.

Когда подготовительные работы будут завершены, разработан проект дома, правильно выбрано местоположения, схема и расчет основания, приступают к устройству ленточного фундамента собственными руками.

Выполнить соответственно схемы правильную разбивку всех осей для того, чтобы залить ленточный фундамент под само строительство дома, можно при помощи теодолита. Если его нет, помогут колышки и шнур. Потом выкапывается траншея под устройство ленточного фундамента. Это возможно вручную с помощью лопаты или при помощи спецтехники.

Для того, чтобы правильно устроить собственными руками ленточный бетонный фундамент под строительство, нужно сначала заполнить траншею песком, потом щебнем. Все слои должны быть выполнены по расчету, их толщина должна быть не более 20 см. Далее кто-то сделает фундамент попроще, а кто-то выполнит основательно, сделав армирование надежным.

Уложив щебень или гравий, нужно сделать подготовку из бетона тонким слоем. После того, как бетон наберет прочность, можно далее устраивать фундамент под дом. Подготовку из бетона можно делать с помощью профилированной мембраны. Расчеты показывают, что применив правильно профилированную мембрану в строительстве, сроки и стоимость строительства сильно сократятся. Понадобиться меньше бетона и арматуры. Технология работ достаточно легкая и легко выполнимая самостоятельно.

  1. На продольные участки фундамента падет самая большая нагрузка. Поэтому в этих участках нужно использовать толстую ребристую арматуру диаметром 10-15 мм  — в зависимости от показателей прочности грунта (чем сильней колеблиться в пределах возводимого дома, тем берем больше диаметр) Почему именно ребристая арматура? спросите вы — да потому что у нее больше площадь соприкосновения с бетоном, т.е большая сцепляемость с бетоном.
  2. Необходимо углубить армированный каркас не более чем на 5 см от поверхности фундамента, от дна и краев опалубки. Этого достаточно чтобы защитить арматуру от коррозий.

Считаем количество арматуру необходимой для армирования ленточного фундамента. Итак предположим диаметр арматуры 12 мм , по 2 прута в вертикали в два ряда, пускай вертикальные будут через каждые 0.5м  Периметр нам известен =30 м  получаем: 30*2(гориз. прутья) =60м.

Вертикальные 60*2+2 =124  прибавим еще по 1 приутику на каждый угол получаем 128 прутьев.

Предположим что высота вертикального прута 70 см. Получаем 128 * 0. 7= 89.6 м

Укладка арматуры

Следующим этапом строительства является расчет и правильная укладка арматуры. Она производится так: сначала нужно выполнить армирование самими арматурными стержнями. При армировании арматура связывается при помощи вязальной проволоки. Она должна иметь антикоррозийное покрытие. Иногда используют сварное соединение для арматуры, но тут важно, чтобы места сварки не подвергались коррозии. Можно иногда сделать и горизонтальное армирование, и сложный каркас из самой  арматуры. Все это зависит от того, насколько тяжелыми являются стены дома. Для правильной схемы раскладки арматуры нужно использовать расчет.

Для того, чтобы устроить опалубку ленточного основания нужны разные материалы: тут не обойтись без досок, шифера, стекломагниевых листов (СМЛ), фанеры, металлической опалубки. Лучше заранее рассчитать их необходимое количество. Так же армированию подлежит столбчатый фундамент

[ads1]Для того, чтобы правильно выбрать состав и марку бетона для опалубки и арматуры, необходимо определить расчет нагрузок. Бетон для заливки основания зависит от погоды предполагаемого места строительства. Для хороших условий понадобится марка бетона М200. Для холодной погоды лучше использовать бетон М300-400. Для холодного времени можно использовать специальные добавки для бетона: пластифицирующие, морозостойкие, те, которые ускоряют затвердение бетона в опалубке по окончании заливки. Рассчитывать число добавок, которые используются в приготовлении бетона не нужно делать специально, это все указывают на таре. Для строительства бетонного фундамента можно использовать легкий бетон с армированием.

При желании сделать раствор своими руками, не следует забывать о правильном соотношении песка/щебня/цемента для бетона, водоцементного соотношения – 0,5. Рассчитать количество бетона, можно с помощью умножения длины на высоту и ширину самого ленточного фундамента.

Полезные советы
  1. Для изготовления бетона, нужно использовать чистый песок, воду и гравий. В составе песка и гравия не должно быть  глины и земли.
  2. Немного меняться может соотношение частей для бетона, но гравий в составе бетона должен превышать песок в 1,5-2 раза.
  3. Воды в бетонной смеси должно быть около 60% всей массы цемента.
  4. Для того, чтобы рассчитать состав бетонной смеси нужно помнить, что в мокром песке или гравии для бетона тоже есть вода.
  5. При холодной погоде, для бетона возможно использование подогретой воды. Так бетон затвердеет быстрее. При жаркой погоде лучше использовать холодную воду, чтобы бетон не схватился очень быстро.
  6. Когда бетонная смесь будет залита в опалубку, проткните ее обязательно во многих местах щупом, для извлечения воздуха. Простучать снаружи смесь деревянным молотком. С помощью строительного вибратора произвести уплотнение бетона.
  7. По истечению трех дней снять опалубку. После приобретения бетоном достаточной прочности, выполнить следующий этап работ – сделать бетонный цоколь. Это также можно сделать собственными руками.
  8. У фундамента, который сделали из винтовых свай, есть достоинства и недостатки. При создании легких конструкций прекрасно подойдет винтовое основание. Это могут быть детские горки, песочницы, оранжереи и беседки, а также баня или легкий деревянный дом.
  9. Армирование фундамента является процессом, который необходим для того, чтобы усилить конструкцию и увеличить срок эксплуатации дома. Другими словами, это составление «скелета», который выполняет защитную функцию, сдерживает давление почвы на сами стены базиса. Однако для реализации данной функции в полном объеме, нужно не просто грамотно рассчитать арматуру для фундамента, но и правильно организовать строительные работы.

Схема армирования ленточного фундамента

Основой ленточного фундамента является бетонный раствор, который состоит из цемента, воды и песка. Он обладает такими физическими характеристиками, которые не могут гарантировать отсутствие деформации самой основы здания. Чтобы увеличить способность противостоять сдвигам основы дома, резким изменениям температур, а также остальным негативным факторам, необходимо, чтобы в структуре находился металл.

Этот материал является пластичным, однако не может обеспечивать надежную фиксацию, и армирование становится значимым этапом в комплексе работ.

Арматурой для такого фундамента является стальной прут, который имеет ребра жесткости.

Прутья для армирования фундамента

Армировать фундамент нужно в тех местах, где велика вероятность появления зон растяжения. Замечено, что самое большое растяжение может появиться на самой поверхности основания, а это может создать  предпосылки для того, чтобы делать армирование, которое приближено к самому верхнему уровню. Для того, чтобы избежать коррозию каркаса, он надежно должен защищаться слоем бетона от внешних воздействий. Ведь потом будет проводиться конопатка бруса.

Оптимальным расстоянием арматур для самого фундамента является 5 см прямо от поверхности.

Достаточно сложно предугадать продвижение деформации, зоны растяжения способны появиться  и в нижней, и в верхней части. Поэтому, армирование должно проводиться и снизу, и сверху с помощью арматуры, которая имеет диаметр 10-12 мм, и у этой арматуры для такого фундамента обязательно должна быть ребристая поверхность.

Именно так получается идеальный контакт с самим бетоном.

У остальных частей скелета может быть гладкая поверхность и небольшой диаметр.

Занимаясь армированием ленточного фундамента, который, как правило, имеет ширину не более 40 см, возможно использование 4-х прутов, которые соединяются в один каркас, имеющий  диаметр 8 мм.

  • Между горизонтальными прутьями должно быть расстояние 30 см.

При достаточно большой длине ленточный фундамент не очень широкий, и в нем могут появиться продольные растяжения, а в поперечных их не будет совсем. Тут можно сделать вывод, что поперечные гладкие и тонкие прутья необходимы только для того, чтобы создать каркас, а не принимать нагрузки.

Армирование углов дома

Отдельное внимание нужно уделить армированию самих углов.

Достаточно часто случается так, что деформация приходится на угловые части, но не на середину, как обычно. Поэтому необходимо армировать углы таким образом, чтобы согнутый конец арматуры заходил в одну сторону стену, а другой — абсолютно в другую.

Для того, чтобы соединить прутья лучше, по мнению специалистов, воспользоваться проволокой. Далеко не вся арматура производится непосредственно из стали, которую используют при сварке. Однако, даже если сварка допустима, могут довольно часто появиться проблемы, избежать которые было абсолютно реально, с помощью проволоки, к примеру, если сталь перегрета, это ведет к изменению свойств, и в месте сварки прут становится очень тонким, сварочный шов становится недостаточно прочным и т.д.

Схема для того, чтобы соорудить арматурную конструкцию

Начинать армирование нужно с того, чтобы установить опалубку. Ее внутреннюю поверхность необходимо выложить пергаментом, который позволит потом сделать съем конструкции достаточно простым. Есть специальная схема для того, чтобы создать каркас:

1.  Сначала нужно вбить в грунт траншеи специальные арматурные прутья, которые имеют такую же длину, как и глубина основания. Необходимо, чтобы расстояние от опалубки составляло 50 мм, а шаг равнялся 400-600 мм.

2.  Подставки толщиной 80-100 мм нужно установить на дно, а сверху уложить около 2-3 ниток самого нижнего ряда арматуры. Для подставок полностью подойдут кирпичи, которые устанавливают на ребро.

3.  Далее нужно верхние и нижние ряды арматуры закрепить с поперечными перемычками прямо к самим вертикальным штырям.

4.  Там, где пересечения крепятся при помощи увязки, нужно использовать проволоку или сварку.

Также нужно строго выдерживать расстояние до самых наружных поверхностей основания. Это можно сделать при помощи кирпичей. Такое условие является важным, т.к. такие конструкции из металла не должны устанавливаться прямо на дне. Потом будет производится конопатка деревянного дома и они обязательно должны быть подняты над уровнем земли хотя бы на 8 см.

Когда арматура будет установлена, нужно будет проделать вентиляционные отверстия, а потом заливать бетонный раствор.

В будущем вентиляционные отверстия повысят амортизационные характеристики фундамента, и предотвратят появление плохих гнилостных процессов.

Расчет количества арматуры для ленточного фундамента

Одним из главных факторов для долговечности любой постройки является не само сооружение, а основание, на котором оно стоит. Чем оно крепче, тем более солидный дом можно будет на нем построить. Расчет армирования ленточного фундамента – это процедура подсчета количества арматуры, которая потребуется в строительных работах. Конечно, можно произвести подсчеты при помощи онлайн-калькулятора (их достаточно в сети Интернет), но гораздо надежнее – выполнит их вручную, тем более это не слишком сложно.

Расчет арматуры для ленточного основания

При расчетах ленточного фундамента важны следующие параметры:

  • класс и сечение прутьев;
  • способ укладки и вязки;
  • требуемый объем материалов.

При возведении невысоких зданий обычно используют металлопрокат с сечением 12. Для продольных отрезков больше подходят прутья с ребристой поверхностью, поперечным и вертикальным отрезкам – гладкие, с меньшим сечением.

Когда выбирается арматура для фундамента, расчет необходимо производить с учетом одного фактора: ее площадь должна составлять 0,1% от площади сечения каркаса. Чтобы посчитать этот параметр, необходимо высоту основания умножить на ширину. Так, если глубина составляет 80 см, а ширина 50 см, то получится: 80*50=4000 см². Минимальная площадь в таком случае составит: 4000*0,1=4,0 см². Зная эту цифру, можно более точно определиться с объемом металлопроката и его сечением.

Количество поясов

В расчет армирования фундамента также входит число поясов, их может быть 1,2 или 3. Один пояс делается для совсем небольших одноэтажных построек. Два пояса – для более тяжелых. Два ряда позволяют более равномерно распределить нагрузку в мелком и среднезаглубленном фундаменте. Три пояса используются для глубоких оснований.

Подсчет количества арматуры

Расчет арматуры фундамента должен учитывать длину всех стен и перегородок постройки.

  1. Замерьте периметр основания постройки, включая внутренние стены. Для получения метража горизонтальных несущих прутьев умножьте полученное значение на 4.
  2. Разделите значение периметра на расстояние, через которое будет выполняться вязка. Умножьте это число на 4 – так вы посчитаете, сколько требуется перемычек.

Пример расчета

Допустим, нам требуется арматура на фундамент, расчет которой ведется для небольшой постройки: со сторонами 6 и 8 метров и двумя перегородками 4 и 6 метров. Длина периметра составит: (6+8)*2 +(4+6)=38 метров. В таком случае протяженность горизонтального пояса получится 152м.

Обычно данный металлопрокат продают в нарезке по 6 м. То есть на сторонах с длиной 8 метров нужно будет выполнять стык арматуры с 2-ухметровыми остатками. Они останутся от нарезки кусков для 4-ехметровых перегородок. Получается (4+4)*2=8. Это количество стыков. Важно учитывать, что для каждого из них необходимо делать нахлест, минимум по 0,5 м в каждую из сторон. В итоге получаем 152+8=160 метров или 27 прутьев арматуры. Это и есть расчет расхода арматуры на фундамент.

Советы специалистов

  1. Лучший способ вязки – под углов 90 градусов друг к другу, это позволит сделать более надежный фундамент.
  2. Связывать арматуру лучше проволокой, а не при помощи сварки. Она делает места стыков более хрупкими. Лучше использовать стальную отожженную проволоку.
  3. Расчет количества арматуры на фундамент должен проводиться уже на месте будущего дома, так как теоретические предположения могут отличаться от фактических. Например, если грунт плохой, может потребоваться 3 пояса армирования.
  4. В качестве опоры для прутьев обычно используют части кирпичей. Более оптимальный вариант – специальные ластиковые держатели.

Крепкий дом – это сооружение, в основании которого было выполнено грамотное армирование фундамента, расчет арматуры был верным и все работы выполнялись специалистами.

Видео по армированию фундамента:

Армирование ленточного фундамента — Доктор Лом

1. Грунт под фундаментом можно рассматривать как упругое основание с постоянными физическими свойствами далеко не всегда. Более точный ответ на вопрос, как изменяются свойства грунта под фундаментом, может дать только геологоразведка. Но в любом случае, чем больше размеры строения в плане, тем больше вероятность, что свойства грунта под ленточным фундаментом будут не одинаковыми.

2. Со временем физические свойства грунта могут изменяться в результате жизнедеятельности человека или по природным причинам (например при изменении уровня грунтовых вод). Это может приводить к неравномерной осадке основания.

Для стен из натурального или искусственного камня наиболее неблагоприятной будет ситуация, когда наибольшая осадка произойдет под одним или несколькими углами здания. В этом случае в сечениях стены появятся дополнительные растягивающие напряжения, что может привести к образованию трещин. Впрочем и дополнительные сжимающие напряжения при просадке грунта ближе к середине ленты также могут оказаться не желательными.

3. Мелкозаглубленные ленточные фундаменты могут испытывать дополнительные нагрузки из-за пучения замерзшего грунта.

4. Принимаемая при расчетах нагрузка на фундамент далеко не всегда является равномерно распределенной по всей длине ленты фундамента. Наличие окон и дверей приводит как минимум к изменению значений нагрузки, а под достаточно широкими дверями нагрузки на ленту фундамента может вообще не быть. Кроме того, нагрузка на фундамент в летнее и зимнее время может быть разной.

5. В углах сопряжения перпендикулярных лент фундамента возможны скачки напряжений, если ширина лент фундамента определена неправильно или эти ленты делаются одной ширины из технологических соображений.

Как видим, причин для армирования ленточного фундамента вполне достаточно, даже если армирование по расчету не требуется. Такое армирование называется конструктивным, т.е. принимаемым без расчета. При этом конечно же должны соблюдаться общие требования по армированию балок, а также по анкеровке арматуры. Если же ленточный фундамент делается ступенчатым, то расчет армирования подошвы фундамента — отдельная тема.

Как правило в малоэтажном строительстве различные авторы многочисленных сайтов рекомендуют использовать для продольного армирования стержни диаметром 10-12 мм, но не более 40 мм.

На чем основана данная рекомендация, я не знаю. В известной мне технической литературе подобных рекомендаций нет. Впрочем эта литература предназначена для специалистов, а не для любителей. От себя могу добавить, что при выборе диаметра арматуры для конструктивного армирования кроме вышеизложенного следует руководствоваться следующими параметрами:

1. Длина ленты — чем больше длина, тем больший диаметр арматуры следует принимать).

2. Высота и ширина ленты — чем больше высота и ширина, тем меньший диаметр арматуры можно принимать.

3. Расчетные нагрузки — тут все просто, чем меньше нагрузки тем меньший диаметр арматуры можно принимать.

Тем не менее, чтобы все вышесказанное было более наглядно, представим себе следующую ситуацию: планируется ленточный фундамент (вместо фундаментной плиты), длина ленты по одной из наружных стен 8 м, высота 1 м и ширина 0.5 м, ширина подошвы фундамента 0.8 м высота подошвы 0.2 м.

Если под одной из наружных стен, например А3 (крайняя левая стена на рисунке 345.1.в) грунт в правом верхнем углу просядет сильнее, чем посредине, то в этом случае ленту фундамента под этой стеной можно рассматривать, как консольную балку длиной 4 м, соответственно потребуется армирование в верхней части ленты фундамента.

Рисунок 345.1. Примерный план 1 этажа для расчета фундаментной плиты.

Как мы уже выяснили, равномерно распределенная нагрузка на эту стену, составляет q = 6976 ≈ 7000 кг/м. Но это была нагрузка, равномерно распределенная как по фундаменту, так и по основанию, а при просадке основания нагрузка, действующая на консольную балку, будет описываться уравнением прогиба.

Чтобы упростить задачу, предположим, что эта дополнительная нагрузка описывается уравнением квадратной параболы, т.е. изменяется от максимума на конце до нуля на опоре. Тогда изгибающий момент на опоре составит:

М = (ql/3)3l/4 = ql2/4 = 7000·42/4 = 28000 кгс·м или 2800000 кгс·см

Примечание: в данном случае мы определили значение момента графоаналитическим методом, т.е. умножили площадь эпюры нагрузки на расстояние от центра тяжести эпюры до рассматриваемой точки — опоры балки.

Так как в данном случае лента фундамента представляет собой тавровую балку из-за наличия подошвы, то сначала нужно определить, где находится граница сжатой зоны:

M = 2800000 < Rbb’fh’f(ho — 0.5h’f) = 117·80·20(97 — 10) = 16286400

Это означает, что граница сжатой зоны находится в полке балки, тогда

am = M/b’fh20Rb = 2800000/(80·972·117) = 0. 0318

Аs = Rbb’fho(1 — √1 — 2am)/Rs = 117·80·97(1 — √1 — 2·0.0318)/3600 = 8.15 см2

Примечание: если для упрощения расчетов данную балку рассматривать как прямоугольную шириной 0.5 м, то требуемая площадь сечения составит 8.23 см2, т.е. не намного больше.

Т.е. для армирования верхней зоны сечения ленты фундамента под рассматриваемой стеной в этом случае понадобится не менее 3 стержней Ø 20 мм, площадь сечения составит 9.41см2. Такие дела.

Примечание: если арматурные стержни будут и в нижней части сечения, т.е. в сжатой зоне, то их тоже можно учесть в расчетах. Впрочем это увеличит несущую способность балки на 3-5%, а у нас итак принята арматура с хорошим запасом.

Определение прогиба при такой нагрузке — отдельная сложная тема, но опять упростим задачу и предположим, что прогиб будет такой же (хотя в действительности прогиб будет немного меньше), как при равномерно изменяющейся нагрузке и составит (согласно расчетной схеме 2. 6, таблицы 2):

f = 0.86·11ql4/120EI

где 0.86 — коэффициент учитывающий изменение высоты сжатой зоны сечения, который тоже требует более точного определения.

Начальный модуль упругости для бетона класса В20 составляет Е = 275000 кг/см2. Для определения момента инерции приведенного сечения следует решить кубическое уравнение, которое здесь не привожу. Скажу лишь, что граница сжатой области бетона будет проходить в ребре балки и потому момент инерции приведенного сечения будет составлять примерно I = 750000 см4.

При таких исходных данных максимальный прогиб составит:

f = 0.86·11·70·4004/(120·275000·750000) = 0.685 см

Это означает, что если осадка основания под этим углом будет даже незначительно больше, чем под серединой фундамента, то уже включится в работу арматура. А если разница достигнет 7 мм и больше, то арматура будет работать на полную мощность. Кроме того в материале стены появятся дополнительные растягивающие напряжения, для восприятия этих напряжений в стенах их натурального и искусственного камня обычно делается арматурный пояс по периметру.

А кроме того, наличие арматуры в фундаменте позволит соблюсти требования нормативных документов, в частности СНиП 2.02.01-83* «Основания зданий и сооружений», согласно которому относительная разность осадок по отношению к длине не должна превышать 0.002 для многоэтажных бескаркасных зданий с несущими стенами из крупных блоков или кирпича (согласно таблице 391.2).

В нашем случае Δs/L = 0.7/400 = 0.00175 < 0.002.

Тут может возникнуть вполне логичный вопрос, а что произойдет, если данный фундамент армирован 2 стержнями диаметром 12 мм в верхней зоне, согласно многочисленным рекомендациям?

Да в принципе ничего страшного не произойдет: лента фундамента окончательно треснет в наиболее напряженном поперечном сечении и после этого такую ленту можно рассматривать как 2 балки на упругом основании, лежащие рядом и несущая способность таких балок увеличится в несколько раз.

Вот только если разница просадок основания под углом и в середине будет увеличиваться, то будут расти и растягивающие напряжения в материале стены, а если никаких армирующих поясов при строительстве не было предусмотрено, то могут появиться и трещины на стенах.

Лента фундамента под примыкающей стеной в левом верхнем углу будет более длинной, около 12 м, однако и нагрузка на эту ленту почти в 2 раза меньше. Тем не менее, если и эту часть ленты фундамента рассматривать как консольную балку длиной 6 м высотой 1 м и шириной 0.5 м, то максимальный момент на опоре составит:

М = ql2/4 = 3600·62/4 = 32400 кгс·м или 3240000 кгс·см 

Это в 1.16 раза больше, чем возможный изгибающий момент в примыкающей более нагруженной ленте. Если учесть, что мы приняли сечение арматуры с хорошим запасом (в 1.154 раза), и наличие арматуры в сжатой зоне, то этого должно хватить даже не смотря на то, что в данном случае у нас не тавровая, а обычная прямоугольная балка.

К тому же возможный прогиб такой балки при неравномерной осадке фундамента будет больше, а значит у балки появится дополнительная опора — лента фундамента примыкающей стены. Все это может немного увеличить нагрузку на ленту, рассмотренную нами ранее и уменьшить нагрузку на примыкающую ленту.

Ну а насколько подобная ситуация может быть вероятна — решать вам. Я же трещины на кирпичных стенах примерно посредине (часто в районе оконного проема) наблюдал неоднократно.

Расчет арматуры для фундамента и правильное армирование

От правильного армирования зависит прочность фундамента, а равно и целостность стоящего на нем дома. Фундамент — это основа здания, и ему стоит уделить очень пристальное внимание. Давайте поговорим о том, как работает армирование фундамента, как правильно рассчитать необходимое количество арматуры и о правильной вязке.

 

 

Строительная арматура — разбираем сортамент

 

В СНГ для армирования наиболее популярны изделия из горячекатаной стали по ГОСТ 5781. Это металлические стержни диаметром 6–80 мм с профильными насечками на поверхности. Отличается такой металлопрокат высоким модулем упругости — около 200 кПа.

Отличительной чертой металлической арматуры является наличие так называемой площадки текучести — временного состояния вещества за пределом упругой деформации до физического разрушения. Технические качества арматуры определяются классом стали, используемой в производстве: от наименее прочного A-I до самого крепкого A-VI.

Для конструктивного армирования может использоваться гладкая арматура. Ее основной недостаток — пониженное сцепление металла с бетонной массой, поэтому элементы из гладкой арматуры разумно проектировать с отсутствием высоких осевых нагрузок на растяжение.

 

 

Наглядно о работе армирования

 

Первой рассмотрим модель железобетонной колонны. В нормальных условиях на нее действует осевая нагрузка, ведущая к линейному расширению массива от центра наружу из-за сжатия. Бетон не пластичный и в такой обстановке подвержен усталостному разрушению. Арматура колонны принимает часть нагрузки на себя и вынуждает весь массив не расширяться, а изгибаться в допустимых пределах. Поперечное армирование также укрепляет края и препятствует появлению косых трещин.

Вторая модель — горизонтальная балка, опертая на края с приложенной нагрузкой по центру. Бетон без арматуры в таких условиях может сломаться даже под собственным весом. Сталь в бетоне придает ему упругость, при этом сам бетон препятствует точечной деформации арматуры, так что приложенная нагрузка распределяется по всей длине балки.

Модель балки почти полностью соответствует МЗЛФ, а вот в глубоких сложных фундаментах принцип колонны работает на ребрах жесткости. Нагрузка на фундамент ложится неравномерно из-за наличия проемов в стенах и разного веса отдельных участков, либо из-за прочих конструктивных особенностей. В свою очередь, плотность почвы под фундаментом также неравномерна. Можно сойтись на мнении, что основная работа фундамента — безвредно принять на себя нагрузку от строения, а затем правильно распределить ее по точкам опоры.

 

 

Выбор сечения и плотности закладки

 

Основная отличительная черта ЖБИ — сечение продольных армирующих элементов на поперечном срезе. Отношение этого значения к площади сечения бетонной массы называют плотностью закладки. 4 мм2, то есть оптимальное сечение продольного армирования составит 360 мм2. Согласно СП 52–101–2003 для не напряженного бетона расчетное значение выбирается в большую сторону: либо 5 стержней по 10 мм (если позволяет длина пролета), либо 4 стержня по 12 мм (с существенным запасом прочности).

Обратите внимание, что эквивалентной плотности можно добиться, условно, тремя прутьями по 14 мм или даже двумя по 16 мм, так на чем остановиться? На этот счет четких рекомендаций порой не дают даже опытные проектировщики, однако, руководствуясь здравым смыслом, следует закладывать как можно больше стержней минимально допустимого диаметра. Однако помните, что слишком плотный арматурный каркас может затруднить просыпание и уплотнение бетонной смеси.

 

 

Зачем и как распределять линии армирования

 

Указанная выше техника расчета справедлива для тонких балок, в которых армирование выполняется одним рядом с одинаковыми защитными слоями сверху и снизу. На практике же никогда достоверно не известно, как будет вести себя бетонная балка, в какую сторону изгибаться, где будут зоны напряженного растяжения и сжатия. Поскольку фундамент имеет пропорцию ширины к высоте 1:2 и более, расчетную линию армирования выполняют и под верхней, и под нижней гранью.

Но и это еще не все. Для стабилизации массы и придания монолитности применяется так называемое конструктивное армирование. К нему относят в первую очередь вертикальные и горизонтальные поперечные элементы — стержни или хомуты. Расчет их также ведется по плотности закладки, она составляет не менее 0,025% от сечения, но уже не поперечного, а продольного по вертикальной и горизонтальной секущей плоскости. Обычно хомуты выполняют из арматуры на 1–2 номера ниже основного армирования с шагом установки 0,8–1,4 метра.

 

 

Защитные и разделительные слои

 

Из-за ненулевого водопоглощения железобетона арматура в высокой степени подвергается коррозии. Этот эффект можно свести к минимуму, обеспечивая ограждающие защитные слои для каждой линии армирования. Для подземной части фундамента толщина слоя составляет не менее 40 мм, для конструкций на открытом воздухе — 30–35 мм, для утепленных — 25 мм, а при наличии гидроизоляции — 15–20 мм. В любом случае защитный слой не может быть тоньше используемой арматуры.

Свободное пространство между линиями основного армирования называют разделительным массивом. Поскольку деформационные явления проявляются сильнее у поверхности бетона, ширина неукрепленного участка не должна превышать определенного значения. Какого? Негласно используется значение в 1/4 ширины конкретной грани, то есть по бокам армирующего каркаса нужно добавить 3 или 4 продольных стержня на 1–2 номера меньше основного армирования. Получившиеся в таком случае полосы шире 450 мм нужно укреплять проволочной сеткой.

 

 

Укладка, вязка, дистанционные пробки и прочие тонкости

 

Армирующий каркас в большинстве случаев собирают так:

1.    На дно котлована укладывают продольные стержни нижней линии армирования.

2.   Связывают их между собой с перехлестом в 20 номинальных диаметров, а на поворотах скрепляют Г-образными элементами той же толщины и с таким же перехлестом.

3.   Нижняя линия устанавливается на дистанционные пробки, формирующие нижний защитный слой.

4.   С установленным шагом вяжется поперечная конструкционная арматура. Это могут быть разнонаправленные П-образные хомуты или кольца прямоугольной формы. Важный нюанс: все стержни продольного армирования, включая вспомогательные, устанавливаются внутри хомутов, а не снаружи.

Остается только пропустить в хомуты верхнюю полосу основного армирования, подвязать ее и разделить грани конструктивным продольным армированием. Все элементы рекомендуется скреплять проволочной вязкой, предпочитая ее дуговой сварке. После регулировки защитных слоев можно загружать плиты утеплителя и заливать бетон.

 

http://www. rmnt.ru/ — сайт RMNT.ru

 

расчет и установка арматуры под разные виды фундаментов


В процессе строительства многочисленных современных зданий, а также сооружений со средней тяжестью широко используется армирование столбчатого фундамента с ростверком. Известно, что для бетона характерны высокие показатели прочности на сжатие. Что делает его максимально подходящим материалом в случае возведения фундаментов для лёгких построек.

Однако, с другой стороны, ему приписывают и значительный недостаток — плохая переносимость нагрузок на изгиб, а также растяжение. В данной статье мы подробно и понятно расскажем Вам об актуальной современной технологии армирования столбов, а также об особенностях и тонкостях армирования именно такого вида фундамента.

Схема столбчатого фундамента

Расчет арматуры

В основу расчета ложатся те самые нагрузки, действующие на фундаментную основу дома. А это не только вес строительных материалов, из которых сооружается здание, это мебель, расставленная по комнатам, бытовые приборы, утварь, одежда, вес проживающих в доме людей, снег, дождь и прочее. Поэтому самостоятельно сделать такой расчет, если вы не специалист в данной области, невозможно. Учесть все нагрузки даже опытный специалист не сможет. Поэтому существуют специальные коэффициенты, на которые умножаются параметры дома из расчета на удельный вес строительных материалов.

На некоторых строительных порталах установлены калькуляторы, с помощью которых якобы можно провести расчет нагрузок на фундамент для дома. Надо сразу сказать, что конечный итог данного вида расчетов не является точным, погрешность у него большая. Поэтому совет – воспользуйтесь услугами опытного проектировщика, который точно рассчитает действие нагрузок.

В принципе, самостоятельно и приблизительно подсчитать количество и диаметр арматуры для армирующего каркаса можно. Но перед этим надо понять, что собой представляет эта конструкция.

Состоит она из поперечных и продольных стержней, которые между собой скрепляются вязальной проволокой, электросваркой или специальными муфтами. Специалисты рекомендуют проволоку. Если разговор идет об армировании монолитного плитного фундамента, то это сетка, уложенная на подготовленную основу. Сеток может быть несколько, они между собой соединяются вертикально установленными кусками арматуры одинаковой длины.

Если изготавливается армированный пояс для ленточного фундамента, то сетки устанавливаются вертикально, а между собой они скрепляются горизонтальными кусками арматуры. Сеток минимум может быть две. При этом армирование МЗЛФ (мелкозаглубленной конструкции), заглубленного или поверхностного фундаментов проводится одинаково. Просто меняется размер армирующей конструкции, а также диаметры используемой внутри арматуры.

Наши услуги

Основные — это свайные работы и лидерное бурение. Мы имеем собственный автопарк бурильно-сваебойной техники и готовы поставлять сваи на объект с дальнейшим их погружением на строительной площадке. Цены на забивку свай представлены на странице: цены на забивку свай. Для заказа работ по забивке железобетонных свай, оставьте заявочку:

Буроопускные сваи

СК «Богатырь» предоставляет услуги по бурению под буроопускные сваи и погружение железобетонных свай. Мы работаем в пределах Москвы и области по минимальным на рынке ценам, обеспечивая…

Подробнее

Ленточный фундамент на сваях

Ленточный фундамент на сваях используется уже довольно длительное время. Особенно незаменимо его применение на слабых и водянистых грунтах. Наличие обильных…

Подробнее

Бетонные сваи

Мы занимаемся забивкой и поставками бетонных свай на объекты индивидуального и промышленного строительства. В распоряжении нашей компании парк многочисленной…

Подробнее

Полезные материалы

Армирование фундамента

В процессе эксплуатации бетонный фундамент подвергается не только давлению веса строения, но и разнонаправленным нагрузкам, вызванным множеством причин.

Виды и сфера применения забивных ЖБ свай

При проектировании свайных фундаментов зданий и инженерно-технических сооружений выбор типа используемых железобетонных конструкций необходимо производить максимально тщательно.

Пример

Для примера, можно взять фундамент под гараж. Внутренние размеры помещения – 4 х 6 м, с учетом толщины стен – 4,5 х 6,5 м. Если заливается плитный фундамент, то края каркасной решетки не должны доходить до краев самого фундамента на 10 см. Получается, что размеры решетки – 4,3 х 6,3 м. Если толщина фундаментной плиты будет больше 20 см, то укладываются две сетки одна над другой. Гараж – сооружение небольшое, поэтому оптимальные размеры ячеек армирующей стеки – 20 х 20 см. Получается, что укладывать стержни надо буде через каждые 20 см.

Теперь можно подсчитать количество необходимых продольных и поперечных стержней. Для этого надо:

  1. 630/20=31,5.
  2. 430/20=21,5.

Полученные значения надо округлить и добавить по одному прутку, потому что данный расчет не учитывает крайний элемент сетки для фундамента. В конечном итоге получится, что вдоль надо уложить 23 стержня длиною по 6,3 м, поперек 33 длиною по 4,3 м. Такое же количество потребуется и на вторую решетку. Теперь нужно подсчитать количество арматуры, отрезки которой будут соединять между собой две сетки.

К примеру, если толщина бетонной стяжки равна 20 см, а сам армирующий пояс должен располагаться в теле бетона, то соответственно от нижней и верхней плоскости надо отступить по 3 — 4 см. Получается, что между сетками армирования плиты остается расстояние 12 — 13 см. Это и есть длина вертикальных отрезков арматуры. Что касается количества, то здесь надо учитывать шаг установки, который равен стороне ячейки сетки каркаса, то есть, 20 см.

Расчет ленточного и столбчатого фундамента

Армирование ленточного фундамента, расчет арматуры, укладка и вязка проводятся, в принципе, точно также. Просто необходимо учитывать, что арматурные решетки в этой конструкции устанавливаются не горизонтально, а вертикально. При этом длина продольных стержней зависит от длины ленты, а поперечных от глубины заложения фундамента.

Ширина ленты определяет количество решеток и длину стержней, связывающих между собой сеток. К примеру, если ширина фундаментной ленты – 40 см, то между решетками оставляется расстояние 25 — 30 см, это и есть длина связующих прутков.

Что касается количества, то опять — таки все будет зависеть от размеров ячеек армированного пояса фундамента. К примеру, если глубина заложения равна 1 м, а каркас укладывается внутри бетонной массы, то расстояние от верхних поверхностей устанавливается по 10 см с каждой стороны. Поэтому длина поперечных стержней будет 80 см. А количество продольных направляющих будет равна 100/20=5 рядов.

Правила армирования столбчатых конструкций сильно отличается от двух предыдущих вариантов. Во — первых, это вертикально установленные стержни, обвязанные катанкой диаметром 6 мм или арматурой небольшого размера. Все зависит от размеров самих опорных столбов. Во-вторых, сечение каркаса – это или квадрат, или круг, или треугольник.

Длина основных стержней зависит от глубины заложения фундамента. При этом нет необходимости учитывать расстояние от дна скважины до арматуры, потому что готовая армирующая конструкция устанавливается прямо на подготовленную подушку. Но учитывать придется выступ прутков в размере 10 — 70 см, которые будут торчать из столбов. Они будут соединяться с армирующей сеткой ростверка.

Армирование разных типов фундаментов

Плитный

Самая простая схема армирования у плитного фундамента. Как уже говорилось, это одна или две решетки, уложенные одна над другой. Саму решетку чаще всего собирают прямо по месту закладки фундамента. Арматурные стержни раскладывают в соответствии с размерами ячеек и обвязывают места пересечения вязальной проволокой. Схем обвязки достаточно много, если сборка конструкции проводится своими руками, то лучше выбрать самый простой вариант.

Армированный пояс в одну сетку – это раскладка арматуры по схеме, их обвязка и установка решетки на подпорки. Схема в две сетки – это точно такая же установка нижней сетки, а вот верхнюю придется укладывать на специальные хомуты из арматуры. Они имеют разный вид, один из них показан на фото ниже.

Ленточный

Армирование ленточного монолитного фундамента проводится, в принципе, по той же технологии. Только сам каркас собирается в стороне от траншей. Собираются две сетки, которые между собой соединяются отрезками арматуры. И уже готовую конструкцию опускают внутрь опалубки. Устройство армированного пояса с опалубкой – это практически готовая к заливке конструкция. Единственное, на что нужно обратить внимание, это поставить армированный пояс на подпорки. Для этого используют цельные кирпичи, камень или изготовленные подставки из металлических профилей.

В сооружении ленточной конструкции важным элементом является армирование углов фундамента. Именно здесь собираются все напряжения. Существует несколько технологических схем, как правильно армировать углы. Каждая схема имеет определенные тонкости сборки конструкции и соединения арматуры. Поэтому выбирают ту, которая подходит под условия возведения фундамента.

К примеру, одна из них, это армирование с помощью хомутов. Для фундамента в две сетки необходимо два П — образных хомута. Их устанавливают поверх уложенных в углу армокаркасов так, чтобы их концы смотрели по направлению двух стыкуемых траншей. При этом необходимо усилить соединение, поэтому между собой хомуты соединяются дополнительными поперечными арматурами. На фото ниже они показаны под номером 4.

Столбчатый

К армированию сваи надо подходить с позиции вертикальной установки армоконструкции. Перед тем как армировать столбчатый фундамент, необходимо понимать, что это вертикальная установка нескольких арматурных стержней, которые между собой соединены поперечинами из арматуры меньшего диаметра. Как показывает практика, чаще всего эту конструкцию собирают методом электросварки с последующей металлизацией стыков. Конструкции собираются отдельно от скважин и устанавливаются в них в виде готового изделия.

Так как столбчатый фундамент, к примеру, под колонну собирается в виде самой колонны и бетонной подушки под нее, то, по сути, должно получиться армирование ступенчатого фундамента.

Для этого придется собрать отдельно армированный каркас для колонны и для подушки.

Так как размеры последней превосходят сечение первой, то под свайный фундамент этого типа выкапывается скважина сечением больше, чем размеры подушки.

  1. После чего собирается опалубка для подушки.
  2. Устанавливается армированный каркас.
  3. Далее сверху устанавливается каркас колонны, который привязывается к армированию подушки.
  4. И последний этап – установка опалубки колоны.

Ростверк

Если производится армирование простых свай для легких строений, заливаемых в скважины, то для их соединения между собой сооружается дополнительно ростверк. По сути, это ленточный фундамент, а значит, в него закладывается армированный пояс, как и в ленточную конструкцию.

Необходимо добавить, что для армирования монолитного столбчатого фундамента с ростверком требуется точный расчет нагрузок, действующих от строения и от ростверка. А значит, придется точно подсчитать количество арматурных стержней в конструкции и их диаметр.

При этом особое внимание уделяется соединению стержней армокаркаса столбов с арматурой ростверка. Выступающие из столба концы арматуры сгибают под углом 90° так, чтобы:

  1. Одна из них часть легла внахлест к стержням верхней решетки.
  2. Другая к пруткам нижней сетки.

И лучше, если сгибание будет проводиться в разных направлениях расположения ленты ростверка пополам от количества стержней, как показано на фото ниже.

Лента армирования свайно — ленточного фундамента – это единая конструкция, состоящая из двух разнонаправленных каркасов. Поэтому в местах соединения двух частей надо обязательно проводить мероприятия по усилению соединений. Так одно из правил гласит, что идеальный нахлест арматур двух соединяемых конструкций не должен быть меньше 60 см. А значит, выводить из столбов арматурные прутки нужно, как минимум, на 80 см. Это с учетом изгиба.

Нередко к армированию свай и ростверка подходят с позиции быстрого изготовления каркаса. Для чего используют электросварку. Именно в местах соединения двух конструкций этого делать не рекомендуется. Слишком большие здесь присутствуют нагрузки, особенно на изгиб. Поэтому совет – используйте технологию вязки с помощью вязальной проволоки. Тем более, этот процесс не требует больших затрат и умения.

Добавим, что подходить к сооружению фундамента и его армированию надо с позиции правильно подобранной конструкции. Если опорные столбы имеют небольшой диаметр, то подойдет конструкция из трех стержней с треугольным сечением. В остальных случаях используется квадратная или круглая конструкция. Первая из них проще в изготовлении.

Что такое ростверк?

Для тех, кто не владеет строительной терминологией, сообщаем, что ростверк – это ответственная часть свайного фундамента, соединяющая оголовки свай в единый силовой контур.

Существуют различные виды ростверков, применяемых в свайных основаниях:

  • ленточного типа, представляющего монолитную бетонную ленту. Она располагается по периметру опор, последовательно расположенных под несущими нагрузку капитальными стенами;
  • плитной конструкции, в виде монолитной плиты, размеры которой соответствуют контуру основания строения и охватывают все опоры.

Ростверк представляет собой ленточную конструкцию , соединяющую отдельно стоящие сваи между собой

В зависимости от особенностей ростверкового фундамента, он может изготавливаться в следующих исполнениях:

  • Цельном варианте.
    Изготовление осуществляется путем заливки в предварительно подготовленную опалубку бетонного раствора. Формирование монолитной базы происходит после твердения бетонной смеси.
  • Составном виде.
    Основа представляет сборную поверхность из произведенных промышленным путём железобетонных изделий, соединённых при установке с опорными колоннами, а также между собой.

Независимо от особенностей конструкции, ростверк формирует опорную поверхность, предназначенную для возведения стен постройки. Обвязка находящихся в земле колон обеспечивает высокую жесткость пространственной системы и стойкость к воздействию действующих усилий.

Армирование свайно ростверкового основания, позволяет укрепить монолитную основу стальными прутками, способствующими целостности конструкции и повышающими долговечность.

Анализ и проектирование фундаментов железобетонных стен на основе ACI 318-19

🕑 Время чтения: 1 минута

318M-19: Строительные нормы и правила для бетона и комментарии Конструкция фундамента стены, также называемая ленточным фундаментом, основана на принципах действия балки с небольшими изменениями.

Фундамент стен должен быть спроектирован так, чтобы безопасно поддерживать несущие или ненесущие стены, а также передавать и распределять нагрузки на грунт таким образом, чтобы не превышалась несущая способность грунта.В дополнение к предотвращению чрезмерной осадки и вращения и обеспечению достаточной безопасности от скольжения и опрокидывания.

Фундамент стены проходит вдоль стены. Размер основания и толщина стены фундамента определяются исходя из типа грунта на площадке и условий нагрузки. Площадь и распределение армирования осуществляется на основании требований ACI 319-19 (Требования строительных норм и правил для конструкционного бетона.

).

Анализ фундамента стены

Простые принципы действия балки применимы к фундаменту стены с небольшими изменениями.На рис. 1 показано основание стены с действующими на него силами. Если бы из этих сил вычислялись изгибающие моменты, то было бы обнаружено, что максимальный момент приходится на середину ширины.

На самом деле, очень большая жесткость стены изменяет эту ситуацию, достаточно вычислить момент на грани участка стены 1-1. Трещины напряжения образовались под лицевой стороной стены, а не посередине.

Рис. 1: Критические сечения для момента и поперечной силы в фундаменте стены

Для фундаментов, поддерживающих каменные стены, максимальный момент вычисляется посередине между серединой и лицевой стороной стены, поскольку каменная кладка менее жесткая, чем бетон. Максимальный изгибающий момент (Mu) в фундаментах под бетонными стенами рассчитывается по уравнению 1.

Где:

qu: предельная несущая способность грунта под фундаментом стены, равная предельной распределенной нагрузке, деленной на требуемую площадь фундамента.

b: ширина фундамента стены.

а: ширина стены, опирающейся на фундамент стены.

Вертикальную поперечную силу (Vu) можно рассчитать на участке 2-2, расположенном на расстоянии d от поверхности стены.Уравнение 2 можно использовать для расчета поперечной силы. Расчет длины развертки основан на участке максимального момента (участок 1-1).

Где:

d: расстояние между поверхностью стены и местом приложения вертикальной поперечной силы, равное эффективной глубине секции фундамента стены.

Размер основания

Размеры фундамента определяются для нефакторизованных нагрузок и эффективного давления грунта (qe), которое рассчитывается на основе допустимого опорного давления (qa). Причина использования нефакторизованных нагрузок заключается в том, что при расчете фундамента безопасность обеспечивается общими коэффициентами безопасности.

Допустимое опорное давление устанавливается по принципу механики грунтов, на основании нагрузочных испытаний и других экспериментальных определений. Допустимое опорное давление при эксплуатационных нагрузках рассчитывается с использованием коэффициента безопасности от 2,5 до 3. Этот коэффициент безопасности предотвращает превышение несущей способности грунта и удерживает его осадку в допустимых пределах.

Площадь основания (Areq) определяется путем деления общей эксплуатационной нагрузки на допустимое опорное давление по уравнению 3.

Где

D: статическая нагрузка на фундамент.

L: динамическая нагрузка на фундамент.

qe: эффективное опорное давление, равное допустимой несущей способности (вес заливки+вес бетона)

Если присутствуют другие нагрузки, такие как ветровые нагрузки и сейсмические нагрузки, то следует также использовать уравнение 4 для расчета площади фундамента. Наибольшее значение этих двух уравнений считается площадью основания.

Где:

w: равно 1,3, если ветровая нагрузка рассчитывается на основе ASCE, иначе было бы равно 1.

Вт: ветровая нагрузка

E: сейсмические силы

Ширина фундамента стены рассчитывается исходя из требуемой площади. Длина фундамента принимается равной 1 метру.

Глубина фундамента

В соответствии с разделом 13.3.1.2 ACI 318-19 общая глубина фундамента должна выбираться такой, чтобы эффективная глубина нижней арматуры составляла не менее 150 мм.

В наклонных, ступенчатых или конических фундаментах глубина и расположение ступеней или угол наклона должны быть такими, чтобы проектные требования удовлетворялись на каждом участке.

Расчет площади армирования

Основная арматура

Площадь основного армирования вычисляется с использованием следующего выражения.

Где:

As: основная зона усиления

Mu: предельный момент, взятый из уравнения 1.

Phi: коэффициент снижения прочности, равный 0.9.

fy: предел текучести стали.

d: эффективная глубина, взять защитный слой бетона 75 мм.

а: глубина прямоугольного блока напряжения.

В уравнении 5 предполагается глубина прямоугольного блока напряжений. Затем методом проб и ошибок вычисляется площадь стали. Рекомендуются три попытки, и рекомендуется взять (0,2 x глубина основания) в качестве первой попытки для a.

Минимальное усиление

Минимальное армирование вычисляется с использованием следующих выражений:

Для стали марки менее 420:

Для стали марки 420:

Где:

b: ширина фундамента

ч: глубина фундамента

Площадь распределенной арматуры равна значению уравнения 7.Итак, это значение распределенной арматуры для фундамента стены.

Расстояние между стержнями/ размещение

Площадь армирования, рассчитанная по уравнению 5, делится на площадь одного стержня (Ab) для оценки количества стержней (n). Затем площадь площади стержней, используемая для расчета расстояния между основной арматурой, с использованием следующего выражения

.
Расстояние между основными стержнями:
Распределенное расстояние между стержнями:

Количество распределенных стержней равно площади стали из уравнения 7, деленной на площадь одного стержня, используемого для распределенной арматуры.Затем расстояние вычисляется путем деления ширины фундамента на количество распределенных стержней.

Максимальный интервал:

Максимальное расстояние равно 3 часам или 450 мм. поэтому расстояние между стальными стержнями не должно превышать это значение.

Прочность бетона на сдвиг

Расчетная прочность бетона на сдвиг должна быть равна или больше предельной силы сдвига, рассчитанной по уравнению 2, в противном случае необходимо увеличить глубину основания. Прочность бетона на сдвиг рассчитывается следующим образом:

Где:

Vc: прочность бетона на сдвиг

Phi: коэффициент снижения прочности, равный 0. 75.

Lamda: равен 1 для бетона нормальной прочности.

fc’: прочность бетона на сжатие не менее 17 МПа.

b: ширина фундамента.

d: эффективная глубина фундамента.

Рис. 2: Фрагмент усиления

Краткое описание процедуры проектирования

  1. Расчетная толщина основания (h), которая должна соответствовать требованиям к сдвигу и обеспечивать минимальную эффективную глубину 150 мм.
  2. Расчет веса насыпи и веса фундамента.
  3. Расчет эффективной несущей способности, qe.
  4. Оценка требуемой площади, Areq
  5. Рассчитайте расчетное давление (qu) на основе фундамента (Areq) из-за факторизованных нагрузок.
  6. Расчет силы сдвига и расчетной прочности бетона на сдвиг для проверки требований к сдвигу.
  7. Рассчитайте максимальный момент, а затем площадь армирования.
  8. Расчет минимального армирования и максимального расстояния.
  9. Расчетное расстояние между основными и распределенными стержнями.
  10. Начертить проект.

Подробнее:

Каковы требования к толщине ленточного фундамента?

Ленточный фундамент FDS — Frilo

Nemetschek Frilo GmbH — Приложения для расчета и проектирования конструкций FDS Полосы Фундамент The FDS Приложение позволяет рассчитать необходимые размеры ленточных фундаментов при центральном и одноосном внецентренном нагружении.Требуемая арматура на изгиб и сдвиг рассчитывается для выбранных размеров. Стандарты DIN EN 1992 ÖNORM EN 1992 BS EN 1992 DIN 1045/1045-1 ÖNorm B4700 Стандарт грунта: DIN EN 1997-1 в сочетании с DIN 1054:2010. ÖNORM EN 1997-1 в сочетании с DIN 1054:2005. В зависимости от выбранного стандарта бетона соответствующий стандарт грунта выбирается автоматически (DIN 1054:1976/2005/2010). Нагрузки Ветровые нагрузки G и Q Моменты MG и Mq Нагрузка на участок фундамента слева и/или справа от стены Собственный вес фундамента учитывается автоматически. Система и расчет Ширина фундамента рассчитывается в зависимости от заданного допустимого давления грунта. Вы можете определить, как должна выполняться итерация: По центру Увеличение влево или вправо По центру, увеличение только в одну сторону до определенного предельного размера Вы можете указать минимальную толщину для основания. Для проекта приложение дополнительно предлагает толщину, которая не требует либо армирования на сдвиг, либо армирования на изгиб. В результате отображается давление почвы в соответствии с DIN 1054 и максимальное давление на края слева и справа.Изгибающий момент и требуемая изгибающая арматура указываются на погонный метр фундамента, если применимо. Для возвышающихся каменных стен расчет выполняется на сглаженный момент под осью стены, а для возвышающихся бетонных стен — на фасочный момент. Кроме того, при необходимости выполняется анализ напряжения сдвига. Подробная информация о продукте www.frilo.com По состоянию на: 11.15.2012

Метод расчета несущей способности композитных фундаментов из песчаных свай в илистом грунтовом слое с учетом уплотнения

Трубная обшивка часто применяется при устройстве песчаных то есть метод нижнего разряда. При сооружении песчаной насыпи в кожухе трубы делается полость, нижняя часть кожуха закрывается, а полость расширяется в перегнойном слое грунта за счет механического статического давления и вибрации. Затем, когда обсадная колонна поднимается, клапан на дне обсадной трубы автоматически открывается, и полость заполняется песком, образуя кучу песка. Этот процесс может быть упрощен до расширения полости. В данном исследовании эта теория использовалась для расчета увеличения несущей способности фундамента в перегнойном слое грунта, вызванного строительством песчаных свай.

Теория расширения полости и основные допущения

Предполагалось, что готовая куча песка имеет идеально цилиндрическую форму, и ее размер полностью соответствует проектным требованиям. Процесс строительства сваи из песка осуществлялся, как показано на рис. 2.

Рис. изотропное упругопластическое тело; (2) малая полость расширяется в бесконечной массе грунта; 3) критерий урожайности почвы – критерий урожайности Мора–Кулона; (4) давление грунта на стенку полости до расширения статично; и (5) песчаная куча состоит из чистого песка без силы сцепления, и деформация текучести не учитывается.

Основные уравнения

Радиальное напряжение грунта вокруг сваи обозначалось \(\sigma_{r}\), окружное напряжение обозначалось \(\sigma_{\theta }\), а конструкция песчаной сваи процесс упростился до задачи об осевой симметрии плоской деформации. Полярные координаты использовались без учета начального поля напряжений, и дифференциальное уравнение равновесия было получено следующим образом:

$$\frac{{d\sigma_{r} }}{dr} + \frac{{\sigma_{r } — \sigma_{\theta} }}{r} = 0.$$

(1)

Геометрическое уравнение:

$$\varepsilon_{r} = \frac{{du_{r} }}{dr}.$$

(2)

В фазе упругой деформации предполагалось, что функция напряжения \(\psi\) является только функцией радиальной координаты r :

где \(r\) — радиальная координата, а L представляет границу постоянный.

На этапе пластической деформации параметры выбраны как консолидированные недренированные параметры, использовался критерий текучести Мора–Кулона:

} + \sigma_{\theta} )\sin\varphi + 2c\cos\varphi . {{\frac{2\sin \varphi}}{{1 + \sin \varphi }}}} — Cctg\varphi .$$

(9)

Удовлетворяя уравнениям. (4) и (6) при общих граничных условиях упругости и пластичности было получено следующее уравнение:

$$\sigma_{p} = \sigma_{r} = C\cos \varphi .$$

(10)

На границе между упругой зоной и пластической зоной смещение общего расширения пластической зоны было получено на основе уравнения (8):

$$u_{p} = \frac{(1 + v)}{E}R_{p} \sigma_{p} .{2} \до 0\), а общее смещение границы зоны пластичности относительно невелико.

В приведенном выше расчете исходное поле напряжений не учитывалось. Для илистого грунта напряжение увеличивается, \(\sigma_{p} = C\cos \varphi\), из-за чего грунт очень мало переходит в пластическое состояние. Чтобы удовлетворить условию легкого перехода грунта в пластическое состояние, диапазон влияния зоны пластичности должен быть большим, чтобы общее смещение границы зоны пластичности можно было считать относительно небольшим и упростить следующим образом: \(u_{p}^ {2} \до 0\).

LEAVE A REPLY

Ваш адрес email не будет опубликован.