Процент армирования: Минимальное армирование по СП 63.13330 (СНиП 52-01-2003)

Процент армирования железобетонных конструкций: минимальный, максимальный

  • 1 Армирование бетона
  • 2 Минимальный армирующий процент
  • 3 Максимальный армирующий процент
  • 4 Защитный слой бетона
  • 5 Заключение

Арматурный каркас является необходимой частью в железобетонных конструкциях. Цель его использования — усиление и повышение прочности бетонных изделий. Арматурный каркас изготавливается из стальных прутьев или готовой металлической сетки. Необходимое количество усиления рассчитывается с учетом возможных нагрузок и воздействий на изделие. Расчетная арматура называется рабочей. При укреплении в конструктивных или технологических целях производится монтажное армирование. Чаще используются оба типа для обеспечения более равномерного распределения усилий между отдельными элементами арматурного каркаса. Арматура выдерживает нагрузку от усадки, колебаний температур и прочих воздействий.

Как определить минимальный процент армирования конструкции?

Где мы берем процент армирования? В “Руководстве по конструированию железобетонных конструкций”, например, есть таблица 16, в которой приведены данные для всех типов элементов.
Но вот есть у нас на руках цифра 0,05%, а как же найти искомое минимальное армирование?

На примерах, думаю, будет нагляднее.

Пример 1. Дана монолитная плита перекрытия толщиной 200 мм (рабочая высота сечения плиты h₀ до искомой арматуры 175 мм). Определить минимальное количество арматуры у нижней грани плиты.

1) Найдем площадь сечения бетона 1 погонного метра плиты:

1∙0,175 = 0,175 м² = 1750 см²

2) Найдем в таблице 16 руководства минимальный процент армирования для плиты (изгибаемого элемента):

3) Составим известную со школы пропорцию:

4) Из пропорции найдем искомую минимальную площадь арматуры:

Х = 0,05∙1750/100 = 0,88 см²

5) По сортаменту арматуры находим, что данная площадь соответствует 5 стержням диаметром 5 мм. То есть меньше этого мы устанавливать не имеем права.

Обратите внимание! Мы определяем площадь арматуры у одной грани плиты (а не площадь арматуры всего сечения плиты), именно она соответствует минимальному проценту армирования.

Пример 2. Дана плита перекрытия шириной 1,2 м, толщиной 220 мм (рабочая высота сечения плиты h₀ до искомой арматуры 200 мм), с круглыми пустотами диаметром 0,15м в количестве 5 шт. Определить минимальное количество арматуры в верхней зоне плиты.

Заглянув в примечание к таблице, мы увидим, что в случае с двутавровым сечением (а при расчете пустотных плит мы имеем дело с приведенным двутавровым сечением), мы должны определять площадь плиты так, как описано в п. 1:

1) Найдем ширину ребра приведенного двутаврового сечения плиты:

1,2 – 0,15∙5 = 0,45 м

2) Найдем площадь сечения плиты, требуемую условиями расчета:

0,45∙0,2 = 0,09 м² = 900 см²

3) Найдем в таблице 16 руководства минимальный процент армирования для плиты (изгибаемого элемента):

4) Составим пропорцию:

5) Из пропорции найдем искомую минимальную площадь арматуры:

Х = 0,05∙900/100 = 0,45 см²

6) По сортаменту арматуры находим, что данная площадь соответствует 7 стержням диаметром 3 мм. То есть меньше этого мы устанавливать не имеем права.

И снова обратите внимание! Мы определяем площадь арматуры у одной грани плиты (а не площадь арматуры всего сечения плиты), именно она соответствует минимальному проценту армирования.

Пример 3. Дан железобетонный фундамент под оборудование сечением 1500х1500 мм, армированная равномерно по всему периметру. Расчетная высота фундамента равна 4 м. Определить минимальный процент армирования.

1) Найдем площадь сечения фундамента:

1,5∙1,5 = 2,25 м² = 22500 см²

2) Найдем в таблице 16 руководства минимальный процент армирования для фундамента, предварительно определив l₀/h = 4/1.5 = 4,4 24:

3) Составим пропорцию:

4) Из пропорции найдем искомую минимальную площадь арматуры:

Х = 0,25∙1750/100 = 4,38 см²

5) По сортаменту арматуры находим, что данная площадь соответствует 5 стержням диаметром 12 мм, которые нужно установить у каждой грани на каждом погонном метре стены.

Заметьте, если бы стена была толще, минимальный процент армирования резко бы упал. Например, при толщине стены 210 мм потребовалось бы уже 5 стержней диаметром 10 мм, а не 12.

Комментарии

День добрый. Подскажите пожалуйста:

в примере 3 – l₀/h = 4/0.9 = 4,4, 0.9 – откуда это значение

в примере 4 – l₀/h = 10/0.5 = 20, 10 – откуда это значение

в примере 5 – l₀/h = 5/0.9 = 5,5, 0,9 – откуда это значение

Непосредственные расчеты

Процент армирования железобетонных конструкций: минимальный, максимальный

С целью выполнения армированием своего прямого предназначения, необходим специальный расчет усиления бетона, что соответствует минимальному и максимальному проценту. Эта величина играет важную роль в проектных расчетах. Ее малый показатель не дает права считать изделие усиленным до ЖБИ, а больший приведет к существенному снижению технических характеристик ж/б материала.

Содержание

  1. Степень армирования
  2. Особенности расчетов
  3. Значение армирования
  4. Минимальный процент
  5. Максимальный коэффициент арматуры
  6. Сохранение прочности
  7. Защитный слой бетона

Степень армирования

Минимальная величина коэффициента армирования (0,05%) позволяет назвать изделие железобетонным.

Если металлические элементы поместить в бетон, но величина арматурной составляющей не будет соответствовать техническим требованиям ГОСТа, то это изделие относится к бетонным наименованиям с конструкционным укреплением и не допускается к эксплуатации. Для фундамента, колонн, несущих стен и балок степень армирования рассчитывается по формуле: К= (М1÷М2)x100; где

  • М1 — вес стального каркаса;
  • М2 — масса бетонного монолита.
Для создания арматурного каркаса предпочтительно используются прутья диаметром 12-14 мм.

Площадь сечения стержней обуславливает способность поддерживающего каркаса нести и распределять нагрузки. Чем больше диаметр прутьев, тем выше процент армирования и прочность сооружения. Обычно предпочитают стержни в 12—14 мм диаметром. Удельный показатель веса арматуры уменьшается с увеличением толщины бетонного слоя.

Особенности расчетов

В железобетоне используют только горячекатаную сталь высокого класса, так как она устойчива к коррозии и крепка. Чтобы сваренный металлический каркас, расположенный в бетоне, сделал свое дело, необходим точный расчет, позволяющий уточнить, сколько и какие материалы необходимы. Важность расчетов сложно переоценить. Они выполняются с привлечением технических формул, где учтены сопротивление используемых стройматериалов, соотношение предельно допустимых нагрузок к закладываемым и другие параметры. А также стандартные вычисления предусматривают тип фундамента, наличие дополнительных конструкционных элементов, марку бетона, несущие нагрузки. По окончании математической части все данные наносят на чертеж, где представлена схема армирования. Из проекта исполнители знают, сколько и какого вида стальных стержней нужно взять. А также стоит учесть в каком порядке их расположить и связать.

Значение армирования

Минимальный процент

Наименьшая степень усиления бетона арматурой, что расположена продольно, вычисляется соответственно площади сечения железобетонного объекта и составляет 0,05%. Меньший показатель говорит лишь о локальном укреплении бетонного раствора. Такое сооружение ненадежное и опасное, поскольку возможно его разрушение. Минимальный процент армирования зависит от типа и локализации действующих нагрузок (сжатие, растяжение) вне пределов рабочего бетонного сечения, между прутьями каркаса, и колеблется в пределах от 0,5 до 0,25% для каждой конкретной конструкции.

Максимальный коэффициент арматуры

После заливки важно уплотнить бетон, чтобы не было воздуха возле решетки, который приводит к снижению прочности сооружения.

Предельно допустимая доля стали для ж/б конструкций составляет 4% (в колоннах 5%). Тип стальных элементов и марка бетона влияния не имеют. Превышение максимальной величины приводит к снижению эксплуатационных характеристик изделия и возрастанию его веса, что усилит нагрузку вышерасположенных составляющих на нижние. Укрепляя бетон, важно обеспечить плотное обволакивание всей металлической решетки раствором без образования воздушных карманов.

Сохранение прочности

Бетон создает защиту стали от влияния факторов внешней среды (влаги, химических веществ), поэтому металл должен быть полностью укрыт раствором. Любые манипуляции с железобетонным объектом типа алмазного бурения, резки, отделения частей, образования сквозных тоннелей в стене приводят к значительному уменьшению потенциала прочности.

Все работы, нарушающие монолитность железобетонной конструкции, должны проводиться с учетом схемы расположения и пространственной структуры каркаса.

Защитный слой бетона

В таблице представлена зависимость толщины бетонного слоя от типа строительного элемента:

Наименование стройматериалаШирина объекта, смСлой бетона, см
Несущая стенаБолее 101,5
СтенаМенее 101
Ребро252
БалкаМенее 251,5
Колонна3
Фундаментная балка

Посмотреть «СНиП 2. 03.01-84» или cкачать в PDF (4.8 MB)

Особое внимание следует уделить фундаментам монолитной структуры. Наличие цементной подушки оправдывает слой бетонной защиты в 3,5 см, без нее — 7 см. Сборный фундамент потребует слоя шириной 3 сантиметра. Чем больше толщина искусственного камня, тем прочнее арматуру рекомендуют использовать. Технические выкладки взяты из свода требований к бетонным и железобетонным конструкциям СНиП 2.03.01—84.

% стали в балках, колоннах, плитах фундамента

Содержание

  • 1 Процент стали в бетоне для балок, колонн, плит и фундаментов | Гражданское строительство | Проектирование здания | проектирование конструкций
    • 1.1 Максимальные и минимальные значения в соответствии со стандартами кодов IS
    • 1.2 Выводы по процентному содержанию стали в балках, колоннах, плитах и ​​фундаменте 

Процентное содержание стали является важным понятием при проектировании зданий. Без использования максимального и минимального значений процентного содержания стали невозможно получить окончательные детали армирования. После проектирования модели здания с использованием ручного или программного метода важно сравнить окончательный результат с заданными максимальными и минимальными значениями.

Если процентное содержание стали в балках, колоннах, плите и фундаменте превышает допустимые значения, то стоимость проекта увеличивается, в то же время это приводит к снижению прочности конструкции здания. Поэтому важно знать максимальные и минимальные значения процентного содержания стали в железобетонных конструкциях.

Доля стали в здании

Максимальные и минимальные значения армирования согласно спецификациям зависят от факторов, описанных ниже.

  1. Состояние нагрузки
  2. Несущая способность грунта
  3. Высота колонны и длина балки
  4. Диаметр стержня

1.

Условия нагрузки

Нагрузка — это первый фактор, влияющий на значения армирования балки, колонны, плиты и фундамента, он зависит от общей суммы нагрузки (поперечной или гравитационной). Если сумма интенсивностей велика, то значения армирования увеличиваются, а если нагрузка меньше, то значения армирования, наоборот, уменьшаются.

Изгибающий момент от приложенной нагрузки

2. Несущая способность грунта

Несущая способность грунта выражается в единицах кН/м2, это зависит от типа состояния грунта на площадке. Чем выше значение несущей способности, тем выше прочность здания. При проектировании зданий учитываются три типа грунтовых условий, которые относятся к рыхлым, средним и скальным грунтам. Например, если мы рассматриваем проект здания в рыхлом грунте и с меньшей несущей способностью, требуется меньшее количество значений арматуры.

3. Высота колонны и длина балки

Высота колонны и длина балки — это третий фактор, влияющий на значения армирования. Если такие размеры, как высота и длина, увеличиваются, то значения армирования увеличиваются, чтобы противостоять общей нагрузке на здание.

4. Диаметр прутка

Для основных малоэтажных зданий предпочтительны стержни диаметром 12 мм и 16 мм, если мы увеличим диаметр стержня после 16 мм, процент стали увеличится в конструкции здания.

Стержни диаметром 12 мм и 16 мм

Максимальные и минимальные значения в соответствии со стандартами кодов IS

Минимальное и максимальное процентное содержание армирования для балки, колонны, плиты и фундамента показано в таблице ниже, которая соответствует положениям кода IS

.

Примечание. Процент армирования будет меняться в зависимости от технических характеристик здания, показанного ниже, только для образовательных целей, чтобы получить знания в концепции.

С. №

Элемент конструкции

Минимальный процент

Максимальный процент

1

Балка

1%

2%

2

Столбец

1%

6%

3

Плита

0,7%

1%

4

Фонд

0,7%

0,8%

Полная концепция минимальных и максимальных процентных значений объясняется на моем канале YouTube, пожалуйста, нажмите здесь, чтобы посмотреть.

Выводы по процентному содержанию стали в балках, колоннах, плитах и ​​фундаменте

Итак, поясняемые понятия связаны с процентным соотношением минимального и максимального количества стали в здании. Для балки это минимум 1% и максимум 2%, для колонны минимум 1% и максимум 6%, для плиты минимум 0,7% и максимум 1%, а для фундамента минимум 0,7% и максимум 0,8%. Пожалуйста, следите за моим каналом YouTube для получения дополнительной информации о процентном содержании стали в строительстве.

Если у вас есть какие-либо вопросы о процентном содержании стали в бетоне, не стесняйтесь обращаться к нам на странице контактов.

Пожалуйста, смотрите интересные концепты на моем YouTube-канале Гражданское строительство от shravan. Пожалуйста, не стесняйтесь писать нам на странице контактов для любых карьеров.

LEAVE A REPLY

Ваш адрес email не будет опубликован. Обязательные поля помечены *