Процент армирования максимальный: Максимальный (предельный) процент армирования

Содержание

Процент армирования железобетонных конструкций: минимальный, максимальный

С целью выполнения армированием своего прямого предназначения, необходим специальный расчет усиления бетона, что соответствует минимальному и максимальному проценту. Эта величина играет важную роль в проектных расчетах. Ее малый показатель не дает права считать изделие усиленным до ЖБИ, а больший приведет к существенному снижению технических характеристик ж/б материала.

Степень армирования

Минимальная величина коэффициента армирования (0,05%) позволяет назвать изделие железобетонным.

Если металлические элементы поместить в бетон, но величина арматурной составляющей не будет соответствовать техническим требованиям ГОСТа, то это изделие относится к бетонным наименованиям с конструкционным укреплением и не допускается к эксплуатации. Для фундамента, колонн, несущих стен и балок степень армирования рассчитывается по формуле: К= (М1÷М2)x100; где

  • М1 — вес стального каркаса;
  • М2 — масса бетонного монолита.
Для создания арматурного каркаса предпочтительно используются прутья диаметром 12-14 мм.

Площадь сечения стержней обуславливает способность поддерживающего каркаса нести и распределять нагрузки. Чем больше диаметр прутьев, тем выше процент армирования и прочность сооружения. Обычно предпочитают стержни в 12—14 мм диаметром. Удельный показатель веса арматуры уменьшается с увеличением толщины бетонного слоя.

Особенности расчетов

В железобетоне используют только горячекатаную сталь высокого класса, так как она устойчива к коррозии и крепка. Чтобы сваренный металлический каркас, расположенный в бетоне, сделал свое дело, необходим точный расчет, позволяющий уточнить, сколько и какие материалы необходимы. Важность расчетов сложно переоценить. Они выполняются с привлечением технических формул, где учтены сопротивление используемых стройматериалов, соотношение предельно допустимых нагрузок к закладываемым и другие параметры. А также стандартные вычисления предусматривают тип фундамента, наличие дополнительных конструкционных элементов, марку бетона, несущие нагрузки. По окончании математической части все данные наносят на чертеж, где представлена схема армирования. Из проекта исполнители знают, сколько и какого вида стальных стержней нужно взять. А также стоит учесть в каком порядке их расположить и связать.

Значение армирования

Минимальный процент

Наименьшая степень усиления бетона арматурой, что расположена продольно, вычисляется соответственно площади сечения железобетонного объекта и составляет 0,05%. Меньший показатель говорит лишь о локальном укреплении бетонного раствора. Такое сооружение ненадежное и опасное, поскольку возможно его разрушение. Минимальный процент армирования зависит от типа и локализации действующих нагрузок (сжатие, растяжение) вне пределов рабочего бетонного сечения, между прутьями каркаса, и колеблется в пределах от 0,5 до 0,25% для каждой конкретной конструкции.

Максимальный коэффициент арматуры

После заливки важно уплотнить бетон, чтобы не было воздуха возле решетки, который приводит к снижению прочности сооружения.

Предельно допустимая доля стали для ж/б конструкций составляет 4% (в колоннах 5%). Тип стальных элементов и марка бетона влияния не имеют. Превышение максимальной величины приводит к снижению эксплуатационных характеристик изделия и возрастанию его веса, что усилит нагрузку вышерасположенных составляющих на нижние. Укрепляя бетон, важно обеспечить плотное обволакивание всей металлической решетки раствором без образования воздушных карманов.

Сохранение прочности

Бетон создает защиту стали от влияния факторов внешней среды (влаги, химических веществ), поэтому металл должен быть полностью укрыт раствором. Любые манипуляции с железобетонным объектом типа алмазного бурения, резки, отделения частей, образования сквозных тоннелей в стене приводят к значительному уменьшению потенциала прочности.

Все работы, нарушающие монолитность железобетонной конструкции, должны проводиться с учетом схемы расположения и пространственной структуры каркаса.

Защитный слой бетона

В таблице представлена зависимость толщины бетонного слоя от типа строительного элемента:

Наименование стройматериалаШирина объекта, смСлой бетона, см
Несущая стенаБолее 101,5
СтенаМенее 101
Ребро252
БалкаМенее 251,5
Колонна3
Фундаментная балка

Посмотреть «СНиП 2. 03.01-84» или cкачать в PDF (4.8 MB)

Особое внимание следует уделить фундаментам монолитной структуры. Наличие цементной подушки оправдывает слой бетонной защиты в 3,5 см, без нее — 7 см. Сборный фундамент потребует слоя шириной 3 сантиметра. Чем больше толщина искусственного камня, тем прочнее арматуру рекомендуют использовать. Технические выкладки взяты из свода требований к бетонным и железобетонным конструкциям СНиП 2.03.01—84.

СП63. Расчет минимального и максимального армирования стен

Минимальное и максимальное, как продольное так и поперечное армирование стен вычислено на основе конструктивных требований Раздела 10 СП63.13330.2018.



Минимальное и максимальное армирование стен согласно СП63.

13330.2018

Минимальные / максимальные площади продольной и поперечной арматуры железобетонных стен определяются конструктивными требованиями Раздела 10 СП63.13330.2018.

Конструктивные требования к геометрическим размерам и армированию железобетонных элементов являются обязательными к выполнению согласно пункту 10.1.1 СП63.

Расчет продольного армирования реализован на основе требований пунктов 10.2.1, 10.2.2, 10.3.5, 10.3.6, 10.3.8 и 10.3.9; расчет поперечного – 10.3.12, 10.3.13, 10.3.14 и 10.3.16.

Требования в части возможности размещения арматуры (пункт 10.2.1), обеспечения качественного уплотнения бетонной смеси (пункт 10.3.5) и др. не имеют количественных критериев выполнения. Выполнение таких требований

обеспечивается субъективным решением проектировщика в каждой конкретной проектной ситуации.

1. Продольное армирование стен

1.1. Комментарии и ограничения в реализации

Расчет выполняется для продольных стержней арматуры фиксированного диаметра, расположенных в один ряд*.

 

1.2. Минимальное продольное армирование
As,min

Минимальный процент продольной растянутой арматуры μmin, а также требуемой по расчету сжатой, в явном виде определен пунктом 10.3.6 в зависимости от вида напряженно-деформированного состояния (НДС) и формы поперечного сечения. Соответствующая площадь минимального армирования вычисляется по формуле As,min = μ

min · b · (h – c)*.

1.3. Расчет максимального продольного армирования
As,max

Максимальный процент армирования не определен нормами СП63 в явном виде, однако, может быть вычислен* на основе нормируемого минимального расстояния между арматурными стержнями и принятого максимального диаметра ds,max. Проектировщику необходимо контролировать выполнение качественных конструктивных требований (см. выше).

 

2. Поперечное армирование стен

Поперечное армирование устанавливается у всех поверхностей железобетонных элементов, вблизи которых расположены стержни продольной арматуры, пункт 10. 3.11 СП63.13330.2018. В случае воздействия крутящих моментов, пункт 10.3.16 СП63, армирование должно образовывать замкнутый контур.

2.1. Комментарии и ограничения в реализации

Рассмотрено поперечное армирование в виде шпилек и/или ветвей хомутов, расположенных с фиксированным шагом sw под углом 90° к продольной оси балки. Стержни поперечного армирования имеют одинаковый номинальный диаметр dsw.

2.2. Расчет минимального поперечного армирования
Asw,min

Минимальное армирование Asw,min стен вычислено* из условия размещения на ширине b – 2·cs целого числа поперечных стержней минимального диаметра dsw,min с стремящимся к максимальному по СП63 шагом sw,max. Шаг поперечных стержней по направлению оси стен принят равным sw,max

. 

2.3. Расчет максимального поперечного армирования
Asw,max

Исходным данным к расчету Asw,max принята конфигурация продольного армирования, соответствующая определенной в п. 1.3  As,max, (расстояние между центрами продольных стрежней s и их диаметр ds).


Использование данного расчета означает факт согласия с Отказом от ответственности.

Замечания и предложения по данному расчету можно направить через форму обратной связи.

Любое использование материалов сайта допускается лишь с разрешения правообладателя и только со ссылкой на источник: www.RConcreteDesign.com

какой максимальный и минимальный процент?

Содержание   

Колонны — железобетонные несущие конструкции, предназначенные для передачи нагрузок от вышестоящих конструкций на фундаменты либо стены.

Колонны используют на этажах, для монтажа на их капители или консоли вышестоящих перекрытий. В них также есть опора в виде подколонника.

Армированная колонна

Самый важный момент при строительстве колонн – расчет и устройство их армирования. О нем сейчас и поговорим.

Особенности и назначение

Армирование железобетонных колонн для конструкции фундамента и несущих стен необходимо сразу по нескольким причинам.

Оно позволяет:

  1. Повысить прочность монолитной железобетонной конструкции.
  2. Улучшает взаимодействие разных частей колонн (основной опоры, капители, подколонника, консолей).
  3. Предотвращает появление трещин.
  4. Позволяет осуществлять ремонт железобетонных конструкций.
  5. Понижает шанс разрушения опоры со временем.
  6. Позволяет выливать крупные несущие опоры с сечением 300×300 и 400×400 мм без опасений за их судьбу в будущем.

Читайте также: какую сетку применяют для стяжки пола, и как правильно ее использовать?

Все это возможно благодаря работе арматурного каркаса. Использование арматуры для колонн железобетонных решает основную проблему бетона – его хрупкость.

Арматурный каркас колонны

Прелесть железобетонных конструкций фундамента и несущих опор заключается в их совместной работе. Бетон для фундамента отлично работает на сжатие, а арматура на изгиб. Поэтому схема их соединения позволяет создать универсальный тип строительных элементов.

Качественный арматурный каркас за счет своего взаимодействия с бетоном, защищает его от образования трещин, не дает ему разрушиться вследствие течения времени или наружных воздействий, к примеру, сейсмических смещений.

Читайте также: подробно об армировании фундамента – ростверкового и ленточного типов, а также о расчете арматуры для фундамента.

Да и вообще, строительство капитальных зданий, особенно промышленных, немыслимо без использования железобетонных конструкций фундамента и опор.
к меню ↑

Конструкция

Рассмотрим конструкцию железобетонных колонн, дабы понять в будущем, какая им нужно схема и чертеж.

Чертеж любой несущей опоры, передающей нагрузки на полость фундамента показывает, что состоит она из нескольких базовых частей. В частности схема предусматривает наличие:

  • основной несущей части;
  • капителей или консолей;
  • подколонника.

Читайте также: как вяжется арматура для фундамента?

Чертеж основной части – удлиненный прямоугольник, минимальный размер сечения которого примерно равен 150×150 мм. Максимальный размер сечения не ограничивается и показателями в 500×500 мм, хотя последние разумно использовать только при взаимодействии с конструкциями плоского фундамента.

В верхней части колонн располагаются капители или консоли – это опоры под перекрытия. Капители являются выступами, на которые перекрытия можно монтировать. Такая схема упрощает работу строителям, позволяет сэкономить на материалах, в частности, существенно сократить использование балок.

Схематическое изображение колонн с консолью и капителью

Впрочем, капители с тем же успехом применяют в качестве основания под балки.

Читайте также: как и чем армируют кладку из газобетона, а что применяют для кладки из кирпича?

Что же до железобетонных элементов типа подколонника, то их схема являет собой образец обычной подошвы. Конструкция стандартного подколонника напоминает ступенчатое расширение под основой колонны. Задача подколонника – снять точечное напряжение и равномерно передать его на стены фундамента.

Использование подколонника необязательно, без него вполне можно обойтись, когда предусматривается монтаж ленточного или свайного фундамента. А вот для фундамента плиточного, наличие подколонника просто необходимо.
к меню ↑

Расчет

Прежде чем начать разбор армирования колонны, нужно внимательно осмотреть чертеж и провести расчет. Расчет – краеугольный камень всех подобных процессов. Расчет позволяет человеку четко определиться, что ему нужно, для чего и в каких количествах.

Стандартный расчет колоны предусматривает учет ее несущих нагрузок, типа фундамента, наличие или отсутствие дополнительных элементов (капители подколонника и т.д.) марка бетона и т.д.

После того как будет выполнен расчет, составляется чертеж и схема армирования. Чертеж показывает, сколько арматуры необходимо, какая это должна быть арматура, в каком порядке ее стоит вязать, какие дополнительные элементы использовать.

Выполняется расчет с помощью специальных формул. В них закладывается сопротивление материалов, соотношение уровня предельных нагрузок с желаемым и т.д.

Читайте также: о правилах армирования лестниц.



data-ad-client=»ca-pub-8514915293567855″
data-ad-slot=»1955705077″>

Осуществляют расчет исключительно специалисты. Спроектировать армирование несущих опор человек без опыта не сможет. Не хватит знаний, и что важнее, опыта.

к меню ↑

Процент армирования

Для правильного армирования, как мы уже отметили, нужен качественный расчет и правильно составленный чертеж или схема.

Пример армирования каркасного здания на колоннах с двумя консолями

В расчет закладывается и такой показатель, как процент армирования или заполнения арматурой. Процент армирования указывает на удельный вес или долю арматурного каркаса в общей схеме конструкции.

Существует максимальный и минимальный процент армирования железобетонных опор. Минимальный процент – грань, ниже которой нельзя заходить. Если армирование железобетонных конструкций не покроет минимальный процент, то конструкция считается ненадежной и даже потенциально опасной.

Максимальный процент – предел, после которого конструкция из железобетонной превращается в сталежелезобетонную. Превышать максимальный процент тоже нежелательно, особенно в гражданском строительстве.

Показатель, минимального процента армирования колонны равняется 3%. Показатель максимального процента армирования равняется 6%. Однако расчет показывает, что для зданий небольших хватит и 5%, а в некоторых случаях и 4% в удельном весе.
к меню ↑

Технология, схема и материалы

Технология армирования довольно проста, так как заключает в себя всего несколько базовых рабочих этапов.

Нужно создать арматурный каркас поэтапно, связать его в единую конструкцию, при необходимости осуществить поперечное или косвенное армирование, а затем установить в опалубку. Основная задача строителей – связать правильный каркас. Схема действий здесь очень проста.

Берется несколько крупных круглых стержней с диаметром сечения от 20 мм. Как правило, это арматура круглых сортаментов, класса А3 или выше.

Стержни по длине должны полностью отвечать длине колонны, за вычетом 10-15 см на слой защитного бетона.

Минимальное количество стержней для рабочего каркаса – три. Что впрочем, вполне очевидно, ведь нам нужен не плоский, а объемный каркас.

Каркас колонны с поперечным укреплением

На практике используют от четырех до шести стержней в обычных колоннах и больше восьми в сильно нагруженных. Если колонна не квадратная, а вытянута в одном из направлений, то ее укрепляют дополнительной арматурой.

Читайте также: обзор способов анкеровки арматуры.

Продольную арматуру связывают между собой в нескольких местах. Однако обойтись только ею не удастся. При длине колонн от 2 метров, продольные изделия под давлением начнут выпячиваться, что не есть хорошо. Для предотвращения подобных проблем используют косвенное или поперечное укрепление каркаса.

Косвенное укрепление заключается в обвязке длинной арматуры поперечными короткими стержнями. Косвенное укрепление делается с интервалами. Желательно связать каркас поперечными элементами с интервалом в 20-50 см в зависимости от уровня несущих нагрузок.

Косвенное армирование – проверенный временем способ, очень удобный и простой. Без него сейчас создание несущих железобетонных колонн крайне нежелательно.
к меню ↑

Пример армирования колонн при строительстве (видео)

к меню ↑

Армирование дополнительных элементов

Не стоит забывать о том, что конструкция дополнительных частей колонны, таких как капители, консоли и опорные конструкции подколонника тоже нуждаются в армировании.

При этом каркас для той же капители нужно еще и правильно интегрировать в целевую несущую конструкцию.

Образец капители – плоский выступ на верхнем конце колонны. Следовательно, для каркаса капители нужна арматурная сетка. Тут все достаточно просто. Берем арматуру толщиной от 15 мм, и вяжем из нее квадратную сетку с ячейками от 10×10 см.

Сетку интегрируем верхнюю часть каркаса путем подвязки проволокой. Как правило, хватает одноуровневой сетки. В крайнем случае, по ободу устраивают еще один стабилизирующий каркас, состоящий из одного-двух элементов.

Пример армирования подколонника сеткой

С консолями ситуация несколько иная. Консоль, в отличие от капители – это бетонный выступ на одном из краев колонн. Каркас для него являет собой двухуровневый выступ короткой арматуры, прикрепленный к одному из поперечных стержней.

Схема подколонника сильно напоминает аналогичную у монолитной капители, только подколонник делается толще, может иметь несколько ступенек и размещается на нижней части опоры.

Следовательно, каркас для него делается как минимум двухуровневый, из такой же сетки. В остальном отличий от чертежа каркаса для капители практически нет.

Если подколонник ступенчатый, то есть имеет несколько расширений с разными размерами, то сетку делают под каждую ступеньку и перевязывают проволокой. Чем больше ступеней, тем тоньше нужна арматура. На одну ступень берут арматуру толщиной в 15-20 мм, а на три хватит арматуры толщиной до 12 мм.

Статьи по теме:

   

Портал об арматуре » Армирование » Как осуществляется армирование колонн?

Армирование железобетонных конструкций по ГОСТу: правила

Самостоятельное строительство уже давно перестало быть чем-то из ряда вон выходящим: при наличии необходимых знаний, навыков и помощников – это вполне осуществимо. Строительные работы редко обходятся без заливки бетона, который в большинстве своем, должен содержать в себе определенное количество армирующих элементов. Надежность и долговечность бетонного объекта может гарантировать только армирование железобетонных конструкций по ГОСТу.

Конечно, самостоятельная заливка железобетонных объектов под строительство многоэтажного дома или другого подобного сооружения не представляется возможным, так как такие масштабы требуют промышленного подхода. В данном случае мы рассмотрим лишь случаи, которые могут возникнуть в частной практике, где вы вполне можно обойтись своими силами.

Усиление фундамента под силу выполнить своими руками

В данной статье будут приведены правила армирования железобетонных конструкций, которые применяются в частном строительстве.

Армирование бетона

Заливка монолитной плиты с усилительным каркасом: фото

Армирование необходимо для повышения прочностного потенциала бетона – железобетон во много раз превосходит обыкновенный аналог по прочности на излом. Повышенную надежность обеспечивает металлический каркас, сваренный из арматуры, который располагается в толще бетона. Он играет роль скелета, который многократно усиливает выносливость объекта (узнайте здесь, как происходит армирование газобетона).

В современном строительстве применение железобетона является стандартом де-факто, несмотря на то, что его цена на порядок выше обычного аналога. Однако наличие арматуры не превращают бетон в железобетон. Иногда в опалубку просто погружаются сваренный наугад каркас, который затем заливается раствором – некоторые строители по ошибке могут назвать это железобетоном, но это заявление ошибочно.

Минимальный процент усиления

Чтобы превратить обычный бетон в железобетон, недостаточно просто заложить в него металлический каркас. Существует такое понятие как минимальный процент армирования железобетонных конструкций, посредством которого определяется степень перехода одного состояния в другое. Если процент вхождения металлических элементов окажется меньше необходимого, то данное изделие относится к бетонным наименованиям.

Обратите внимание! Данный раздел основывается на пункте 5.16 СНиП 2.03.01-84 “Бетонные и железобетонные конструкции”

Готовый каркас и металлического прута

Если количество металлических составляющих будет меньше необходимого, то такой тип усиления считается конструкционным укреплением – при этом изделие не становится железобетоном.

Минимальный процент усиления объекта продольной арматурой рассчитывается исходя из площади сечения бетонного элемента.

  • Во внецентренно растянутых и изгибаемых объектах, в том случае если продольная сила располагается вне пределов рабочей высоты сечения, усиление должно составлять не менее 0,05% (арматура S) от площади сечения бетонного элемента;
  • Во внецентренно растянутых объектах, где продольная сила располагается между арматурами S и S”, усиление должно составлять не менее 0,06% (арматура S и S”) от площади сечения бетонного элемента;
  • Во внецентренно сжатых объектах минимальный процент вхождения металлических элементов составляет от 0,1 до 0,25% (арматура S и S”).

Обратите внимание! Если продольное усиление располагается по контуру сечения (равномерно), то площадь сечения арматуры должна составлять вдвое больше указанных величин. Это также относится к центрально-растянутым объектам.

Максимальный процент усиления

Сборка каркаса перед заливкой

В бетонных работах инструкция – «чем больше, тем лучше» – неуместна.

Чрезмерное количество металлических составляющих существенно ухудшит технические характеристики изделия.

Как и в предыдущем случае, здесь также имеются нормативы.

  • Независимо от класса бетона и усилительных элементов, наибольший процент вхождения арматуры в сечение изделия не должен превышать 5% в случае с колоннами и 4% во всех остальных случаях. При этом бетонный раствор должен эффективно просачиваться между деталями усилительного каркаса;

Обратите внимание! В обоих случаях, в качестве усилительных элементов подразумевается горячекатаная сталь для армирования железобетонных конструкций.

Защитный слой бетона

Схема Ж/б в разрезе

Усилительный каркас должен покрываться защитным слоем бетона, который обеспечивает совместную работу бетона и металлического скелета. Также он защищает металл от коррозии и воздействия окружающей среды (см.также статью «Защита бетона от влаги: способы и применяемые материалы»).

Толщина слоя над металлическим каркасом составляющими должна составлять.

В стенках и плитах (толщиной мм) не менее:

  • Свыше 100 мм – 15 мм;
  • До 100 мм и включительно – 10 мм;

В ребрах и балках:

  • Свыше 250 мм – 20 мм;
  • До 250 и включительно – 15 мм;

В фундаментных балках:

В колоннах:

Обратите внимание! Если защитный слой будет иметь большее значение, то для дополнительного укрепления используется проволока для армирования железобетонных конструкций, которая перекроет излишек.

Укрепление лестничного пролета

В фундаментах:

  • Монолитных с цементной подушкой – 35 мм;
  • Сборных – 30 мм
  • Монолитных без цементной подушки – 70 мм;

Обратите внимание! Данный раздел составлен в соответствии с пунктом 5.5 СНиП 2.03.01-84 “Бетонные и железобетонные конструкции”

Также следует отметить, что алмазное бурение отверстий в бетоне или резка железобетона алмазными кругами должна учитывать расположение и структуру усилительного каркаса. Отделение частей или сквозные отверстия могут существенно снизить потенциал прочности объекта. Если же речь идет о полном демонтаже объекта, то данное обстоятельство учитывать нет необходимости.

Итог

Соблюдение норм и стандартов будет надежной гарантией долговечности и надежности железобетонных конструкций. Более подробную информацию по данной теме вы можете получить посредством просмотра видео в этой статье (узнайте также как осуществляется прогрев бетона сварочным аппаратом).

схемы, чертежи, минимальный и максимальный процент, нормы и правила

В монолитном строительстве, колоннами называют железобетонные вертикальные протяженные элементы, предназначенные для восприятия и передачи нагрузки от вышележащих конструкций. Для того чтобы они смогли обеспечить одноэтажным и многоэтажным сооружениям необходимый уровень жесткости и прочности, по вертикали, их усиливают арматурным каркасом. Разберем, как правильно и чем выполнить армирование колонны, чтобы она выдержала все будущие нагрузки на сжатие, скручивание и изгиб.

Зачем армировать колонны?

Арматурный каркас увеличивает такие показатели бетонной колонны, как:

  • Прочность.
  • Сейсмостойкость.
  • Устойчивость к появлению трещин.
  • Долговечность.

На сколько, сильно увеличатся данные показатели, зависит от диаметра используемой арматуры и марки бетона. Так же армирование даёт возможность заливать колонны не только с простой формой поперечного сечения –  квадратной и прямоугольной. Но и более сложной – двутавровой и круглой (сплошной и полой).

Материал для усиления колонн

Для армирования колонн используют арматуру следующих классов:

  1. В качестве рабочих продольных стержней применяют термомеханически упрочнённые стальные пруты периодического профиля класса А500С. Также допускается использование горячекатаных стержней класса А400.
  2. Для изготовления конструктивных элементов (хомутов, соединительных стержней), используется арматура с гладким профилем класса А240.

Технологические нормы по созданию армирующего каркаса

Для того чтобы правильно выполнить армирование монолитной колонны необходимо соблюдать следующие нормы по его устройству.

Диаметр арматуры

Минимальный диаметр стальных рабочих продольных стержней для сборных колонн должен быть равен не менее 16 мм. Для монолитных допускается применять арматуру диаметром 12 мм.

Рекомендуется, для создания армирующего каркаса колонны, использовать пруты одинаковой диаметра. Но допускается и применение двух разных, в этом случае стержни большего размера располагаются по углам колонны, а меньшего между ними по центру.

Минимальный и максимальный процент армирования колонны

Минимальный размер сечения арматуры для всех колонн разный. Определяется он расчетными действиями, учитываются все будущие нагрузки, которые будут действовать на колонну, временные, длительные и постоянные.

Максимальная площадь сечения рабочей продольной арматуры не рекомендуется делать более 5% площади поперечного сечения колонны. Так как в этом случае тяжело расположить стержни в пределах сечения.

Оптимальный процент армирования колонн находиться в пределах 0,4-3%. В местах стыковки это значение будет в 2 раза больше.

Пример расчета процента армирования колонны 400 на 400 мм, арматурой 16 диаметра – 4 шт.

  1. Находим площадь сечения колонны, 40*40=1600 см2.
  2. Считаем суммарную площадь поперечного сечения арматуры, 4*2,01=8,04 см2.
  3. Процент армирования равен, 8,04/(1600/100)=0,5025%.

Расположение продольных стержней

Максимально допустимое значение расстояния между осями продольных стержней не должно превышать 400 мм. Если расстояние более 400 мм, то следует между ними установить дополнительные стержни диаметром не менее 12 мм.

Рекомендуемое значение расстояния между стержнями в свету для сборных колонн рекомендуется делать не менее 30 мм, а для монолитных от 50 мм. В обоих случаях минимальное значение следует принимать не менее диаметра используемой арматуры.

Размер и расположение поперечных элементов

Размер поперечных стержней, зависит от наибольшего размера продольного прута в сечении колонны, а также от способа их соединения (вязка или сварка). Минимальный диаметр поперечных прутов указан в таблице ниже:

Таблица зависимости размера поперечных стержней от диаметра продольной арматуры.

На размер шага расположения хомутов в колонне влияет класс арматуры, и  ее показатели расчетного сопротивления сжатию Rас.

  • Для Rа.с. <= 4000 кгс/см2 – шаг не более 50 см, а так же не больше 20 диаметров используемого прута при соединение методом сварки, а при вязке не более 15d.
  • Для Rа.с. = 4500 кгс/см2 и Rа.с. = 5000 кгс/см2 – шаг не должен превышать 40 см. Для сварных каркасов не более 15 диаметров, а для вязаных 12. Для расчета берется размер наименьшего используемого продольного прута.

Если процент насыщения продольных стержней в колонне больше 3, то размер шага поперечной арматуры не должен превышать 30 см и не  быть более 10 диаметров  меньшего продольного элемента. Рекомендуется в данном случае хомуты крепить методом сварки.

Таблица рекомендуемого шага поперечных элементов армирования колонны.

Длина и правила стыковки прутов колонн

Длина арматуры для армирования монолитной железобетонной колонны берется такой, чтобы не было необходимости делать стык. Но если стык все же необходимо выполнить внахлест, без применения сварки, то лучшим вариантом расположения стыка будет в месте изменения сечения колонны. А для многоэтажных монолитных домов, лучший вариант расположения стыка, это уровень верха перекрытия.

Рекомендуемый размер нахлеста арматуры в колонне  в сжатом состоянии, равен 30 диаметрам прута, при выполнении стыковки в разбежку. Но чаще всего стыковку выполняют без разбежки над перекрытием, в таком случае размер нахлеста рекомендуется делать в 2 раза больше, то есть 60 диаметров прута.

На схемах ниже приведены примеры выполнения стыковки продольной арматуры в монолитном домостроении.

Пояснения к чертежу: а — при одинаковом сечении колонн верхнего и нижнего этажей; 6 — при незначительном различии в сечениях колонн верхнего и нижнего этажей; в — при резком различии в сечениях колонн верхнего и нижнего этажей.

Требования к защитному слою

Соблюдение требований по защитному слою бетона для арматуры колонны, одно из важнейших условий качественной железобетонной конструкции.  Размер защитного слоя, зависит от диаметра арматуры и её назначения.

  • Для продольных стержней размер защитного слоя должен быть больше 20 мм, но не менее диаметра арматуры. Например: если для армирования используется пруты толщиной  28 мм, то соответственно минимальный защитный слой – 28 мм.
  • Для поперечного армирования колонны минимальный защитный слой бетона равен 15 мм, но так же, как и у продольного, не может быть менее диаметра стержня.
Пример создания защитного слоя, с помощью пластиковых фиксаторов для арматуры.

По моему опыту, чаще всего размер защитного слоя для колонн  находится в пределах 3 – 4,5 см. Но если толщина защитного слоя, получилась более 50 мм в растянутой зоне сечения, то необходимо дополнительно устанавливать конструктивную арматуру в виде сеток.

Схемы армирующих каркасов

На схему расположения продольных и поперечных элементов армирования колонны (хомутов и соединительных стержней), влияет размер колонны, форма, количество арматуры используемых для её усиления, а также способ соединения элементов каркаса: при помощи сварки или вязальной проволоки.

Виды армирования сечений колонн вязаных каркасов.

Схемы армирования сечений колонн сварных каркасов.

Чертеж расположения поперечных и продольных стержней в зависимости от типа армирования и формы колонны.

Как видите при создании армирующего каркаса следует учесть немало факторов, для того чтобы получить качественную железобетонную колонну. Будьте внимательны и ответственно отнеситесь к процессу строительства и расчета. Если остались вопросы после изучения материала, задавайте их в комментариях.

60. Каковы особенности расчета переармированных сечений? Чем определяется максимальный и минимальный процент армирования?

Предельный процент армирования изгибаемых эле­ментов с одиночной арматурой (расположенной только в растянутой зоне) определяют из уравнения равновесия предельных усилий RbbxR -RsAsp =0 при высоте сжатой зоны, рав­ной граничной. При этом для прямоугольного сечения RbbxR-RsAsp=0. Отсюда µ=100ξR(Rb/Rs)

Предельный процент армирования с учетом значения ξrпо формуле для предварительно напряженных элементов

µ=100ωRb/[(1+(σsr/σscu)(1-ω/1.1)Rs] для элементов без предварительного напряжения при σsr=σscu=Rs :

µ=100ωRb/[2(1-ω/1.1)Rs]

Предельный процент армирования с повышением класса арматуры уменьшается. Сечения изгибаемых эле­ментов, имеющие процент армирования, превышающий предельный, называют переармированными.

Нижний предел процента армирования установлен в нормах из конструктивных соображений для восприятия не учиты­ваемых расчетом различных усилий (усадочных, темпе­ратурных и т. п.). Для изгибаемых и внецентренно растя­нутых прямоугольных сечений шириной b, высотой h ми­нимальный процент армирования продольной растянутой арматурой µ1 =0,05 %; для внецентренно растянутых элементов в случае

В тавровых сечениях с полкой в сжатой зоне мини­мальный процент армирования относится к площади се­чения ребра, равной b*h.

61. Выведите формулы для расчета прямоугольных сечений изгибаемых элементов с двойной арматурой. Какие условия обеспечивают прочность изгибаемых элементов прямоугольного профиля с двойной арматурой (рассмотрите 2 типа задач)?

Элементы с двойной арматурой – это такие элементы, у которых арматуру по расчету устанавливают в растянутой и сжатой зонах.

Сжатую арматуру устанавливают по расчету, когда прочность бетона сжатой зоны недостаточна, т.е. когда x£xR.

Элементы с двойной арматурой требуют повышенного расхода стали, поэтому их применение должно быть обосновано. Двойную арматуру приходиться принимать, когда сечение элемента ограничено и невозможно увеличение класса бетона. Сжатую арматуру устанавливают также при воздействии на элемент изгибающих моментов двух знаков (неразрезные конструкции и т.д.), а также для уменьшения эксцентриситета предварительного обжатия в преднапряженных элементах.

Формулы для расчета нормальных сечений элементов с двойной арматурой получены из тех же условий, что и для элементов с одиночной.(рис)

Прочность сечения будет обеспечена, если расчетный момент от внешней нагрузки не превысит расчетного момента внутренних усилий, или, иначе, SМ = 0.

Уравнение равенства моментов относительно центра тяжести растянутой арматуры:

M £ Nb × (h0 — x/2) + Ns’ × (h0 – a’) или M £ Rb × b × x × (h0 — x/2) + Rsc × As’ × (h0 – a’)

и уравнение равенства моментов относительно центра тяжести сжатой зоны бетона:

M £ Ns × (h0 — x/2) + Ns × (x/2 — a’) или M £ ss × As × (h0 — x/2) + Rsc × As’ × (x/2 — a’)

где а’ – расстояние от сжатой грани сечения до центра тяжести сжатой арматуры;

As’ – площадь сечения сжатой арматуры.

Составляется также вспомогательное уравнение равенства нулю суммы проекций усилий на продольную ось элемента:

Nb × b × x + Ns’ × As’ – Ns × As = 0 или ss × As = Rb × b × x + Rsc × As’ .

Исследования показали, что сечение будет наиболее экономичным, когда на бетон передается максимально возможное сжимающее усилие. Это будет иметь место при x=xR. В этом случае площади сжатойAs’ и растянутойAsарматуры определяют приведенных уравнений, принимаяx=xR=xR×h0. Таким образом:

Rsc×As’×(h0–a’) =M-Rb×b×xR×(h0-xR/2)

Rs × As = Rb × b × xR + Rsc × As

Задача типа 1. Заданы размеры b и h. Требуется определить площадь сечения арматуры As и As’.

As’= [M — Rb × b × xR × (h0 — xR/2)]/[ Rsc-(h0 – a’)]

As= [Rb × b × xR + Rsc × As’]/Rs

Задача 2 типа. Заданы размеры сечения b и h и площадь сечения сжатой арматуры As’. Определить площадь сечения арматуры As

αm = (M-Rsc·A’S·zs)/(b·h20·Rb) по таблице находим ξ, проверяя условие ξ< ξR.

AS=M/(ξ·h0·RS)=[As’·Rsc +ξ·b·h0·Rb]/Rs

Если αm> αR, заданного количества арматуры по площади сечения As’ недостаточно.

Армирование монолитных стен СНИП — МастерСам

СТЕНЫ ИЗ МОНОЛИТНОГО БЕТОНА

5. 82. Наружные и внутренние стены из монолитного бетона при применении переставных опалубок возводятся одновременно или последовательно (сначала внутренние стены, а затем наружные или наоборот).

Внутренние монолитные стены рекомендуется проектировать однослойными. Наружные стены могут быть однослойными или слоистыми.

5.83. Для возведения несущих стен из монолитного бетона рекомендуется применять тяжелые бетоны класса не ниже В7,5 и легкие бетоны класса не ниже В5. В зданиях высотой четыре и менее этажей допускается в несущих стенах применять легкие бетоны класса В3,5. Для внутренних стен плотность легких бетонов должна быть не ниже 1700 кг/м 3 .

5.84. Монолитные однослойные наружные стены рекомендуется проектировать из легкого бетона плотной структуры. При межзерновой пористости бетона не более 3 % и класса бетона не ниже В3,5 в нормальной и сухой по влажности зонах допускается наружные стены проектировать без защитно-декоративного слоя. Наружные легкобетонные стены без защитно-декоративного слоя следует окрашивать гидрофобными составами.

Наружные однослойные стены рекомендуется проектировать из легких бетонов с плотностью не более 1400 кг/м 3 . При технико-экономическом обосновании в однослойных наружных стенах допускается применять легкие бетоны плотностью более 1400 кг/м 3 .

5.85. Слоистые наружные стены можно проектировать из двух или трех основных слоев. Двухслойные наружные стены могут иметь утепляющий слой с наружной или внутренней стороны. В трехслойных наружных стенах утепляющий слой располагается между бетонными слоями.

5.86. Двухслойные наружные стены с утеплителем с наружной стороны могут быть монолитными и сборно-монолитными.

Монолитные стены возводят в два этапа. На первом этапе в переставных опалубках из тяжелого бетона возводят внутренний слой стены, на втором – наружный слой из теплоизоляционного легкого монолитного бетона.

Сборно-монолитная стена состоит из внутреннего монолитного слоя, выполняемого из тяжелого бетона, и наружного слоя – из сборных элементов.

5.87. Двухслойная наружная стена с утеплением с внутренней стороны состоит из наружного монолитного бетонного слоя, внутреннего утепляющего слоя – из газобетонных блоков толщиной не более 5 см или из жестких плитных утеплителей (например, из пенополистирола) толщиной не более 3 см и внутреннего отделочного слоя (рис. 26, а).

Ограничение толщин утепляющих слоев связано с обеспечением нормального тепловлажностного режима стен.

Тяжелый бетон целесообразно применять при расчетных зимних температурах, не превышающих минус 7°С. В остальных случаях необходимо применять легкие бетоны.

Рекомендуется два варианта возведения наружных монолитных стен с утеплением с внутренней стороны:

сначала на внутреннем щите опалубки укладывают слой утеплителя, затем опалубку собирают и бетонируют слой из монолитного бетона. При этом можно применять некалиброванные по толщине плиты утеплителя;

плиты утеплителя устанавливают после бетонирования стен.

При этом необходимо применять калиброванные по толщине плиты утеплителя.

При проектировании двухслойных стен с утеплителем с внутренней стороны следует учитывать, что возведение таких стен проще, чем стен с утеплителем с наружной стороны, но их применение ограничивается условием отсутствия точки росы в пределах толщины утепляющего слоя.

5.88. Трехслойные наружные стены рекомендуется проектировать сборно-монолитными, состоящими из внутреннего несущего слоя монолитного тяжелого бетона и утепленной сборной панели-скорлупы, устанавливаемой с наружной стороны. Панель-скорлупу можно устанавливать до и после возведения монолитной части стены (рис. 26, б).

Допускается трехслойные наружные стены проектировать с наружными и внутренними слоями из монолитного бетона и утепляющим слоем из жестких плитных утеплителей (рис. 26, в).

Рис. 26. Наружные стены монолитных зданий

а – двухслойная; б – трехслойная с наружным слоем из сборной панели скорлупы; в – то же, с внешними слоями из монолитного бетона

1 – блочная опалубка; 2 – панель-скорлупа; 3 – монолитный бетон стены; 4 – рабочие подмостки; 5 – крепежная система панели-скорлупы; 6 – утеплитель; 7 – связь; 8 – щиты опалубки; 9 – бадья; 10 – рассекатель; 11 – бетон

5. 89. Конструктивное армирование стен следует предусматривать двух типов в зависимости от напряженного состояния стены:

если от расчетных нагрузок в сечении стены возникают растягивающие напряжения или в полностью сжатом сечении стены минимальные сжимающие напряжения в бетоне s £ 1 МПа (10 кгс/см 2 ), то конструктивное армирование рекомендуется принимать по всему полю стены, при этом количество вертикальной и горизонтальной арматуры должно быть не менее 0,025 % соответствующего поперечного сечения стены;

в остальных случаях конструктивную арматуру устанавливают только по контуру стены, а в пересечениях несущих стен, в местах резкого изменения толщин стен, у граней дверных и оконных проемов и у граней отверстий устанавливают вертикальную арматуру площадью сечения не менее 1 см 3 .

Вертикальную конструктивную арматуру рекомендуется проектировать в виде гнутых (Г-образных) каркасов.

Стыкование вертикальных каркасов по высоте здания рекомендуется производить в уровне перекрытий внахлестку без сварки. Величина перепуска определяется расчетом. При конструктивном армировании стен величина перепуска принимается не менее 200 мм независимо от диаметра вертикальной арматуры. При сборных перекрытиях стыкование арматурных каркасов рекомендуется производить сдельными стержнями, устанавливаемыми между торцами плит перекрытий.

Роль горизонтальной конструктивной арматуры в случае применения неразрезных монолитных, а также сборных и сборно-монолитных перекрытий, опертых по контуру или трем сторонам, выполняет конструктивная арматура в перекрытиях, расположенная параллельно стенам. В случае применения сборных балочных перекрытий рекомендуется устанавливать дополнительную горизонтальную арматуру в местах сопряжения их с монолитными стенами.

5.90. Расчетное армирование стен из монолитного бетона на внецентренное сжатие из плоскости рекомендуется выполнять арматурными блоками, собираемыми из Г-образных каркасов на строительной площадке. Следует предусматривать дифференцированное расчетное армирование по высоте здания в соответствии с изменением усилий в конструкциях.

Уменьшение расчетного армирования по высоте здания следует осуществлять за счет более редкого расположения вертикальных каркасов и (или) уменьшения диаметра вертикальных стержней.

5.91. Повышение трещиностойкости монолитных стен (ограничение по трещинообразованию или ширине раскрытия трещин) может быть достигнуто за счет выбора рациональных конструктивных систем и конструктивно-технологического решения стен; рационального применения материалов в наружных и внутренних стенах в соответствии с указаниями пп. 5.92-5.93.

5.92. Для предотвращения образования сквозных вертикальных температурно-усадочных трещин рекомендуется назначать отношение длины стены к высоте этажа не более двух.

В случае, если длина стены превышает вдвое высоту этажа, то в глухих участках стен рекомендуется устраивать вертикальные технологические швы.

5.93. Для ограничения раскрытия наклонных трещин во внутренних стенах верхних этажей зданий перекрестно-стеновой конструктивной системы с несущими наружными стенами разность D перемещений сопрягаемых участков наружной и внутренней стен не должны превышать величин, приведенных в табл. 7.

Армирование ленточного фундамента по СНиП

Армирование ленточного фундамента: СНиП

Вес любого здания через фундамент передается на грунт. Основание здания не позволяет строению разрушиться. Все требования к фундаментам и информация о них собрана в сборники правил СНиП. Руководствуясь этими документами можно сделать вывод, что армированный ленточный фундамент является самым распространенным при возведении зданий в местах неглубоко промерзающих почв.

Цель армирования

Ленточный фундамент имеет не обычную конструкцию: его длина во много раз больше, чем ширина и глубина. Вследствие такого устройства основы здания почти все нагрузки, которые на него действуют, распределяются вдоль.

Самостоятельно бетонный монолит не может выдержать это давление. И, чтобы сгладить силы, действующие на разрыв, применяется укрепление бетонного фундамента стальной арматурой. Этот процесс и получил название армирование.

Основным нагрузкам подёргается верхняя часть фундамента (сжатие) и нижняя(растяжение), поэтому следует усиливать именно эти части основания. Для середины основания это не имеет смысла, потому что там не наблюдается повышенных нагрузок.

Требования

Основные проекты и условия возведения конструкций из железобетона указаны в СНиП 52-01-2003 «Бетонные и железобетонные конструкции». Данный эталон устанавливает, как правильно монтировать стальную арматуру. Основные условия, предъявляемые к процессу:

  1. • Размеры основания не должны мешать правильному положению арматуры в траншее.
  2. • Зашитый покров над арматурой должен предохранять арматуру от воздействия внешней среды и надежно сопротивляться нагрузкам.
  3. • Расстояние между отдельными прутьями не должно препятствовать правильной состыковке и заполнению бетоном.

При усилении фундамента следует использовать арматуру только высокого качества. Монтирование каркасных сеток для ленточных фундаментов должно происходить в строгом соответствии со СНиП 3.03.01-87 «Несущие и ограждающие конструкции».

Основные принципы

Перед заливкой ленточного фундамента бетоном необходимо грамотно скомпоновать армированный пояс с помощью стальной арматуры. Толщина и глубина основания зависит от будущих нагрузок на здание и используемых материалов для стен.

Ленточный фундамент можно обустроить двумя способами:

  • • использовать готовые блоки заводского изготовления;
  • • залить на месте в готовую траншею.

При использовании заводских блоков можно выделить слабое место: скрепление изделий между собой. Их соединяют армированным бетоном, что не очень надежно. А при заливке бетонным раствором получится надежный и прочный монолитный фундамент.

Монтаж каркаса из арматуры на месте строительства требует соблюдения ряда важных условий:

  1. • Арматура должна находится на расстоянии не менее 5 см от края опалубки.
  2. • Забиваются вертикальные прутки, к которым потом привязываются горизонтальные ряды. Можно и приварить с помощью сварки – это увеличит темп армирования. Но при нагреве металл теряет свою прочность и лучше все-таки вязать мягкой проволокой.
  3. • Один горизонтальный пояс способен сдерживать вертикальную деформацию примерно в пространстве 30-35 см. То есть, для основы высотой в 70 см достаточно двух поясов, а если высота больше, то и количество рядов нужно увеличивать.
  4. • Очень важное значение имеет монтаж армирования в углах фундамента, так как на них приходится самая большая часть нагрузок. При угловом соединении лучше согнуть свободные концы буквой «Г» и прикрепить их к вертикальным пруткам: внутренние к внутренним, а внешние – к внешним.

При проектировании и армирование фундаментов возникает множество вопросов, и чтобы избежать проблем при изготовлении армированного каркаса своими руками, нужно внимательно изучить все нормы и требования ГОСТов, и СНиП.

Армирование ленточного фундамента – правила, схемы, инструкции

Возведение фундаментного основания зданий это важнейший этап строительства, который определяет дальнейшую надежность и долговечность постройки. Поэтому при выполнении этой работы не допустима непродуманная экономия на расходах материалов и самовольные изменения проектных решений принятых специалистами.

Ленточные фундаменты пользуются заслуженной популярности при строительстве объектов индивидуальной застройки. Это объясняется возможностью универсального применения для самых различных зданий на большинстве распространенных типов грунтов.

Они отличаются высоким уровнем надежности и возможностью выполнения монтажа своими руками. Ленточные фундаменты нельзя применять для строительства зданий на неустойчивых грунтах, в заболоченной местности и на вечной мерзлоте.

Описание конструкции ленточного фундамента

Несущее основание этого типа представляет собой заглубленную в землю железобетонную монолитную ленту. Она монтируется под все несущие стены и тяжелые перегородки. Глубина заложения фундамента определяется в зависимости от следующих исходных параметров:
  • общий вес строительных конструкций здания с учетом снеговых нагрузок, мебели и установленного оборудования;
  • тип и строение грунтов на участке;
  • глубина залегания грунтовых вод;
  • нижняя точка промерзания грунта в холодное время года.

В результате фундамент небольших легких зданий домов быть мелкозаглубленным и иметь нижнюю опору на глубине 500-800 мм. Для тяжелых больших зданий и при наличии подвала подошва монолитной конструкции должна находиться ниже точки промерзания грунта более чем на 400 мм.

Ширина фундаментной ленты в ее верхней части зависит от толщины возводимых стен и должна превышать ее более чем на 100 мм, но в любом случае не мене 300 мм. В нижней части может быть предусмотрено наличие более широкой опорной подошвы, которая устраивается при большом весе строительных конструкций или слабых грунтах. Однако правильный расчет такой опоры довольно сложная инженерная задача. Данные о поперечном сечении фундаментной ленты и об общей массе строительных конструкций позволяют правильно рассчитать конструкцию армирующего каркаса.

Расчет фундамента должен быть выполнен на профессиональном уровне

Наличие армирующего каркаса повышает прочность фундаментного монолита и позволяет более равномерно распределить весовую нагрузку на грунт. При проектировании элементов здания всегда учитываются реальные данные, на основании которых получают результат способный обеспечить долговечность и надежность постройки.

На основании этого можно сделать вывод, что для разработки проекта необходимы специальные знания и опыт подобных работ. Поэтому выполнение расчетов и определение проектных схем рекомендуется поручить специалисту, а вот монтажные работы можно выполнять самостоятельно. Если только вы не собираетесь построить небольшой сарай, баньку, хозяйственные постройки или легкий гараж.

Расчет необходимого количества материалов

При определении нужного количества арматуры следует учитывать, что продольные струны и поперечные прутки имеют разный диаметр и цену. Имея проект подсчитать количество необходимого для армирования материала не сложно. Только следует предусмотреть запас 7-10% на остатки в виде коротких обрезков и на нахлесты при соединении прутов на длинных участках.

Если вы производите расчеты самостоятельно, то рекомендуется принять:

  • диаметр арматуры 10 мм для продольных участков длиной до 3-х метров;
  • 12 мм на участках более 3-х метров;
  • поперечная арматура с гладкой поверхностью диаметром 8 мм.

Кроме этого не забудьте приобрести вязальную проволоку (сварка прута для железобетона запрещена), а так же фиксаторы «звездочка» и «опора», которые устанавливаются на каждый крайний прут через каждые 3 метра.

Общее количество продольных армирующих струн определяется по суммарному сечению. Согласно СНиП общая площадь сечения арматуры должна быть не менее 0,1% от поперечного сечения фундаментной ленты. Если в результате вы определите, что для армирования достаточно всего 2-х прутов, то эту количество необходимо увеличить до 4-х. При этом принимая минимальное сечение прутов в 10 мм. Поперечные прутки никаких нагрузок не несут и считаются фиксирующими элементами.

Шаг поперечных прутков (хомутов) должен быть не более трех четвертей высоты фундаментной ленты и меньше 500 мм. В местах примыкания двух прямых конструкций и на углах шаг должен уменьшаться вдвое. Существует много специально разработанных схем вязки углов элементов и примыкающих участков. Перед началом работы рекомендуем с ними ознакомиться.

Что нужно знать про арматуру

Для ленточных фундаментов обычно применяют горячекатаную арматуру классов A-II и A-III с диаметром от 10 мм с периодическим профилем (рифленую), который обеспечивает надежное сцепление металла с бетоном. Пруты класса A-I с гладкой поверхностью и сечением 8-10 мм применяют для изготовления связующих хомутов и перемычек.Adblock
detector Минимальный и максимальный коэффициент усиления

в различных железобетонных элементах

🕑 Время чтения: 1 минута

Минимальный коэффициент армирования — это наименьшее возможное количество стали, которое должно быть заделано в конструкционные бетонные элементы, чтобы предотвратить преждевременное разрушение после потери прочности на разрыв. Минимальный коэффициент армирования контролирует растрескивание бетонных элементов.

Максимальный коэффициент армирования — это наибольшая площадь стали, которая может быть помещена в бетонные элементы, такие как колонны и балки.В железобетонной балке обеспечение дополнительной арматуры сверх максимального коэффициента армирования не принесет пользы, поскольку бетон будет раздавлен до того, как будет использована вся прочность стали.

Обрушение бетонной конструкции происходит внезапно и не имеет никаких признаков разрушения. Максимальный коэффициент армирования обеспечивает экономию бетонных элементов и защиту от хрупкого разрушения бетона.

Наконец, требуемая площадь армирования спроектированного бетонного элемента не должна превышать максимального коэффициента армирования и должна быть меньше минимального коэффициента армирования.Следовательно, спроектированный элемент следует проверить на соответствие этому требованию.

Минимальный коэффициент усиления

Цель минимального коэффициента усиления — контролировать растрескивание и предотвращать внезапное разрушение путем придания элементу достаточной пластичности после потери прочности бетона на растяжение из-за растрескивания.

Строительные нормы и правила, такие как ACI 318-19, обеспечивают минимальный коэффициент армирования для различных железобетонных элементов, таких как балки и колонны.

1. Минимальный коэффициент усиления в балках

В железобетонных балках, если прочность на изгиб секции с трещинами ниже, чем момент, вызвавший растрескивание секции без трещин, то балка выйдет из строя при образовании первой трещины изгиба без каких-либо повреждений.

Минимальный коэффициент армирования, который можно рассчитать с помощью уравнения, предоставленного ACI 318-19, может предотвратить преждевременное разрушение бетонной балки.Минимальное армирование для балок можно рассчитать с помощью следующего выражения:

Где:

A с, не менее : минимальная площадь стали, мм 2

fc ‘: прочность бетона на сжатие, МПа

фу: предел текучести стали, МПа

b w : ширина стенки в тавровой балке и ширина балки в прямоугольной балке, мм

d: эффективная глубина, измеренная от волокна с крайним сжатием бетона до центра стальных стержней, мм

Рисунок 1: Продольные и поперечные арматурные стержни

2.Минимальный коэффициент армирования в плитах

Минимальная площадь армирования для плиты — это температура и усадочная арматура, установленная для контроля трещин из-за усадки в бетоне и колебаний температуры. Не требуется предусматривать площадь армирования больше температурной и усадочной арматуры.

As = ρbd Уравнение 2

As: усадка и температурная арматура, мм 2

b: ширина полосы перекрытия, учитываемая для проектного назначения, которая составляет 1 м

d: эффективная глубина, мм

Рисунок 2: Распределение или усадка и температурные арматурные стержни в односторонней бетонной плите

3.Минимальный коэффициент усиления в однородной опоре

Минимальный коэффициент армирования для равномерного основания аналогичен коэффициенту армирования плиты, т.е. коэффициент армирования по температуре и усадке.

4. Минимальный коэффициент усиления в колоннах

Минимальный коэффициент усиления для колонн требуется для обеспечения сопротивления изгибу, который может не соответствовать аналитическим результатам. Это также необходимо для уменьшения эффекта усадки и ползучести бетона при длительных сжимающих напряжениях.

Минимальный коэффициент армирования в колонне предотвращает деформацию стальных стержней при длительной эксплуатационной нагрузке. ACI 318-19 определяет минимальный коэффициент продольного армирования для колонны как 0,01 от общей площади колонны.

5. Минимальное армирование для соединений между монолитными элементами и фундаментом

Минимальная площадь армирования, пересекающая монолитную колонну или постамент и поверхность раздела фундамента, должна быть в 0,005 раза больше общей площади поддерживаемого элемента.

Максимальный коэффициент усиления

Максимальный коэффициент армирования — это верхний предел количества стали, которое может быть помещено в бетонные элементы. Обычно это предоставляется по разным причинам, которые обсуждаются ниже:

1. Максимальный коэффициент усиления в балках

Максимальный коэффициент армирования балок предназначен для предотвращения раздавливания бетона, что является нежелательным режимом разрушения и предотвращается кодом ACI. Это также позволяет избежать использования чрезмерной площади стали, что не дает реальных преимуществ.Следовательно, это помогает внести экономию при проектировании бетонных балок.

Если балка имеет более высокий коэффициент армирования, чем максимальный коэффициент армирования, она называется чрезмерно армированной бетонной балкой и обычно не выдерживает сжатие.

Сверхармированная бетонная балка выходит из строя при сжатии до полного использования потенциала стальных стержней. Максимальный коэффициент усиления для балок можно рассчитать с помощью уравнения 3.

2. Максимальный коэффициент усиления в колоннах

Максимальное армирование было установлено, чтобы гарантировать, что бетон может быть должным образом уплотнен вокруг стальных стержней и гарантировать, что спроектированные колонны аналогичны испытательным образцам в соответствии с ACI 318.19.

Максимальный коэффициент армирования колонн составляет 0,08 общей площади колонны. Это обеспечивает экономию при проектировании колонн и предотвращает скопление стали, что в противном случае затрудняет правильную укладку бетона.

На практике рекомендуется учитывать максимальный коэффициент армирования, равный 0,04 общей площади колонны, чтобы избежать чрезмерного армирования в местах сращивания стальных стержней.

Минимальный коэффициент усиления при сдвиге

Подобно минимальному армированию на изгиб, описанному выше, ACI 318-19 устанавливает минимальный коэффициент усиления для сдвига в балках и т. Д.

1. Минимальный коэффициент усиления сдвигом в балках

Минимальная площадь арматуры на сдвиг должна быть предусмотрена во всех областях балки, где приложенное усилие на сдвиг превышает половину расчетной прочности бетона на сдвиг.

Минимальная поперечная арматура (A v, min ) в балках должна быть большей из следующих величин:

A v, min = 0,062 * fc ‘ (0,5) * (b w * s / f yt ) Уравнение 4

A v, мин = 0.35 * (b w * s / f yt ) Уравнение 5

Где:

с: межцентровое расстояние хомутов, мм

ф yt : предел текучести стального стержня хомута, МПа

2. Минимальная продольная и поперечная арматура в монолитных стенах

Если приложенный сдвиг в плоскости (V и ) монолитной стены равен или меньше значения, полученного из уравнения 6, используйте значения, приведенные в Таблице-1, в качестве минимального армирования как для продольной, так и для продольной арматуры. поперечное направление.

Однако, если приложенный сдвиг в плоскости (V и ) больше, чем значение, полученное из уравнения 6, тогда ( ρt = 0,0025) и значение ( ρℓ ) будет наибольшим из 0,0025 и результат уравнения 7.

Где:

h w : высота всей стены от основания до верха, мм

l w : длина всей стены, мм

Таблица-1: Минимальная продольная и поперечная арматура для стен

Тип арматуры без предварительного напряжения Размер стержня / проволоки fy, МПа Минимальный коэффициент продольного армирования, ρℓ Минимальный коэффициент поперечного армирования , коэффициент усиления 9018
Деформированные стержни ≤ No.16 ≥420 0,0012 0,0020
Деформированные стержни> No. 16 <420 0,0015 0,0025
Сварная арматура 200 M 9018 0,0015 0,0025
Деформированные стержни или арматура из сварной проволоки Любая Любая 0,0012 0,0020
Рисунок 3: Продольные и поперечные арматурные стержни в бетонных стержнях

Часто задаваемые вопросы

Какая минимальная арматура в балке?

Минимальная арматура — это наименьшая стальная площадь, которая предотвращает преждевременное вязкое разрушение балки, когда бетон теряет прочность на разрыв из-за приложенных нагрузок.

Почему в балке предусмотрена минимальная поперечная арматура?

1. Для предотвращения внезапного разрушения балки при разрыве бетонного покрытия и потере связи с натяжной сталью.
2. Во избежание хрупкого разрушения при сдвиге, которое может произойти без сдвиговой арматуры
3. Предотвратить разрушение при растяжении из-за усадки и термических напряжений и внутреннего растрескивания в балке
4. Удерживать продольные стальные стержни в их положении во время бетонирования.

Каков минимальный коэффициент армирования в колонне?

Минимальный коэффициент армирования для колонны равен 0.01.

Как рассчитать минимальную площадь армирования для колонны?

Минимальная площадь армирования в колонне равна общей площади колонны, умноженной на 0,01.

Почему в плитах используется усиление усадки и температуры?

Бетонная плита расширяется и сжимается при колебаниях температуры. Когда свежий бетон схватывается и быстро теряет влагу, он дает усадку и создает напряжение в бетоне. Усадка и расширение бетона приводят к развитию трещин, если это не учитывается при проектировании.
Итак, температурная и усадочная арматура предусмотрена для контроля трещин из-за колебаний температуры и усадки бетона

Подробнее

Расчет прямоугольной железобетонной балки

Руководство по проектированию и детализации железобетонных перекрытий IS456: 2000

Минимальные требования к стальной арматуре в бетоне и прозрачном покрытии

Минимальное количество стальной арматуры определяется как такое, для которого «пиковая нагрузка при первом растрескивании бетона » и «предельная нагрузка после деформации стали » равны.Таким образом можно избежать любого хрупкого поведения, а также любого локального разрушения, если элемент не чрезмерно усилен.

Другими словами, существует процентный диапазон армирования, зависящий от шкалы размеров, в пределах которого можно применять анализ предела пластичности с его статическими и кинематическими теоремами. Минимальная площадь арматуры требуется для контроля растрескивания, которое возникает в бетоне из-за температуры, усадки и ползучести. Это позволяет равномерно распределить трещины и, следовательно, минимизировать ширину отдельных трещин.

Следующие критерии были использованы для определения площади поперечного сечения при температуре или минимальном армировании, требуемом в гидротехнических сооружениях. Указанные проценты основаны на общей площади поперечного сечения армируемого бетона. Если толщина секции превышает пятнадцать (15) дюймов (380 мм), для определения температуры или минимального армирования следует использовать толщину пятнадцати (15) дюймов (380 мм).

Минимальный коэффициент необходимого армирования составляет;

ДЛЯ ПЛИТ:

f мин = 0.002 (для f y = 40000 фунтов на кв. Дюйм)

S мин = 0,0018 (для f y = 60000 фунтов на кв. Дюйм)

ДЛЯ СТЕН:

Для вертикальной стали

f мин = 0,0015

Для горизонтальной стали

f мин = 0,0025

Температурное усиление должно быть не менее ½ дюйма на расстоянии 9 дюймов от центра до центра. Все бетонные успокоительные бассейны, гласис и полы, а также все бетонные конструкции перемычки (с толщиной плиты> 15 дюймов) должны быть усилены на открытой (верхней) поверхности с помощью стержней диаметром ¾ дюйма в двенадцати (12) дюймах от центра к центру, в обе стороны, размещенных по три (3) дюйма от бетонной поверхности, если не предусмотрено иное.

Номинальное армирование бетонных блоков желобов, перегородок и порогов для успокоительных бассейнов, перфораций и других частей конструкций должно состоять из стержней диаметром ¾ дюйма, расположенных на расстоянии двенадцати (12) дюймов от центра к центру.

Температурная и усадочная арматура должна быть равномерно распределена вдоль поверхностей элементов конструкции для предотвращения растрескивания из-за температурных изменений, ползучести и усадки.

В зависимости от толщины конструктивного элемента предпочтительно, чтобы расстояние между центрами первичной и вторичной арматуры было равно или меньше 300 мм; однако ни в коем случае он не должен превышать 450 мм.Минимальное расстояние в свету между стержнями не должно быть меньше 1,4 диаметра стержня или 1,4 номинального максимального размера крупного заполнителя, в зависимости от того, что больше. Это требование также распространяется на расстояние в свету между контактным стыком внахлест и соседними стыками и стержнями.

Требования к прозрачной крышке

Минимальная толщина бетонного покрытия над арматурой была определена с учетом достаточной огнестойкости и долговечности.Покрытие для армирования, отвечающее указанному периоду огнестойкости, имеет следующую информацию:

Пожар

Сопротивление

(часы)

Балки

плиты

столбцов

Простая поддержка

непрерывный

Простая поддержка

непрерывный

0.5

20

20

20

20

20

1,0

20

20

20

20

20

1.5

20

20

25

20

20

2,0

40

30

35

25

25

3.0

60

40

45

35

25

4,0

70

50

55

45

25

Крышка более 40 мм (1.57 дюймов) могут потребоваться дополнительные меры для снижения риска растрескивания.

Крышка от выкрашивания

Бетонный элемент

Минимум

Бетонное покрытие

(дюйм)

(мм)

Лицо в контакте с землей

3

75

Сообщите нам в комментариях, что вы думаете о концепциях в этой статье!

Минимальное и максимальное армирование в плите

Минимальное и максимальное армирование в плите | минимальное армирование в плите | максимальное армирование в плите | минимальное армирование в плите согласно IS 456 | минимальное армирование в плите согласно BS8110.

Минимальная и максимальная арматура в плите

Существует два типа продольных стальных стержней, предусмотренных в стержнях натяжения и сжатия RCC плиты, они предназначены для увеличения прочности плиты. Существуют различные стандарты, такие как код IS 456: 2000 и BS8110, которые объясняют, что такое минимальное и максимальное армирование, необходимое для плиты.

◆ Вы можете подписаться на меня на Facebook и подписаться на наш канал Youtube

Вам также следует посетить: —

1) что такое бетон, его виды и свойства

2) Расчет количества бетона для лестницы и его формула

Основной стержень из стали, также известный как перемычка, предусмотрен в более коротком направлении плиты, он также известен как стержень натяжения, используемый для противодействия действующей на него растягивающей нагрузке.Основные арматурные стержни используются для передачи изгибающего момента, возникающего в нижней части плиты.

Распределительные стержни, также известные как самые длинные стержни, используемые в самом длинном направлении плиты, это стержень сжатия, используемый для удержания плит в любом направлении и для противодействия трещинам и напряжениям сдвига, возникающим в верхней части.

У нас возникает множество вопросов, какое минимальное и максимальное армирование используется в плите. Как мы знаем, существуют различные типы стальных стержней, такие как стержни из мягкой стали (Fe 250) и стержни HYSD с высоким пределом текучести, такие как Fe415 и Fe500 и выше.Если мы используем более высокую марку стали, то минимальный процент / соотношение стального стержня, необходимого для сляба, если мы используем низкоуглеродистую сталь, тогда процентное соотношение стали увеличивается.

Минимальное и максимальное армирование в плите

Минимальное и максимальное армирование, используемое в RCC-плите, зависит от типа плиты: это будет односторонняя плита, двухсторонняя плита или плоская плита. Теперь вопрос в том, каков минимальный коэффициент армирования в плите и каково минимальное армирование, необходимое для работы RCC.

Какое значение минимального армирования Fe415 в плите

Какое значение минимального армирования fe415 в плите?: — Согласно IS 456: 2000 в плите согласно пункту 26.5.2.1, для HYSD / Fe415 / Fe500 и выше минимальное армирование должно составлять 0,12 процента от общей площади поперечного сечения ( B × D), где B = ширина плиты, а D — общая глубина, включая покрытие.

Какое минимальное армирование плиты из низкоуглеродистой стали

Какая минимальная арматура в плите, изготовленной из мягкой стали?: — Согласно IS 456: 2000 в плите, изготовленной в соответствии с разделом 26.5.2.1 для мягкой стали Fe250 минимальная арматура должна составлять 0,15% от общей площади поперечного сечения (B × D), где B = ширина плиты, а D — общая глубина, включая покрытие.

Минимальное армирование плиты с помощью HYSD составляет

Согласно IS 456: 2000 для плиты согласно пункту 26.5.2.1, для использования HYSD / Fe415 / Fe500 и выше минимальная арматура составляет 0,12 процента от общей площади поперечного сечения (B × D), где B = ширина плиты, а D — общая глубина, включая крышку.

Минимальное армирование в плите согласно IS 456

Согласно IS 456: 2000 в плитах согласно разделу 26.5.2.1, для мягкой стали (Fe250) минимальная арматура должна составлять 0,15% от общей площади поперечного сечения (B × D), а для арматуры с высоким пределом текучести HYSD / Fe 415 / Fe500 и выше минимальная арматура используется около 0,12% от общая площадь поперечного сечения (B × D). Максимальное армирование в плите ограничено 1-2% от общей общей площади поперечного сечения (B × D), где B — ширина плиты, а D — по всей глубине плиты, включая покрытие.

Минимальное армирование в плите

В плите минимальное армирование должно быть 0.12% общей площади сечения (B × D), принимая B = 1 м ширины плиты и D = общую глубину, включая покрытие, тогда минимальное армирование будет = 0,12 / 100 × × 100 × D = 0,12D кв. См.
В плите обеспечивается минимальное армирование (в обоих направлениях) для предотвращения усадки, тепловых перемещений, распределения нагрузок и т. Д.

Минимальное армирование в плите согласно BS8110

Согласно BS 8110 в плите, для низкоуглеродистой стали (Fe250) минимальное армирование должно составлять 0,24 процента от общей площади поперечного сечения (B × D), а для арматуры с высоким пределом текучести HYSD / Fe 415 / Fe500 и выше используется минимальное армирование. около 0.24% от общей площади поперечного сечения (B × D). Максимальное армирование в плите ограничено 1-2% от общей общей площади поперечного сечения (B × D), где B — ширина плиты, а D — по всей глубине плиты, включая покрытие.

Минимальное армирование плиты согласно коду ACI

В соответствии с Кодексом ACI, в плите минимальное армирование должно составлять 0,18% общей площади сечения (B × D), принимая B = 1 м ширины плиты и D = общую глубину, включая покрытие, тогда минимальное армирование будет = 0,18 / 100 × × 100 × D = 0.18D кв. См.
В плите обеспечивается минимальное армирование (в обоих направлениях) для предотвращения усадки, тепловых перемещений, распределения нагрузок и т. Д.

Расчет железобетонной колонны

согласно ACI 318-14 в RFEM

Анализ бетонной колонны

Железобетонная колонна с квадратными связями спроектирована так, чтобы выдерживать осевую статическую и временную нагрузку 135 и 175 тысяч фунтов соответственно с использованием конструкции ULS и факторных комбинаций нагрузок LRFD в соответствии с ACI 318-14 [1], как показано на рисунке 01 .Бетонный материал имеет предел прочности на сжатие f ‘ c , равный 4 тысячам фунтов на квадратный дюйм, в то время как арматурная сталь имеет предел текучести f и , равный 60 тысяч фунтов на квадратный дюйм. Первоначально предполагается, что процент стальной арматуры составляет 2%.

Рисунок 01 — Бетонная колонна — вид на фасаде

Размерный дизайн

Для начала необходимо рассчитать размеры поперечного сечения. Стойка квадратного сечения должна контролироваться на сжатие, так как все осевые нагрузки находятся строго на сжатии.Согласно таблице 21.2.2 [1] коэффициент снижения прочности Φ равен 0,65. При определении максимальной осевой прочности используется таблица 22.4.2.1 [1], в которой коэффициент альфа (α) устанавливается равным 0,80. Теперь можно рассчитать расчетную нагрузку P и .

P u = 1,2 (135 k) + 1,6 (175 k)

Исходя из этих факторов, P u равно 442 тысячам фунтов. Затем полное поперечное сечение A g может быть рассчитано по формуле. 22.4.2.2.

P u = (Φ) (α) [0.85 f ‘ c (A g — A st ) + f y A st ]

442k = (0,65) (0,80) [0,85 (4 тысячи фунтов) (A g — 0,02 A г ) + ((60 тысяч фунтов / кв. Дюйм) (0,02) A г )]

Решая для A г , мы получаем площадь 188 в 2 . Корень квадратный из A г. округляется в большую сторону, чтобы получить поперечное сечение 14 дюймов x 14 дюймов для колонны.

Требуемая стальная арматура

Теперь, когда A г установлен, площадь стального армирования A st можно рассчитать по формуле.22.4.2.2 путем подстановки известного значения A g = 196 в 2 и решения

442k = (0,65) (0,80) [0,85 (4 тысячи фунтов) (196 в 2 — A st ) + ((60 тысяч фунтов / кв. Дюйм) (A st ))]

Решение для A st дает значение 3,24 дюйма 2 . Отсюда можно определить количество стержней, необходимое для проектирования. Согласно разд. 10.7.3.1 [1], квадратный столбец должен иметь не менее четырех стержней. Исходя из этого критерия и минимально необходимой площади 3.24 в 2 , (8) № 6 стержней для стальной арматуры используется из Приложения А [1]. Это обеспечивает зону армирования ниже.

A st = 3,52 дюйма 2

Выбор галстука

Для определения минимального размера стяжки требуется разд. 25.7.2.2 [1]. В предыдущем разделе мы выбрали продольные стержни № 6, которые меньше стержней № 10. Основываясь на этой информации и разделе, выбираем № 3 для галстуков.

Расстояние между стяжками

Чтобы определить минимальные расстояния между стяжками, см. Разд.25.7.2.1 [1]. Связи, состоящие из деформированных стержней с замкнутыми петлями, должны иметь расстояние в соответствии с пунктами (a) и (b) этого раздела.

(a) Расстояние в свету должно быть не менее (4/3) d agg . Для этого расчета мы примем совокупный диаметр (d agg ) 1,00 дюйма

с min = (4/3) d agg = (4/3) (1,00 дюйма) = 1,33 дюйма

(b) Расстояние между центрами не должно превышать минимум 16d b диаметра продольного стержня, 48d b анкерного стержня или наименьшего размера элемента.

с Макс. = Мин. (16d b , 48d b , 14 дюймов)

16d b = 16 (0,75 дюйма) = 12 дюймов

48d b = 48 (0,375 дюймов) = 18 дюймов

Рассчитанное минимальное расстояние между стяжками равно 1,33 дюйма, а максимальное рассчитанное расстояние между стяжками равно 12 дюймам. Для данной конструкции максимальное расстояние между стяжками составляет 12 дюймов.

Проверка детализации

Теперь можно выполнить проверку детализации, чтобы проверить процент армирования.2} \; = \; 0.01795 \; \ cdot \; 100 \; \; = \; 1.8 \% $ O.K.

Расстояние между продольными стержнями

Максимальное расстояние между стержнями в продольном направлении может быть рассчитано на основе расстояния в прозрачной крышке и диаметра как стяжных, так и продольных стержней.

Максимальное расстояние между стержнями:

$ \ frac {14 \; \ mathrm {in}. \; — \; 2 \; (1.5 \; \ mathrm {in}.) \; — \; 2 \; ( 0,375 \; \ mathrm {in}.) \; — \; 3 \; (0,75 \; \ mathrm {in}.)} 2 \; = \; 4,00 \; \ mathrm {in}. $

4,00 дюйма менее 6 дюймов, что требуется в соответствии с 25,7.2.3 (а) [1]. ОК.

Минимальное продольное расстояние между стержнями может быть рассчитано по ссылке 25.2.3 [1], в которой указано, что минимальный продольный интервал для колонн должен быть, по крайней мере, наибольшим из значений от (a) до (c).

(a) 1,5 дюйма

(b) 1,5 d b = 1,5 (0,75 дюйма) = 1,125 дюйма

(c) (4/3) d b = (4/3) ( 1,00 дюйма) = 1,33 дюйма

Следовательно, минимальное продольное расстояние между стержнями равно 1,50 дюйма.

Длину развертки (L d ) также следует рассчитывать со ссылкой на 25.4.9.2 [1]. Это будет равно наибольшему из вычисленных ниже значений (a) или (b).

(a) $ {\ mathrm L} _ {\ mathrm {dc}} \; = \; \ left (\ frac {\ displaystyle {\ mathrm f} _ {\ mathrm y} \; \ cdot \; { \ mathrm \ psi} _ {\ mathrm r}} {\ displaystyle50 \; \ cdot \; \ mathrm \ lambda \; \ cdot \; \ sqrt {\ mathrm f ‘\; \ cdot \; \ mathrm c}} \ справа) \; \ cdot \; {\ mathrm d} _ {\ mathrm b} \; = \; \ left (\ frac {\ displaystyle \ left (60,000 \; \ mathrm {psi} \ right) \; \ cdot \; \ left (1.0 \ right)} {50 \; \ cdot \; \ left (1.0 \ right) \; \ cdot \; \ sqrt {4000 \; \ mathrm {psi}}} \ right) \; \ cdot \; \ left (0.75 \; \ mathrm {in}. \ Right) \; = \; 14.23 \; \ mathrm {in}. $

(b) $ {\ mathrm L} _ {\ mathrm {dc}} \; = \ ; 0.0003 \; \ cdot \; {\ mathrm f} _ {\ mathrm y} \; \ cdot \; {\ mathrm \ psi} _ {\ mathrm r} \; \ cdot \; {\ mathrm d} _ { \ mathrm b} \; = \; 0,0003 \; \ cdot \; (60000 \; \ mathrm {psi}) \; \ cdot \; (1.0) \; \ cdot \; (0,75 \; \ mathrm {in} .) \; = \; 13.5 \; \ mathrm {in}. $

В этом примере (a) — большее значение, поэтому L dc = 14,23 дюйма

Ссылаясь на 25.4.10.1 [1], Длина разработки умножается на отношение требуемой стальной арматуры к предоставленной стальной арматуре.2} \ right) \; = \; 0.65 \; \ mathrm {ft} $.

Усиленная квадратная анкерная колонна полностью спроектирована, ее поперечное сечение можно увидеть ниже на Рисунке 02.

Рисунок 02 — Железобетонная колонна — Расчет / размеры арматуры

Сравнение с RFEM

Альтернативой проектированию квадратной стяжки вручную является использование дополнительного модуля RF-CONCRETE Members и выполнение проектирования в соответствии с ACI 318-14 [1].Модуль определит необходимое армирование, чтобы противостоять приложенным нагрузкам на колонну. Кроме того, программа также спроектирует предоставленную арматуру на основе заданных осевых нагрузок на колонну с учетом требований стандарта по расстоянию. Пользователь может внести небольшие изменения в предоставленную схему армирования в таблице результатов.

На основе приложенных нагрузок для этого примера компания RF-CONCRETE Members определила требуемую площадь продольной арматуры стержня равной 1.92 в 2 и обеспеченная площадь 3,53 в 2 . Длина развертки, рассчитанная в дополнительном модуле, равна 0,81 фута. Расхождение по сравнению с длиной развертки, рассчитанной выше с помощью аналитических уравнений, связано с нелинейными расчетами программы, включая частный коэффициент γ. Коэффициент γ — это отношение предельных и действующих внутренних сил, взятое из RFEM. Длина развертки в RF-CONCRETE Members находится путем умножения обратного значения гаммы на длину, определяемую из 25.4.9.2 [1]. Более подробную информацию об этом нелинейном расчете можно найти в файле справки RF-CONCRETE Members, ссылка на который приведена ниже. Это армирование можно предварительно просмотреть на Рисунке 03.

Рисунок 03 — Стержни RF-CONCRETE — Предусмотренная продольная арматура

Предусмотренная поперечная арматура для элемента в RF-CONCRETE Members была рассчитана как (11) стержни № 3 с шагом (ями) 12 дюймов. Предоставленная компоновка поперечной арматуры показана ниже на Рисунке 04.

Рисунок 04 — Стержни RF-CONCRETE — Предусмотренное армирование на сдвиг

максимальный процент армирования в фундаменте

Минимальная температура и процент усадки A s: введите минимальный процент стали в процентах для удовлетворения требований к температуре и усадке основания (обычно 0,0018 Ag для F y = 60 000 фунтов на кв. Дюйм). Deb & Konai (2014) изменили процентное содержание мелких частиц в песке от 5% до 30% и обнаружили, что геотекстиль более эффективен для песка, содержащего 5% мелких частиц.Минимальное процентное содержание стали, требуемое в элементах изгиба, составляет 200 / f y с минимальной площадью, а максимальное расстояние между стальными стержнями в направлении изгиба должно соответствовать требованиям для армирования при температуре усадки. ‘.’ Несущая способность почвы (i). Минимальное усиление основания мата должно быть предусмотрено в соответствии с Разделом 7.12.2 ACI 318-08, как указано в Разделе 15.10.4 ACI. Î ± = β 1 (0,375 d), чтобы найти As-max. 5. Минимальный процент армирования для балок, колонн и перекрытий можно найти в таблице 3.25 BS 8110, часть 01 1997. • Чтобы арматурный стержень достиг своего предела текучести в критическом поперечном сечении, минимальная длина арматурного стержня (анкеровка) требуется с каждой стороны сечения. Очень важно изучить График изгиба стержней, чтобы узнать количество стальной арматуры, необходимое для каждого компонента здания. Предположим, рассмотрим случай высотного — фундамент конструктивно неэффективен. 5 ответов Сортировка: старые по последним оценкам. Максимально допустимая деформация в крайнем волокне бетона принимается равной 0.003. Минимум • Минимальный процент стали для слябов составляет 0,12% для стали HYSD и 0,15% для мягкой стали (Fe 250), а максимальный процент ограничен 2%, но может использоваться до 4%. Минимальное и максимальное усиление в процентах от общей CSA. то есть а) 0,12% площади поперечного сечения для деформированных стержней и б) 0,15% площади поперечного сечения для стержней из мягкой стали. … Подножка = от 0,12 до 0,15. Коэффициенты армирования. в случае опоры должна быть предусмотрена сталь. Для продольной арматуры используется минимум шесть стержней. б) 150 мм.Если конструкция фундамента работает как простой бетон, кодекс не требует наличия какого-либо количества армирования, и разрешается иметь любое количество между нулем и максимальным армированием, разрешенным в другом месте в кодексе (т. достаточно бетона для приклеивания стержней к… минимальному армированию в колонне; минимальная площадь армирования в колонне составляет 0,4% площади поперечного сечения колонны согласно BS 8110. Исходя из предельной деформации 0.005 в стали, x (или c) = 0,375d так. Каков минимальный и максимальный процент стали, используемой в колоннах, балках и перекрытиях? Увеличьте толщину фундамента, если требуется дополнительная прочность на сдвиг. Термин «максимальная безопасная несущая способность грунта» используется для обозначения максимального давления, которое может выдержать грунт без какого-либо риска сдвига… Более того, влияние стяжки… 024% 4% 250 масштаб 1: 30м. & 3.12.6.1) — Это, с одной стороны, поможет контролировать растрескивание, повысит прочность, а с другой — поможет укладке и уплотнению.Площадь армирования не должна быть менее 0,12% от Bd. Балка RCC может иметь максимальное усиление при растяжении: a) 6% bD b) 2% bD c) 3% bD d) 4% bD 202 Civil Engineering от Sandeep Jyani. В колоннах армирование можно рассчитать, приняв процент армирования в бетоне. Сумма, которую добавит фактор потерь в линейных футах. 5. Определите размер и усиление непрерывного фундамента под… Как этот ответ? Максимальное расстояние между основными стержнями, измеренное по периферии секции колонны, не должно превышать 300 мм.1. Линейные футы арматуры плюс количество отходов. Площадь армирования следует рассчитывать по обеим осям или брать максимум по одной. В соответствии с индийским стандартом максимальный процент армирования (как сжатой, так и растянутой стали) должен составлять 4% площади поперечного сечения балки (п. 26.5.1.2), то есть до сих пор я использовал 0,12%, учитывая, что фундамент представляет собой плиту. Максимальное армирование. Джузер Шейх, инженеры-строители = создатели. 23,5 тыс. Просмотров • Проголосовал Рави Бабу, инженер-строитель. Первоначальный ответ: Как рассчитать стальную арматуру и количество для плиты, балок, колонн и опор? Фундаменты — Общие свойства конструкции опор.в) 200 мм. Несущую способность бетона фундамента можно проверить по пункту 34.4 IS code 456: 2000. Этот аргумент также будет работать для стены ниже, или это опора, которая является большим прыжком для стены. Необходимое количество арматуры в линейных футах. Руководство RTA по проектированию конструкций и деталированию стальной арматуры OTB005 Выпуск 1 — Редакция 2 (05 марта 2010 г.) Стр. 3 из 3 Длина соединения внахлест стержней при растяжении должна быть не меньше длины развертки Lsy.t, указанной в пункте 23.3.2 выше. Основания Балки (слегка нагруженные) Балки Опорные балки Колонны (слегка нагруженные) Колонны Фундаментные балки Фундаменты Сваи Заглушки Плиты плиты Стропы Подпорные стены Ребристые плиты перекрытия Плиты — односторонние плиты — двухсторонние Лестницы Анкерные балки Передаточные плиты Стены — нормальные Стены — ветер. Балка RCC может иметь максимальное натяжение арматуры как:… 212. Процент стали для сбалансированного расчета однократно армированного прямоугольного сечения методом предельных состояний зависит от веса арматуры в кг / м3. 3.12.5.3.Максимальное армирование в колонне; Максимальная площадь армирования колонн следующая. 4. … продольное натяжение арматуры опоры. опора. Спирально армированные колонны 3.2.2 Конструктивные соображения согласно КОДЕКСА ACI Максимальные и минимальные коэффициенты армирования Кодекс ACI 10.9.1 указывает, что минимальный коэффициент армирования 1% должен использоваться в связанных или спирально армированных колоннах. поперечное сечение графика штанги. Изменение процентного снижения осадки основания (PRS) в зависимости от количества геотекстильного материала, используемого для геоячейки и плоского армирования с короткой, средней и длинной шириной армирования для двух уровней осадки неармированного основания, (a) s unrein / B = 4% и (б) s unrein / B = 8%.4.4 Детали армирования Код (BS8110) требует, чтобы окончательный проект обращал внимание на: 1. Пожалуйста, уточните минимальный процент армирования. В этой односторонней плите для ограничения движения лестничными башнями может потребоваться, чтобы площадь усадки и температурного армирования была вдвое больше, чем минимальная площадь, требуемая Разделом 7.12.2.1 ACI 318-02. (2018) изучали эффект случайного распределения волоконной арматуры, рассматривая пляжный песок как грунт — а) 100 мм. масштаб 1: 30м. Без дополнительной арматуры ширина трещин, перпендикулярных изгибаемой стали, может быть чрезмерной.Шаг 8: Проверьте наличие напряжений в подшипниках. Ответ: б. Вы можете обратиться к следующей таблице, чтобы найти требуемые коэффициенты армирования. комбинированной опорной детали. EC 7, кажется, не дает никаких указаний на минимальное усиление. Шаги дизайна для опоры. Плита спроектирована как односторонняя, если соотношение… Значения 1² 1 представлены в следующей таблице: Минимальное армирование. 3. Фундамент: поскольку имеется два слоя армирования, можно использовать среднее значение d. Чтобы определить площадь основания, примите 10% нагрузки как собственный вес основания: • AS3600â € 2009 указывает минимальную длину, называемую… Это связано с тем, что армирование мата — это… € ¦ г) 250 мм.Минимальное и максимальное процентное содержание стали в колонне, балке и плите. планка стержня продольно — секционная. Количество арматуры, которое необходимо обеспечить (например, 0,0018 bh для арматурной стали марки 60), рассчитано для каждой грани (верхней или нижней). jo, Основная причина ограничения процента армирования в стенах — облегчить заливку бетона. 3 4. детали комбинированной опоры. 2,70 м..90. балка опорная комбинированная марки ftb. Диаметр используемой стальной арматуры может составлять 10 или 12 мм, независимо от типа здания.(Кл. Максимальный процент армирования в стенах 18.02.2012, 13:15. По мере увеличения размера фундамента значение E q уменьшается для соответствующих условий армирования. 67. Балка уклона. Повышенная прочность на сдвиг секций, близких к опорам B- 6 КРУЧЕНИЕ B-6.1 Общее B-6.2 Критическое сечение B-6.3 Сдвиг и кручение B-6.4 Армирование в элементах, подвергающихся кручению ПРИЛОЖЕНИЕ C РАСЧЕТ ПРОГНОСА el • Вкладка «Общие» содержит свойства материала и другие специфические переключатели. Увеличение значения E q более выражен для меньшего размера основания.Средняя эффективная глубина определяется как davg = hc −’7,5cm−db, где db — диаметр стержня. Если высота этажа равна длине стены ПКР, процент увеличения прочности равен. Этот метод игнорирует влияние … основания и середины второй анкерной балки), а также максимальное процентное отношение … (B2) и максимальное процентное отношение дифференциального смещения к длине анкерной балки. 25 мм… @ 150 мм o.c сверху и снизу в обе стороны. Приведенные ниже значения рассчитаны как процент от… 100As / Ac = 0.4. Если вы мне не верите, взгляните на • Количество L полосок. EC 2, который я проверил в его выпуске EN 1992-1-1: 2004 (E), касается минимального армирования в разделах 7.3, когда речь идет о борьбе с трещинами (это может быть рассмотрено в… a) 0. b) 10. в) 20. г) 30. большое количество бетона и арматуры. 5- Проверьте толщину опоры на сдвиг балки в каждом направлении. Следует отметить разницу между двумя терминами, а именно максимальной безопасной несущей способностью грунта и допустимым давлением на грунт.. Напряжение в арматуре ниже указанного предела текучести fy принимается как Es (модуль упругости арматуры), умноженный на деформацию стали µs. Нравится 1 Не нравится 0 âš Сообщить. График изгиба стержня для опор: — График изгиба стержня играет жизненно важную роль при строительстве высотных зданий. Минимальная арматура, описанная для плиты, применима также и для фундамента. Для прочности, превышающей fy, напряжение в арматуре считается независимым от деформации и… Максимальный процент стали в секции колонны не должен превышать 4% 3.3 2. Фундамент колонны (1-я ступень) Фундамент • армирование с учетом различных параметров. При необходимости введите коэффициент потерь (в процентах). Результаты. Я смотрел спецификации в EC 7 и EC 2, когда речь шла о сваях. Недавно люди говорили, что минимальный процент стали должен соответствовать IS 456 (Cl.26.5.1.1), что составляет около 0,205%. Программа прибавит 1/2 дюйма к этому значению и вычтет результат из толщины основания, чтобы определить расстояние изгиба «d». 25 мм… @ 150 мм o.c сверху и снизу b.ш. При железобетонном основании на грунте минимальная толщина по краю не должна быть меньше чем. Шаг 9: Проверьте… 68. Kodicherla et al. Ответ: б. 54 Алмасмум А.А. представлены. максимальное значение, которое встречается в изолированном основании. Количество угловых стержней. 90-130 100-150 150-300 • Ответил на вопрос: Дипак 25 февраля 2016 г. Определите необходимую площадь для проектирования фундамента. Обеспечивается минимальное армирование, даже если бетон может противостоять растяжению, чтобы контролировать растрескивание. Сумма результата 3 деленная на 20.Когда размер фундамента удваивается, максимальное процентное уменьшение значения E q составляет порядка 48%. Армирование в односторонних и двусторонних фундаментах должно быть распределено по всей ширине фундамента … Плита / перемычка: минимальное процентное содержание стали = 0,7% ∴Количество стали = (0,7 / 100) x 1 = 0,007 м³ Вес стали = 0,007 x 7850 = 54,95 Š55 кг / м³ Максимальный процент стали = 1,0% ∴ Количество стали = (1,0 / 100) x 1 = 0,01 м³ Вес стали = 0,01 x 7850 = 78,5 кг / м³ Балка: минимальное процентное содержание… Допустимые пропорции стали регулируются ACI 318-14, раздел 24.4.3 (ACI 318-11, раздел 7.12.2.1), в котором указано, что минимальное соотношение стали для стали сортов 40 или 50 составляет 0,0020. 25.

Проектирование железобетонных конструкций: Глава 4 (продолжение 3)

В предыдущий раздел мы видели шаги, необходимые для завершения проектной части. В этом разделе мы увидим правила, которым мы должны следовать при укладке стали внутри балки.
Минимум расстояние между стержнями балки
В свободное пространство между параллельными арматурными стержнями не должно быть меньше минимального значения, указанного в п. 26.3.2 кодекса. Для балка, минимальное расстояние, указанное в коде, показано на рис. 4.10 ниже:

Рис. 4.10
Минимальное расстояние между стержнями по горизонтали

На рис. 4.10 (а) показан случай, когда все нижние стержни балки такого же диаметра. На рис. 4.10 (б) показан случай, когда столбики в нижнем слое используются разные диаметры.

На основе рис. 4.10 (a) мы можем написать уравнение для быстрого вычисления S h :
Eq.4,12
S h = [b — ( 2C c + 2 32 Φ Φ )] / 2


Где Φ — это диаметр основного стержня, а Φ l — диаметр звеньев.Это уравнение применимо, когда нижние стержни содержат только 3 стержня, и все они имеют одинаковый диаметр.

Если на рис. Средняя полоса другого диаметра, уравнение. можно записать как:
Ур. 4.13
S h = [b — ( 2C c + 2 1 2 л + 2 Φ 1 + Φ 2 )] / 2 2 — это диаметр двух кромочных стержней, а Φ 2 — это диаметр среднего стержня.

От обеспечивая интервал, превышающий этот минимальный интервал, мы можем гарантировать этот бетон равномерно укладывается между стержнями и вокруг них и хорошо уплотняется при укладке свежего бетона.
В в целом плиты требуют низкого процента изгиба армирование. То есть, когда мы берем 1 м шириной плиты толщиной D м, площадь сечение плиты будет 1 xD = D м 2 , а только меньший процент этого D м 2 требуется, поскольку площадь натяжная сталь A st .Таким образом, будет достаточно места для размещения требуется сталь в один слой. И не нужно будет уменьшать интервал между столбцы до значений, которые ниже указанных минимальных требуемых значений. Но лучи будут имеющий ограниченную ширину и требующий относительно более высокого процента армирование на изгиб. Итак, когда мы расставляем стержни, давая необходимое минимальное расстояние S h между планками и прозрачной крышкой C c требуется с двух сторон, общее необходимое пространство может превышать ширина луча.На рис. 4.11 показан такой пример:

Рис. 4.11
Недостаточная ширина балки
На рис. 4.11 пусть Dia. Φ всех четырех стержней в нижнем слое = 20 мм; Диаметр звеньев Φ л = 10 мм; C c = 30 мм; Размер aggegate = 20 мм. Тогда S h = больше {20} и {20 +5} = 25 мм. Таким образом, общая необходимая ширина балки =

2 C c + 2 Φ l + 4 Φ +3 S h = 235 мм

Но общая доступная ширина составляет всего 200 мм.В такой ситуации возможны следующие варианты: считается: • Увеличивать ширина луча

• Место стержни в два или более слоев с минимально необходимым шагом между слоями, как показано на рис. 4.12
• Свяжите группы параллельных брусьев, как показано на рис. 4.13. Каждый комплект может иметь две, три или четыре планки


Рис. 4.12
Стержни балки, уложенные слоями
Рис. 4.13
Связки стержней в балке

Краткое описание связанных стержней и «Эквивалентного диаметра» можно увидеть здесь .


Максимально допустимое расстояние между стержнями балки.
В свободное пространство между параллельными арматурными стержнями не должно быть больше максимального значения, указанного в коде. (п. 26.3.3). В в случае балок максимально допустимые значения получаем из таблицы 15. кода. В этой таблице указано четкое расстояние между параллельными арматурные стержни или группы возле натянутой грани балки. В чистое расстояние, которое мы предоставляем между планками, не должно превышать эти значения.Обеспечивая безопасное расстояние меньше допустимого значений, мы можем гарантировать, что ширина трещин будет минимальной, а также что между стержнями и бетоном имеется достаточное сцепление.

В следующем разделе мы обсудим минимальные и максимальные области растянутой стали в балках.

Bentley — Документация по продукту

MicroStation

Справка MicroStation

Ознакомительные сведения о MicroStation

Справка MicroStation PowerDraft

Ознакомительные сведения о MicroStation PowerDraft

Краткое руководство по началу работы с MicroStation

Справка по синхронизатору iTwin

ProjectWise

Служба поддержки Bentley Automation

Ознакомительные сведения об услуге Bentley Automation

Сервер композиции Bentley i-model для PDF

Подключаемый модуль службы разметки

PDF для ProjectWise Explorer

Справка администратора ProjectWise

Справка службы загрузки данных ProjectWise Analytics

Коннектор ProjectWise для ArcGIS — Справка по расширению администратора

Коннектор ProjectWise для ArcGIS — Справка по расширению Explorer

Коннектор ProjectWise для ArcGIS Справка

Коннектор ProjectWise для Oracle — Справка по расширению администратора

Коннектор ProjectWise для Oracle — Справка по расширению Explorer

Коннектор ProjectWise для справки Oracle

Коннектор управления результатами ProjectWise для ProjectWise

Справка портала управления результатами ProjectWise

Ознакомительные сведения по управлению поставками ProjectWise

Справка ProjectWise Explorer

Справка по управлению полевыми данными ProjectWise

Справка администратора геопространственного управления ProjectWise

Справка ProjectWise Geospatial Management Explorer

Ознакомительные сведения об управлении геопространственными данными ProjectWise

Модуль интеграции ProjectWise для Revit Readme

Руководство по настройке управляемой конфигурации ProjectWise

Справка по ProjectWise Project Insights

ProjectWise Plug-in для Bentley Web Services Gateway Readme

ProjectWise ReadMe

Матрица поддержки версий ProjectWise

Веб-справка ProjectWise

Справка по ProjectWise Web View

Справка портала цепочки поставок

Услуги цифрового двойника активов

PlantSight AVEVA Diagrams Bridge Help

PlantSight AVEVA PID Bridge Help

Справка по экстрактору мостов PlantSight E3D

Справка по PlantSight Enterprise

Справка по PlantSight Essentials

PlantSight Открыть 3D-модель Справка по мосту

Справка по PlantSight Smart 3D Bridge Extractor

Справка по PlantSight SPPID Bridge

Управление эффективностью активов

Справка по AssetWise 4D Analytics

AssetWise ALIM Web Help

Руководство по внедрению AssetWise ALIM в Интернете

AssetWise ALIM Web Краткое руководство, сравнительное руководство

Справка по AssetWise CONNECT Edition

AssetWise CONNECT Edition Руководство по внедрению

Справка по AssetWise Director

Руководство по внедрению AssetWise

Справка консоли управления системой AssetWise

Анализ моста

Справка по OpenBridge Designer

Справка по OpenBridge Modeler

Строительное проектирование

Справка проектировщика зданий AECOsim

Ознакомительные сведения AECOsim Building Designer

AECOsim Building Designer SDK Readme

Генеративные компоненты для справки проектировщика зданий

Ознакомительные сведения о компонентах генерации

Справка по OpenBuildings Designer

Ознакомительные сведения о конструкторе OpenBuildings

Руководство по настройке OpenBuildings Designer

OpenBuildings Designer SDK Readme

Справка по генеративным компонентам OpenBuildings

Ознакомительные сведения по генеративным компонентам OpenBuildings

Справка OpenBuildings Speedikon

Ознакомительные сведения OpenBuildings Speedikon

OpenBuildings StationDesigner Help

OpenBuildings StationDesigner Readme

Гражданское проектирование

Помощь в канализации и коммунальных услугах

Справка OpenRail ConceptStation

Ознакомительные сведения по OpenRail ConceptStation

Справка по OpenRail Designer

Ознакомительные сведения по OpenRail Designer

Справка конструктора надземных линий OpenRail

Справка OpenRoads ConceptStation

Ознакомительные сведения по OpenRoads ConceptStation

Справка по OpenRoads Designer

Ознакомительные сведения по OpenRoads Designer

Справка по OpenSite Designer

Файл ReadMe OpenSite Designer

Инфраструктура связи

Справка по Bentley Coax

Справка по Bentley Communications PowerView

Ознакомительные сведения о Bentley Communications PowerView

Справка по Bentley Copper

Справка по Bentley Fiber

Bentley Inside Plant Help

Справка по OpenComms Designer

Ознакомительные сведения о конструкторе OpenComms

Справка OpenComms PowerView

Ознакомительные сведения OpenComms PowerView

Справка инженера OpenComms Workprint

OpenComms Workprint Engineer Readme

Строительство

ConstructSim Справка для руководителей

ConstructSim Исполнительное ReadMe

ConstructSim Справка издателя i-model

Справка по планировщику ConstructSim

ConstructSim Planner ReadMe

Справка стандартного шаблона ConstructSim

ConstructSim Work Package Server Client Руководство по установке

Справка по серверу рабочих пакетов ConstructSim

Руководство по установке сервера рабочих пакетов ConstructSim

Справка управления SYNCHRO

SYNCHRO Pro Readme

Энергетическая инфраструктура

Справка конструктора Bentley OpenUtilities

Ознакомительные сведения о Bentley OpenUtilities Designer

Справка по подстанции Bentley

Ознакомительные сведения о подстанции Bentley

Справка подстанции OpenUtilities

Ознакомительные сведения о подстанции OpenUtilities

Promis.e Справка

Promis.e Readme

Руководство по установке Promis.e — управляемая конфигурация ProjectWise

Руководство по настройке подстанции

— управляемая конфигурация ProjectWise

Геотехнический анализ

PLAXIS LE Readme

Ознакомительные сведения о PLAXIS 2D

Ознакомительные сведения о программе просмотра вывода PLAXIS 2D

Ознакомительные сведения о PLAXIS 3D

Ознакомительные сведения о программе просмотра 3D-вывода PLAXIS

PLAXIS Monopile Designer Readme

Управление геотехнической информацией

Справка администратора gINT

Справка gINT Civil Tools Pro

Справка gINT Civil Tools Pro Plus

Справка коллекционера gINT

Справка по OpenGround Cloud

Гидравлика и гидрология

Справка Bentley CivilStorm

Справка Bentley HAMMER

Справка Bentley SewerCAD

Справка Bentley SewerGEMS

Справка Bentley StormCAD

Справка Bentley WaterCAD

Справка Bentley WaterGEMS

Управление активами линейной инфраструктуры

Справка по услугам AssetWise ALIM Linear Referencing Services

Руководство администратора мобильной связи TMA

Справка TMA Mobile

Картография и геодезия

Справка карты OpenCities

Ознакомительные сведения о карте OpenCities

OpenCities Map Ultimate для Финляндии Справка

Карта OpenCities Map Ultimate для Финляндии Readme

Справка по карте Bentley

Справка по мобильной публикации Bentley Map

Ознакомительные сведения о карте Bentley

Проектирование шахты

Справка по транспортировке материалов MineCycle

Ознакомительные сведения по транспортировке материалов MineCycle

Моделирование мобильности и аналитика

Справка по подготовке САПР LEGION

Справка по построителю моделей LEGION

Справка по API симулятора LEGION

Ознакомительные сведения об API симулятора LEGION

Справка по симулятору LEGION

Моделирование и визуализация

Bentley Посмотреть справку

Ознакомительные сведения о Bentley View

Морской структурный анализ

SACS Close the Collaboration Gap (электронная книга)

Ознакомительные сведения о SACS

Анализ напряжений труб и сосудов

AutoPIPE Accelerated Pipe Design (электронная книга)

Советы новым пользователям AutoPIPE

Краткое руководство по AutoPIPE

AutoPIPE & STAAD.Pro

Завод Дизайн

Ознакомительные сведения об экспортере завода Bentley

Bentley Raceway and Cable Management Help

Bentley Raceway and Cable Management Readme

Bentley Raceway and Cable Management — Руководство по настройке управляемой конфигурации ProjectWise

Справка по OpenPlant Isometrics Manager

Ознакомительные сведения о диспетчере изометрических данных OpenPlant

Справка OpenPlant Modeler

Ознакомительные сведения для OpenPlant Modeler

Справка по OpenPlant Orthographics Manager

Ознакомительные сведения для менеджера орфографии OpenPlant

Справка OpenPlant PID

Ознакомительные сведения о PID OpenPlant

Справка администратора проекта OpenPlant

Ознакомительные сведения для администратора проекта OpenPlant

Техническая поддержка OpenPlant Support

Ознакомительные сведения о технической поддержке OpenPlant

Справка PlantWise

Ознакомительные сведения о PlantWise

Реализация проекта

Справка рабочего стола Bentley Navigator

Моделирование реальности

Справка консоли облачной обработки ContextCapture

Справка редактора ContextCapture

Файл ознакомительных сведений для редактора ContextCapture

Мобильная справка ContextCapture

Руководство пользователя ContextCapture

Справка Декарта

Ознакомительные сведения о Декарте

Структурный анализ

Справка по концепции RAM

Справка по структурной системе RAM

STAAD Close the Collaboration Gap (электронная книга)

STAAD.Pro Help

Ознакомительные сведения о STAAD.Pro

STAAD.Pro Physical Modeler

Расширенная справка по STAAD Foundation

Дополнительные сведения о STAAD Foundation

Детализация конструкций

Справка ProStructures

Ознакомительные сведения о ProStructures

ProStructures CONNECT Edition Руководство по внедрению конфигурации

ProStructures CONNECT Edition Руководство по установке — Управляемая конфигурация ProjectWise

.

LEAVE A REPLY

Ваш адрес email не будет опубликован. Обязательные поля помечены *