Можно ли минвату штукатурить: Можно ли штукатурить по утеплителю из минеральной ваты? — Farbe
Утепление минватой под штукатурку
Использование минеральной ваты для утепления снаружи различных строений имеет существенные преимущества по сравнению с другими теплоизоляционными материалами:
- Минвата имеет один из лучших параметров теплоизоляции среди всех материалов такого типа. Ее теплопроводность составляет 0,040-0,055 Вт/м*К, в зависимости от марки и производителя материала;
- В качестве дополнительного полезного свойства выступает высокий уровень звукоизоляции. Для этого подойдет специальная звукоизоляционная вата. Отделка минватой фасадов жилых домов, находящихся возле оживленных автострад или железнодорожных переездов, существенно снижает уровень шумового загрязнения внутри помещений;
- В отличие от пенопласта минеральная вата является негорючим материалом, температура плавления которого составляет +1000 °C;
- Материал проявляет довольно высокую стойкость к внешним механическим воздействиям;
- Срок эксплуатации значительно превышает аналогичный показатель у большинства других теплоизоляционных материалов;
- Плиты минеральной ваты, даже обладающие высокой плотностью, имеет хороший уровень паропроницаемости;
- Материал стоек к проявлениям биологической коррозии — грибку, плесени, мху, гниению.
Кирпичный дом, утепленный минеральной ватой
Одной из наиболее эффективных технологий утепления домов с использованием минеральной ваты с последующей декоративной отделкой, является мокрый фасад.
Необходимые материалы и инструменты
- Материалы:
- Фасадная минвата;
- Специальный клей;
- Направляющий профиль;
- Полимерная сетка для армирования;
- Дюбеля «бабочки» для дополнительного крепления;
- Декоративные смеси для штукатурки фасадов;
- Грунтовка.
- Инструменты:
- Строительный миксер или дрель со смешивающей насадкой;
- Шпатель, зубчатый шпатель, полутерок;
- Водяной уровень.
Этапы выполнения работ
Схема размещения слоев материалов по технологии мокрый фасад
Подготовка основания. Поверхность стен очищается от пыли и грязи, все рыхлые и непрочные участки удаляются, материал обрабатывается грунтовкой глубокого проникновения. Все металлические детали, которые могут заржаветь удаляются.
Монтаж направляющего (стартового) профиля. Он закрепляется внизу на высоте не менее 60 см от уровня грунта. Крепление осуществляется обычными строителями дюбелями с шагом 15-20 см. В качестве стартового профиля рекомендуется использовать специализированный профиль из оцинкованной жести, допускается применение деревянных брусьев соответствующей ширины. Однако их необходимо в обязательном порядке обработать антисептическими средствами.
Приклеивание плит. Специальный клей для минваты замешивается в соответствии с инструкцией указанной на упаковке. Клей наносится на всю поверхность плиты с отступом в 3-5 см от ее края. Утеплитель прижимается к поверхности основания на 2-3 мин.
Дополнительное крепление дюбелями бабочка. Осуществляется после полного высыхания клеевой смеси (от 5 часов до нескольких суток в зависимости от производителя и погодных условий). Количество дюбелей зависит от высоты установки теплоизоляции. Для частных домов и малоэтажного строительства достаточно 5 дюбелей на 1 м2;
Крепление плит
Нанесение армирующего слоя. Внешняя поверхность минераловатных плит покрывается тем же клеем, который был использован для их приклеивания. В нанесенный раствор вдавливается армирующая сетка, после выравнивания сетки наносится еще один слой клея. Для полного высыхания чернового слоя может потребоваться до 7 суток.
Нанесение армирующей сетки
Декоративно защитный слой. Наиболее популярными материалами являются декоративные фактурные штукатурки «короед», «шуба» и «барашек». Они наносятся в соответствии с давно разработанными технологиями. Эти материалы довольно тяжелые для использования непрофессионалами, поэтому перед их применением имеет смысл попытаться оштукатурить небольшую поверхность для получения практических навыков.
характеристики материала, технология утепления фасада под штукатурку
Владельцы частных домов для поддержания в помещении комфортной температуры довольно часто пользуются электрическими нагревателями. Но если здание недостаточно утеплено, то происходит утечка тепла, вследствие чего расходуется много электроэнергии. Для решения этой проблемы специалисты рекомендуют производить утепление фасадов минватой. Это удержит в помещении тепло, защитит стены от неблагоприятных природных факторов и поможет выполнить декоративную функцию.
Чтобы произвести монтаж минеральной ваты своими руками, рекомендуется изучить технические характеристики материала и вникнуть в суть технологии процесса.
Содержание
1 Характеристики минваты для фасада
1.1 Преимущества минеральной ваты
2 Технология утепления фасада минеральной ватой
2.1 Подготовка фасада к утеплению
2.2 Монтаж профиля
2.3 Нанесение клеевой смеси
2.
4 Монтаж плит минеральной ваты своими руками
2.5 Нанесение армированной штукатурки
2.6 Подготовка к нанесению декоративной штукатурки
3 Завершающая отделка стен
4 Несколько полезных советов
Характеристики минваты для фасада
При утеплении фасада здания применяется специальная минеральная вата, предназначенная для наружных работ. По сравнению с утеплителем для внутренних работ, она является более прочной, плотной и влагоустойчивой. Фасадная минвата продается в матах или плитах, размеры которых могут быть 50х100 см и 60х120 см. При выборе материала следует обратить внимание на его плотность, которая должна быть не менее 80 кг на кубический метр.
Преимущества минеральной ваты
На сегодняшний день строительный рынок предлагает достаточно много материалов, с помощью которых можно утеплять различные здания. Одним из наиболее популярных считается минеральная вата, обладающая различными положительными свойствами. Достоинства минваты:
- Низкий коэффициент теплопроводимости. За счет этого свойства утечка тепла из помещения практически не происходит, а значит, расходы на электроэнергию снижаются.
- Отличные звукоизоляционные свойства. Материал обладает упругостью, за счет чего отражает различные звуки.
- Огнестойкость. Благодаря этому свойству минвата повышает пожаробезопасность всего здания.
- Водонепроницаемость. С помощью материала обеспечивается изоляция строения от сырости.
- Экологичность. Безопасную для здоровья минеральную вату могут использовать даже аллергики.
- Хороший воздушный обмен. Пропускающий воздух материал способствует созданию внутри помещения благоприятного для проживания климата.
Кроме всех вышеперечисленных преимуществ минеральной ваты, можно еще отметить то, что она не представляет интереса для мелких грызунов, поэтому отлично подойдет для утепления частного дома или дачи.
Технология утепления фасада минеральной ватой
Внешняя теплоизоляция дома считается наиболее удачным вариантом, так как не занимает драгоценную площадь помещения. Работы по утеплению фасадов своими руками начинаются с подготовки необходимых материалов и инструментов.
Для монтажа минеральной ваты понадобится:
Подготовка фасада к утеплению
Утеплитель должен монтироваться на очищенную поверхность, внешние стены здания должны быть гладкими и ровными.
Удалить рекомендуется как выступающие, так и металлические элементы, которые со временем могут начать ржаветь. Если имеющийся на стенах металл удалить невозможно, то акриловой декоративной штукатуркой фасад лучше не оформлять. Связано это с тем, что этот строительный материал препятствует проникновению воздуха, а значит, металлические детали будут ржаветь и портить внешний вид сооружения.
Перед началом работ по теплоизоляции с поверхностей должно быть удалено старое покрытие, масляные жидкости, пыль и грязь. Стены должны быть исключительно чистыми.
Монтаж профиля
Проверив с помощью строительного уровня ровность поверхности, и убедившись в отсутствии выпуклостей и впадин, можно приступать к установке цокольного профиля. Он необходим для того, чтобы:
- Защитить утеплитель от механического воздействия.
- Удерживать плиты на фасадной стене.
- Предохранять материал от намокания при сильных ливнях.
Чтобы закрепить профиль, в стене здания под распорные пластиковые дюбели следует просверлить монтажные отверстия. После этого отрезки профиля устанавливаются и крепятся шурупами, которые вкручиваются в дюбели.
Нанесение клеевой смеси
Клеевые растворы для установки минваты под штукатурку должны обладать следующими свойствами:
- стойкостью к воздействию ультрафиолета, холода, тепла, осадков;
- нужной степенью паронепроницаемости;
- высокой степенью адгезии.
Перед применением смесь разбавляется водой строго по инструкции и размешивается до однородного состояния.
Подготовленный раствор с помощью кельмы наносится не очень толстым слоем на плиты минеральной ваты. При этом в центре должно быть несколько точек раствора, а на краях материала ширина слоя клея должна быть в 45-55 мм. То есть на плите должна получиться своеобразная рамочка.
Монтаж плит минеральной ваты своими руками
Промазанный утеплитель должен быть установлен на стену. Монтаж следует начинать от угла здания и крепить листы поочередно горизонтальными рядами. Чтобы не было зазоров, используется податливость плит, которые нужно перемещать по вертикали и горизонтали. Листы должны быть установлены в шахматном порядке, то есть как при кирпичной кладке.
Приклеенный материал дополнительно следует закрепить специальными дюбелями. При этом используется примерно 5-7 крепежных элементов на один квадратный метр минеральной ваты. Прибиваются листы посередине и по углам.
Если во время крепления утеплителя к фасаду образовались углубления, то их следует зашпаклевать клеевым составом.
Нанесение армированной штукатурки
Такая смесь состоит из следующих ингредиентов:
- клеевого состава;
- пластифицирующих добавок;
- водоотталкивающих добавок;
- кварцевого песка;
- добавок, защищающих поверхность от ультрафиолетового излучения.
Штукатурка разводится необходимым по инструкции количеством воды, тщательно размешивается и наносится на минеральную вату тонким слоем.
Подготовка к нанесению декоративной штукатурки
В первую очередь поверхности обрабатываются грунтовкой:
- На плиты наносится и вдавливается тонкий грунтующий слой.
- На углы здания устанавливаются перфорированные уголки, оснащенные армирующей сеткой.
- На углы дверей и окон крепятся дополнительные куски сетки, размер которых должен быть 20х30 см.
- Высохшая грунтовка покрывается штукатурным раствором. Использовать для этого рекомендуется зубчатый шпатель.
На следующем этапе раствор необходимо закрыть армированной сеткой. Для этого ее с помощью гладкой стороны терки следует вдавить в раствор так, чтобы он полностью закрыл сетку. При наклеивании полотнищ сетки нужно делать перехлест, который должен быть равен 10 см.
Для повышения адгезионных свойств штукатурки, ее рекомендуется с помощью широкой кисти обработать специальной грунтовочной смесью.
Утепленные минеральной ватой стены укрываются от осадков минимум на один день. Если погода влажная, то изолировать фасад следует не меньше чем на неделю.
Завершающая отделка стен
Декоративная штукатурка не только украсит фасад здания, но и защитит стены от плесени и грибка.
Способы нанесения декоративной штукатурки:
- Торцевание. Этот метод подразумевает использование смоченной в мыльной воде резиновой или натуральной губки. После этого поверхность по своей фактуре получается похожей на природный камень.
- Начес. Нанесенная на стену штукатурка как бы «причесывается» металлической щеткой с проволочными ворсинками. После того как штукатурка подсохнет, плохо прикрепленные частицы удаляются ветошью.
- Штамповка. Это самый простой способ нанесения материала, при котором используется обтянутый сеткой с рисунком валик.
Несколько полезных советов
Специалисты по утеплению фасадов при использовании для теплоизоляции минеральной ваты рекомендуют:
- Выбирать толщину утеплителя в соответствии с климатическими условиями.
Если плиты для утепления необходимой толщины найти не удалось, то листы можно установить в два слоя. Располагать при этом их следует вразбежку, а не вровень друг с другом.
- Оставшиеся после монтажа кусочки минваты могут пригодиться для заделывания просветов и щелей, образовавшихся на неровных стенах здания.
- При утеплении фасада минеральной ватой нельзя наносить на материал акриловую штукатурку. Пропускающий воздух и влагу акрил уменьшению сроку службы постройки.
- Для качественной установки нижней плиты следует использовать специальный металлический карниз. Монтируется он на цоколь здания и крепится дюбелями.
- Если утепленная армированная стена получилась не очень ровной, то выровнять ее можно с помощью чернового оштукатуривания.
Технология утепления фасада минватой достаточно проста. Поэтому практически каждый может провести такие работы своими руками. Качественно и точно выполненная теплоизоляция минеральной ватой защитит дом от возможных климатических «сюрпризов» и сделает его теплым и уютным.
- Автор: Ярослав Першин
- Распечатать
(1 голос, среднее: 1 из 5)
Поделитесь с друзьями!Adblockdetector
Новый гипсовый композит с минераловатными волокнами от CDW Recycling
На этой странице
АннотацияВведениеРезультаты и обсуждениеВыводыСсылкиАвторское правоСтатьи по теме За последнее десятилетие в результате интенсивной деятельности строительной отрасли образовалось большое количество отходов строительства и сноса (CDW). В частности, в Европе ежегодно образуется около 890 млн т КДВ; однако только 50% из них перерабатываются. В Испании за последние годы образовалось 40 миллионов тонн отходов строительства и сноса. С другой стороны, с момента введения в действие Технического строительного кодекса использование минеральной ваты в качестве строительного изоляционного материала стало распространенным решением как при реконструкции, так и при новом строительстве, и из-за этого этот вид отходов изоляции увеличивается. В этом исследовании анализируется потенциал нового композита (отходы гипса и волокна), включающего несколько отходов минеральной ваты в гипсовую матрицу. С этой целью был разработан экспериментальный план, характеризующий физико-механическое поведение, а также твердость по Шору C нового композита в соответствии со стандартами UNE.
1. Введение
За последнее десятилетие в результате интенсивной деятельности строительного сектора образовалось большое количество отходов строительства и сноса (CDW). В частности, в Европе ежегодно образуется около 890 млн т КДВ; однако только 50% из них перерабатываются [1]. В 2010 г. в Европе образовалось около 857 млн т КДВ, включая опасные отходы и почвы, а расчетный объем отходов минеральной ваты в этом году составил 2,3 млн т [2]. Соответственно, 0,2% всех производимых КДВ составляет минеральная вата.
Минеральная вата широко используется в качестве строительного изоляционного материала, на долю которого приходится около 60% всего рынка строительной изоляции [3]. В Европе годовой объем производства минеральной ваты в натуральном выражении в период с 2003 по 2011 год показал средний темп роста 0,91%. Значения на Рисунке 1 показывают большие колебания объемов производства по годам, но общая тенденция объемов производства заключается в ежегодном росте.
Из-за важности этих отходов европейские страны проводят в жизнь национальные и международные политики, а также другие меры, направленные на минимизацию негативного воздействия образования и обращения с отходами на здоровье человека и окружающую среду. Целью политики обращения с отходами также является сокращение использования ресурсов и, следовательно, их воздействия на окружающую среду.
В Испании за последние годы образовалось 40 миллионов тонн отходов строительства и сноса, 72% приходится на жилищные работы и 28% на строительные работы [4]. Поэтому строительный сектор, и особенно жилищное строительство, должен ставить перед собой цель уменьшить вредное воздействие, которое он производит. Следовательно, необходимо введение новых мер по предотвращению КДВ или поиск новых путей утилизации КДВ.
В Испании Королевский указ 105/2008 от 1 февраля является документом, который в настоящее время регулирует отходы строительства и сноса на национальном уровне, включая производство и управление КДВ [5]. Этот Королевский указ является важным элементом политики Испании в отношении CDW и способствует устойчивому развитию такого важного сектора испанской экономики, как строительная отрасль. Среди основных целей, предложенных этим Королевским указом, можно выделить содействие повторному использованию и переработке инертных отходов от строительных и сносных работ.
По данным веб-сайта AFELMA (Испанская ассоциация производителей изоляционных материалов из минеральной ваты), на рисунке 2 показаны общие продажи (в миллионах евро) и производство (в кубических метрах) изоляционной минеральной ваты (стекловата и минеральная вата). с 2006 по 2013 год в Испании [6]. Отходы минеральной ваты, изучаемые в данном исследовании, классифицируются в Европейском списке отходов (EWL) как 17 06 04 «Изоляционный материал, не содержащий асбеста и вредных веществ», и характеризуются низким уровнем повторного использования, скоростью переработки и другими факторами. пути выздоровления. Поэтому проведенные здесь исследования изучают возможность включения отходов минеральной ваты ЦДВ в качестве сырья в гипсовую матрицу с целью сокращения их вывоза на свалки.
Предыдущие исследования были сосредоточены на армировании гипса или гипсовых материалов путем включения волокон. В целом, результаты показали улучшение прочности на изгиб и снижение прочности на сжатие (Таблица 1) по сравнению со значениями, полученными со штукатуркой без каких-либо добавок (эталон).
Среди натуральных волокон, используемых для армирования штукатурки/гипса, можно выделить следующие: короткие волокна целлюлозы, сизаля и соломы. Поведение штукатурки, армированной волокнами сизаля, обсуждалось де Отейса Сан Хосе и Эрнандес-Оливарес [7, 16]. Более того, исследования Клёка и Рахмана проанализировали использование бумажного волокна в качестве армирующего материала для гипса [17, 18]. Гипс, армированный соломенным волокном, изучали Гао или Варди [19]., 20].
Было обнаружено много ссылок на добавление синтетических и минеральных волокон в гипс или гипсовую матрицу, в основном полимерных и стеклянных волокон. Али, Ву и дель Рио Мерино изучали механические свойства стекловолокна Е, используемого для армирования гипса [8, 9, 21]. Сантос исследовал новый гипсовый материал с гранулами пенополистирола и короткими пропиленовыми волокнами [10], а также теоретическую модель механического поведения гипса и композита из его полимерных волокон [11]. Кроме того, Дэн и Фуруно также исследовали гипс, армированный полипропиленовыми волокнами [12]. Однако ни одно из волокон, использованных в вышеупомянутых исследованиях, не было получено в процессе переработки. Поэтому исследований по армированию гипсовых композитов добавлением отходов минераловатных волокон не обнаружено.
Кроме того, существует множество исследований по добавлению переработанных материалов, промышленных отходов или CDW, в штукатурку, гипс, бетон или раствор. Переработанные заполнители обычно добавляют в бетон, строительные растворы и асфальт, заменяя натуральные заполнители в слоях дорожного основания и подстилающего слоя. Агилар, Йода и Аббас охарактеризовали бетонный материал, полученный с использованием переработанных заполнителей после сноса бетонных конструкций [22–24]. К.-Л. Лин и С.-Ю. Лин изучал использование золы отработанного шлама в качестве сырья для цемента [25]. Также найдены другие исследования, посвященные добавлению CDW в гипсовую матрицу. Madariaga и Macia изучали добавление пенополистирольных отходов (EPS) в гипс и гипсовые конгломераты для строительства [26]. Кроме того, Демирбога и Кан проанализировали добавление модифицированных отходов пенополистирола (MEPS) в бетон [27]. Сабадор и др. исследовали шлам мелованной бумаги в материале с пуццолановыми свойствами [28]. дель Рио Мерино исследовал гипс, облегченный пробкой, и его применение в качестве гипсокартона в строительстве [29].].
Кроме того, после тщательного изучения литературы и научных статей, посвященных гипсовым композитам, исследований, посвященных минеральной вате из КДВ, обнаружено не было. Поэтому основной целью данного исследования является изучение физико-механических характеристик отходов минеральной ваты, добавляемых в гипсовую матрицу, и возможность создания нового композита с менее значительным воздействием на окружающую среду.
2. Экспериментальный план
Испытания проводились в Лаборатории строительных материалов Школы строительства Мадридского технического университета (UPM). Условия окружающей среды лаборатории: °С средней температуры и % относительной влажности воздуха.
2.1. Материалы
В качестве материалов использовались гипс и переработанные волокна CDW (минеральная вата, каменная вата и стекловата).
Используемый гипс классифицируется как E-30-E35 в зависимости от его происхождения (конгломерат с гипсовой основой) в соответствии со стандартом UNE 13.279-1 [30] и является продуктом, сертифицированным знаком N AENOR. В таблице 2 представлены основные характеристики гипса E35 Iberyola быстросхватывающегося фирмы Placo, использованного в данном исследовании.
Минеральная вата представляет собой гибкий материал из неорганических волокон, состоящий из переплетенных нитей каменных материалов, образующих войлок, который содержит и удерживает воздух в неподвижном состоянии. Их получают плавлением, центрифугированием и другими видами обработки, и они используются в строительстве в качестве тепло- и звукоизоляции. Некоторые производители минеральной ваты включают в свои этикетки подробную экологическую информацию о каждом продукте, указывая как энергию, необходимую для его производства, так и количество образующихся отходов. В таблице 3 показан пример этого.
Отличие от других изоляционных материалов в том, что это огнестойкий материал с температурой плавления выше 1200°C. В зависимости от минерала, используемого в качестве сырья, существует два вида ваты: стеклянная вата, полученная из стекла, и каменная вата, полученная из базальтовой породы. Обе шерсти продаются во многих форматах, но в основном в виде панелей, жестких или полужестких листов.
В связи с тем, что минеральная вата изготавливается из базальта, некоторые производители считают, что она является натуральным продуктом, на 100% пригодным для повторного использования и, таким образом, идеальным для разработки экологически безопасных строительных проектов [31]. Кроме того, минеральная вата также может быть использована для создания новой ваты. В частности, мы находим следующий процент вторичной переработки: 66% минеральной ваты, отбракованной в процессе производства, и 75% стекловаты [32]. Переработанное стекло также добавляется в процессе производства стекловаты.
Однако, поскольку обе минеральные ваты требуют большого количества энергии для своего производства, представляется интересным поискать другое назначение, как для материала, выброшенного в процессе производства, так и для ЦДВ, потому что этот материал не подвергался переработке, повторному использованию, или процесс восстановления.
Отходы минеральной ваты, используемые в этом исследовании, были получены в новом строящемся здании, расположенном в Мадриде (Испания). В частности, отходы стекловаты получены из панелей минеральной стекловаты, продаваемых Ursa Glasswool, в соответствии со стандартом UNE EN 13162 [33], не гидрофильных и покрытых крафт-бумагой, напечатанной в качестве пароизоляции. Их потенциальное использование — в качестве изоляционного материала как для кирпичной кладки, так и для фасадов с двойными стенками. В Таблице 4 показаны основные характеристики используемой стекловаты Ursa.
С другой стороны, отходы минеральной ваты, используемые в этом исследовании, были получены из панели минеральной ваты Ursa Terra. Эта панель без покрытия, поставляемая в рулонах, соответствует требованиям стандарта UNE EN 13162 и обычно используется в качестве изоляционного материала для внутренних перегородок и панельных стен. В таблице 5 показаны его основные характеристики.
И стеклянная, и каменная вата подвергались одинаковой переработке для включения в гипсовую матрицу; то есть они измельчаются в течение двух минут в машине мощностью 1500 Вт и частотой 50780 Гц (рис. 3).
2.2. Методы
Сначала проводится исследование под микроскопом, чтобы установить полные характеристики переработанной шерсти. Впоследствии были изготовлены различные образцы для испытаний размером 4 × 4 × 16 см из гипса Е35, переработанного камня и стекловаты в соответствии со стандартом UNE-EN 13279-2 [34].
Было проведено четырнадцать серий с использованием предварительно обработанных отходов минеральной ваты с соотношением масса/масса 0,6 и 0,8 и от 1% до 10% отходов минеральной ваты. Затем было проведено одиннадцать серий с обработанными отходами стекловаты с соотношением масса/масса 0,6 и 0,8 и от 1% до 10% отходов стекловаты. В обоих случаях при превышении 10% добавки шерстяных отходов удобоукладываемость смеси становилась невозможной. Поэтому добавки потребуются, если процент отходов шерсти повышен.
На рис. 4 показано, как стекловата и каменная вата равномерно распределяются при включении в гипсовую матрицу.
Измерения твердости по Шору C были выполнены в соответствии с UNE-EN 102-039-85 [35], а эталонным стандартом для прочности на изгиб и сжатие был UNE-EN 13279-2 с использованием модели машины Ibertest.
3. Результаты и обсуждение
Полученные средние результаты приведены в таблице 6 и более подробно описаны в следующих подразделах.
3.

Окончательные механические свойства зависят не только от добавленного процентного содержания волокон, но и от специфической связи между волокном и матрицей, вклада, который важен для прочности материала. Поэтому был проведен микроскопический анализ, чтобы определить длину волокон, их состав и сцепление между матрицей и переработанными волокнами.
Как видно на рисунках 5 и 6, волокна минеральной ваты и стекловаты, использованные в этом исследовании, имели толщину менее 0,05 мм, а их длина варьировалась от 10 до 30 мм.
Микроскопическое сцепление можно проанализировать по внутренним поверхностным контактам между матрицей и волокнами. В такого рода отношениях поведение можно наблюдать, устанавливая его извлекающую силу. Чем больше сила связи и чем компактнее матрица внутри, тем больше вклад в усилие извлечения. Этот вклад в повышение прочности равен нулю, если волокно по всей длине заключено в пору. Склеивание улучшается, когда волокна имеют шероховатую или пористую поверхность.
3.2. Сухая объемная плотность
Добавление отходов минеральной ваты в гипсовую матрицу приводит к увеличению плотности во всех случаях, проанализированных в данном исследовании (рис. 7). Результаты показывают, что при добавлении отходов минеральной ваты (до 4 %) в гипсовую матрицу достигаются значения плотности, аналогичные полученным по эталонной серии (менее 3 % отклонения). Это отклонение увеличивается при превышении 4% добавки отходов минеральной ваты. Это увеличение незначительно, так как самая большая разница составляет около 6,75% для образца с добавлением 10% минеральной ваты (RW) и 6% для образца с добавлением 10% стекловаты (GW) (таблица 6).
3.3. Твердость по Шору С
Добавление отходов минеральной ваты в гипсовую матрицу во всех случаях влечет за собой увеличение твердости поверхности (рис. 8). Значения поверхностной твердости по Шору С увеличиваются и достигают максимума при 4% образце минеральной ваты. С таким процентом отходов результаты на 14,64 % выше, чем у эталонной серии для переработанной минеральной ваты и на 11,23 % для переработанной стекловаты. С этого момента твердость немного снижается, но всегда остается выше эталонного значения.
3.4. Прочность на изгиб
Значительное увеличение прочности наблюдается при увеличении количества отходов минеральной ваты (Рисунок 9).
Образцы, содержащие отходы минеральной ваты (до 3,5%), сохраняют значения прочности на изгиб, близкие к контрольным, с изменением менее 5%. Если отходы минеральной ваты добавляются в количестве 4% или более, прочность на изгиб постоянно увеличивается, достигая разницы в 26,58% по сравнению с результатами эталонного образца. Эта ситуация достигается при добавлении 10% отходов минеральной ваты.
Для образцов, содержащих отходы стекловаты, предел прочности при растяжении при изгибе снижается по мере увеличения процентного содержания отходов, уменьшаясь на 12,36% при добавлении 2% по сравнению с эталонными значениями. С этого момента прочность увеличивается по мере увеличения процента добавления, достигая увеличения на 34,38% по отношению к эталонным значениям для серии с добавлением 10% отходов стекловаты.
Плотность и механическая прочность напрямую связаны; увеличение обоих свойств связано с увеличением процентного содержания переработанной минеральной ваты. Рисунок 10 показывает, что образцы с более высокой плотностью достигли более высокой прочности на изгиб в сериях, содержащих отходы стекловаты (GW) или минеральной ваты (RW).
3.5. Прочность на сжатие
Прочность на сжатие нового композита с обеими минеральными ватами была ниже, чем у эталонного образца. Тем не менее, все результаты превышали минимальное значение, установленное UNE-EN 13279-1 для строительных гипсовых композитов (6 МПа) (рис. 11).
4. Выводы
В данном исследовании изучались и обсуждались физико-механические свойства нового композитного материала, армированного вторичной минеральной ватой в гипсовой матрице. По результатам проведенного исследования можно сделать следующие выводы: (1) Максимальный процент отходов минеральной ваты, принимаемый смесью, при весовом соотношении 0,8 и 0,6 составляет 10% (по массе), в том числе более высокое содержание отходов минеральной ваты, которые превышают объем штукатурки и, таким образом, затрудняют ее удобоукладываемость и увеличивают количество воздуха внутри образцов. (2) Обнаружена хорошая совместимость между отходами минеральной ваты, используемыми в строительстве, и гипсовой матрицей. Несмотря на то, что минеральная вата плохо впитывает воду, она равномерно распределяется внутри образцов, не плавая в смеси. (3) Гипсовый композит с переработанными отходами минеральной ваты, проанализированный в этом исследовании, увеличивает плотность до 6,75%. по сравнению с эталонными образцами при использовании отходов минеральной ваты и 6,07% при использовании отходов стекловаты. (4) Значения твердости поверхности по Шору С постепенно увеличиваются до достижения максимального значения для образца, содержащего 4% отходов минеральной ваты. На этом уровне значение поверхностной твердости превышает более чем на 10% эталонные значения для обеих минеральных ват. (5) Прочность на изгиб увеличивается с увеличением количества переработанной минеральной ваты. Эти значения могут превышать 34,88% эталонных образцов при добавлении переработанной стекловаты и 26,58% при добавлении переработанной минеральной ваты.
(6) Значения прочности на сжатие, полученные с обоими типами ваты, ниже, чем у эталонных образцов. Тем не менее, результаты превышают 6 МПа, что является наиболее строгим значением прочности на сжатие, установленным UNE-EN 13279.-1 стандарт. Таким образом, согласно проведенным испытаниям, пропорции смесей, изученных до сих пор, могут быть использованы в качестве гипса или «специального гипса» для строительства. (7) Среди различных исследованных отходов минеральной ваты отходы стекловаты являются наиболее подходящими. для использования в качестве добавки к новым гипсовым композитам без ухудшения механических свойств. Прочность на изгиб увеличивается более чем на 30% по сравнению с эталонной серией и более чем на 5% по сравнению с образцами отходов минеральной ваты. В соответствии с показателями прочности на сжатие отходы стекловаты ниже, чем результаты, полученные с отходами минеральной ваты, и, таким образом, минимальное значение, требуемое UNE-EN13279.-1 стандарт выполнен. (8) Прочность на изгиб, полученная с переработанной минеральной ватой, немного выше, чем результаты, полученные в предыдущих исследованиях гипса/гипса, армированного волокнами, такими как короткие волокна сизаля, или даже ниже по сравнению с другими волокнами, таких как акриловое, полипропиленовое, полиэфирное и стекловолокно Е.
Более того, результаты прочности на сжатие, полученные как с отходами каменной, так и со стеклянной ваты, выше, чем результаты, полученные другими авторами с полипропиленовыми, стекловолокнами Е и полиэфирными волокнами. Тем не менее, для серий с добавлением акриловых волокон результаты ниже, чем для серий с волокнами вторичной минеральной ваты и волокнами вторичной стекловаты с добавкой более 3,5%. подходит для включения в изделия на основе гипса. Например, его можно встроить в сердцевину гипсокартона, увеличивая его прочность на изгиб. Это поможет сократить огромные объемы отходов, накапливаемых на полигонах, и, следовательно, минимизировать как социальные, так и экологические издержки.
Конфликт интересов
Авторы заявляют об отсутствии конфликта интересов в отношении публикации данной статьи.
Ссылки
П. Виллория Саес, М. Дель Рио Мерино и К. Поррас-Аморес, «Оценка образования объемов отходов строительства и сноса в новых жилых зданиях в Испании», Управление отходами и исследования , том .
Посмотреть по адресу: Сайт издателя | Академия Google30, нет. 2, стр. 137–146, 2012 г.
А. М. Пападопулос, «Современное состояние теплоизоляционных материалов и цели будущих разработок», Energy and Buildings , vol. 37, стр. 77–86, 2005.
Посмотреть по адресу: Сайт издателя | Google ScholarО. Вэнци и Т. Кярки, «Отходы минеральной ваты в Европе: обзор количества, качества и текущих методов переработки отходов минеральной ваты», Journal of Material Cycles and Waste Management , vol. 16, нет. 2014. Т. 1. С. 62–72.
Посмотреть по адресу: Сайт издателя | Академия GoogleМинистерство окружающей среды и сельского хозяйства и Марино, 2008 г. де-лос-остатки строительства и сноса, 2008.
Afelma, Asociación de Fabricantes españoles de lanas Minerales Aislantes (s.f.), 2015 г., http://www.aislar.com/.
И. де Отейса Сан-Хосе, «Исследование поведения полугидратированного гипса, армированного сизалевым волокном, в качестве компонентов недорогого жилья», в Informes de la construcción , pp.
Посмотреть по адресу: Google Scholar425–426, 1993.
Али М. А. и Граймер Ф. Дж. гипс», Journal of Materials Science , том. 4, нет. 5, стр. 389–395, 1969.
Посмотреть по адресу: Сайт издателя | Google ScholarМ. дель Рио Мерино и П. Комино Альменара, «Анализ рефуэрзос микстос де фибрас де видрио E y fibras AR en la escayola, como alternativa a los refuerzos monofibras (homogéneos)», Materiales de Construcción , vol. 52, нет. 268, стр. 33–42, 2002.
Посмотреть по адресу: Google ScholarА. Г. Сантос, «PPF-reenfocad, EPS-облегченная гипсовая штукатурка», Materiales de Construcción , том. 59, нет. 293, pp. 105–124, 2009.
Посмотреть по адресу: Google ScholarAG Santos, Теорическая модель механического оборудования дель дасо и компьюестос фиброзный полимерос [Ph.D. диссертация] , 1988.
Ю.-Х. Денг и Т. Фуруно, «Свойства гипсоволокнистых плит, армированных полипропиленовыми волокнами», Journal of Wood Science , vol.
Посмотреть по адресу: Сайт издателя | Google Scholar47, нет. 6, стр. 445–450, 2001.
PLACO, «Placo Saint-Gobain», 2015 г., http://www.placo.es.
Посмотреть по адресу: Google ScholarURSA, Технический паспорт панели Mur P1281.
URSA, (s.f.), Технический паспорт Ursa Terra—R.
Ф. Эрнандес-Оливарес, И. Отейса и Л. де Вильянуэва, «Экспериментальный анализ повышения прочности и модуля разрыва полугидратированного гипса, армированного короткими волокнами сизаля», Composite Structures , vol. 22, нет. 3, стр. 123–137, 1992.
Посмотреть по адресу: Сайт издателя | Google ScholarВ. Клёк и С. Айхер, «Эффект размера в гипсовых панелях, армированных бумажным волокном, при изгибе в плоскости», Wood and Fiber Science , том. 37, нет. 3, стр. 403–412, 2005.
Просмотр по адресу: Google ScholarТ. Рахман, В. Лутц, Р. Финн, С. Шмаудер и С.
Посмотреть по адресу: Сайт издателя | Google ScholarАйхер, «Моделирование механического поведения и повреждения в компонентах, изготовленных из гипсовых материалов, армированных целлюлозным волокном, смягчающих деформацию», Computational Materials Science , vol. 39, нет. 1, стр. 65–74, 2007 г.
З. Гао и Г. Ли, «Влияние модификации волокна соломы на характеристики гипсового композита», Advanced Materials Research , vol. 168–170, стр. 1455–1458, 2011.
Посмотреть по адресу: Сайт издателя | Google ScholarС. Варди и К. МакДугалл, «Эксперименты по концентрическому и эксцентрическому сжатию сборок из оштукатуренных соломенных блоков», Journal of Structural Engineering , vol. 139, нет. 3, стр. 448–461, 2013 г.
Посмотреть по адресу: Сайт издателя | Google ScholarЮ.-Ф. Ву и М.П. Дэйр, «Прочность на изгиб и сдвиг композитных перемычек в стеновых конструкциях из гипса, армированного стекловолокном», Журнал материалов гражданского строительства , вып.
Посмотреть по адресу: Сайт издателя | Google Scholar18, нет. 3, стр. 415–423, 2006 г.
Дж. К. Агилар, Д. Н. Мендоса, Р. Х. Фуэртес, Б. Б. Гонсалес, А. Т. Гилмор и Р. П. Рамирес, «Характеристика гормигонов, разработанная с учетом повторных обращений к продуктам разрушения конструкций». de hormigón», Materiales de Construcción , vol. . 57, нет. 288, стр. 5–15, 2007.
Посмотреть по адресу: Google ScholarК. Йода и А. Шинтани, «Применение переработанного заполнителя в строительстве для наземных структурных элементов», Строительство и строительные материалы, , том. 67, стр. 379–385, 2014.
Посмотреть по адресу: Сайт издателя | Google ScholarA. Abbas, G. Fathifazl, B. Fournier et al., «Количественная оценка содержания остаточного раствора в переработанных бетонных заполнителях с помощью анализа изображений», Materials Characterization , том. 60, нет. 7, стр. 716–728, 2009.
Посмотреть по адресу: Сайт издателя | Google ScholarК.
Посмотреть по адресу: Сайт издателя | Google Scholar-Л. Лин и С.-Ю. Лин, «Характеристики гидратации золы отработанного шлама, используемой в качестве сырья для цемента», Cement and Concrete Research , vol. 35, нет. 10, стр. 1999–2007, 2005.
Ф. Дж. Мадариага и Дж. Л. Масиа, «Mezclas de residuos de poliestireno Expandido (EPS) conglomerados con yeso o escayola para su uso en la construcción», Informes de la Construcción , vol. 60, нет. 509, стр. 35–43, 2008.
Посмотреть по адресу: Google ScholarР. Демирбога и А. Кан, «Теплопроводность и усадочные свойства модифицированных отходов полистирольных заполнителей», Строительство и строительные материалы , том. 35, стр. 730–734, 2012.
Посмотреть по адресу: Сайт издателя | Google ScholarЭ. Сабадор, М. Фриас, М. И. Рохас, Р. Виджил, Р. Гарсия и Х. Т. Хосе, «Характеристики и преобразование промышленных остатков (lodo de papel estucado) en un material con propiedades puzolánicas, Materiales de Construcción , vol.
Посмотреть по адресу: Google Scholar57, нет. 285, pp. 45–59, 2007.
М. дель Рио Мерино, «Да, алигерадо кон корчо и су приложение в панелях для строительства», Патент №. ES2170612A1, OEPM, Мадрид, Испания, 2002 г.
Просмотр по адресу: Google ScholarAENOR, «Конструкторские и конгломератные предприятия, являющиеся базой для строительства. Часть 1: определения и особенности», UNE-EN 13279-1, AENOR, Мадрид, Испания, 2009 г.
Посмотреть по адресу: Google ScholarПожаробезопасная изоляция Rockwool, http://www.rockwool.es.
ISOVER — Saint Gobain, http://www.isover.es.
AENOR, «Productos aislantes térmicos para aplicaciones en la edificación. Productos manufacturados de la Mineral (MW). Особенности», Тех. Отчет UNE-EN 13162, AENOR, Мадрид, Испания, 2009 г.
Посмотреть по адресу: Google ScholarAENOR, «Yesos de construcción y conglomerantes a base de yeso para la construcción.
Посмотреть по адресу: Google ScholarParte 2: métodos de ensayo», UNE-EN 13279-2, AENOR, Мадрид, Испания, 2014 г. строительство. Определение де ла Dureza Shore C, и де ла Dureza Brinell», Tech. Rep. UNE-EN 102-039-85, AENOR, Madrid, Spain, 1985.
Copyright
Copyright © 2015 Sonia Romaniega Piñeiro et al. Это статья с открытым доступом, распространяемая в соответствии с лицензией Creative Commons Attribution License, которая разрешает неограниченное использование, распространение и воспроизведение на любом носителе при условии надлежащего цитирования оригинальной работы.
Новый гипсовый композит с волокнами минеральной ваты от CDW Recycling0003
За последнее десятилетие в результате интенсивной деятельности строительного сектора образовалось большое количество отходов строительства и сноса (CDW). В частности, в Европе ежегодно образуется около 890 млн т КДВ; однако только 50% из них перерабатываются. В Испании за последние годы образовалось 40 миллионов тонн отходов строительства и сноса. С другой стороны, с момента введения в действие Технического строительного кодекса использование минеральной ваты в качестве строительного изоляционного материала стало распространенным решением как при реконструкции, так и при новом строительстве, и из-за этого этот вид отходов изоляции увеличивается. В этом исследовании анализируется потенциал нового композита (отходы гипса и волокна), включающего несколько отходов минеральной ваты в гипсовую матрицу. С этой целью был разработан экспериментальный план, характеризующий физико-механическое поведение, а также твердость по Шору C нового композита в соответствии со стандартами UNE.
1. Введение
За последнее десятилетие в результате интенсивной деятельности строительного сектора образовалось большое количество отходов строительства и сноса (CDW). В частности, в Европе ежегодно образуется около 890 млн т КДВ; однако только 50% из них перерабатываются [1]. В 2010 г. в Европе образовалось около 857 млн т КДВ, включая опасные отходы и почвы, а расчетный объем отходов минеральной ваты в этом году составил 2,3 млн т [2]. Соответственно, 0,2% всех производимых КДВ составляет минеральная вата.
Минеральная вата широко используется в качестве строительного изоляционного материала, на долю которого приходится около 60% всего рынка строительной изоляции [3]. В Европе годовой объем производства минеральной ваты в натуральном выражении в период с 2003 по 2011 год показал средний темп роста 0,91%. Значения на Рисунке 1 показывают большие колебания объемов производства по годам, но общая тенденция объемов производства заключается в ежегодном росте.
Из-за важности этих отходов европейские страны проводят в жизнь национальные и международные политики, а также другие меры, направленные на минимизацию негативного воздействия образования и обращения с отходами на здоровье человека и окружающую среду. Целью политики обращения с отходами также является сокращение использования ресурсов и, следовательно, их воздействия на окружающую среду.
В Испании за последние годы образовалось 40 миллионов тонн отходов строительства и сноса, 72% приходится на жилищные работы и 28% на строительные работы [4]. Поэтому строительный сектор, и особенно жилищное строительство, должен ставить перед собой цель уменьшить вредное воздействие, которое он производит. Следовательно, необходимо введение новых мер по предотвращению КДВ или поиск новых путей утилизации КДВ.
В Испании Королевский указ 105/2008 от 1 февраля является документом, который в настоящее время регулирует отходы строительства и сноса на национальном уровне, включая производство и управление КДВ [5]. Этот Королевский указ является важным элементом политики Испании в отношении CDW и способствует устойчивому развитию такого важного сектора испанской экономики, как строительная отрасль. Среди основных целей, предложенных этим Королевским указом, можно выделить содействие повторному использованию и переработке инертных отходов от строительных и сносных работ.
По данным веб-сайта AFELMA (Испанская ассоциация производителей изоляционных материалов из минеральной ваты), на рисунке 2 показаны общие продажи (в миллионах евро) и производство (в кубических метрах) изоляционной минеральной ваты (стекловата и минеральная вата). с 2006 по 2013 год в Испании [6]. Отходы минеральной ваты, изучаемые в данном исследовании, классифицируются в Европейском списке отходов (EWL) как 17 06 04 «Изоляционный материал, не содержащий асбеста и вредных веществ», и характеризуются низким уровнем повторного использования, скоростью переработки и другими факторами. пути выздоровления. Поэтому проведенные здесь исследования изучают возможность включения отходов минеральной ваты ЦДВ в качестве сырья в гипсовую матрицу с целью сокращения их вывоза на свалки.
Предыдущие исследования были сосредоточены на армировании гипса или гипсовых материалов путем включения волокон. В целом, результаты показали улучшение прочности на изгиб и снижение прочности на сжатие (Таблица 1) по сравнению со значениями, полученными со штукатуркой без каких-либо добавок (эталон).
Среди натуральных волокон, используемых для армирования штукатурки/гипса, можно выделить следующие: короткие волокна целлюлозы, сизаля и соломы. Поведение штукатурки, армированной волокнами сизаля, обсуждалось де Отейса Сан Хосе и Эрнандес-Оливарес [7, 16]. Более того, исследования Клёка и Рахмана проанализировали использование бумажного волокна в качестве армирующего материала для гипса [17, 18]. Гипс, армированный соломенным волокном, изучали Гао или Варди [19]., 20].
Было обнаружено много ссылок на добавление синтетических и минеральных волокон в гипс или гипсовую матрицу, в основном полимерных и стеклянных волокон. Али, Ву и дель Рио Мерино изучали механические свойства стекловолокна Е, используемого для армирования гипса [8, 9, 21]. Сантос исследовал новый гипсовый материал с гранулами пенополистирола и короткими пропиленовыми волокнами [10], а также теоретическую модель механического поведения гипса и композита из его полимерных волокон [11]. Кроме того, Дэн и Фуруно также исследовали гипс, армированный полипропиленовыми волокнами [12]. Однако ни одно из волокон, использованных в вышеупомянутых исследованиях, не было получено в процессе переработки. Поэтому исследований по армированию гипсовых композитов добавлением отходов минераловатных волокон не обнаружено.
Кроме того, существует множество исследований по добавлению переработанных материалов, промышленных отходов или CDW, в штукатурку, гипс, бетон или раствор. Переработанные заполнители обычно добавляют в бетон, строительные растворы и асфальт, заменяя натуральные заполнители в слоях дорожного основания и подстилающего слоя. Агилар, Йода и Аббас охарактеризовали бетонный материал, полученный с использованием переработанных заполнителей после сноса бетонных конструкций [22–24]. К.-Л. Лин и С.-Ю. Лин изучал использование золы отработанного шлама в качестве сырья для цемента [25]. Также найдены другие исследования, посвященные добавлению CDW в гипсовую матрицу. Madariaga и Macia изучали добавление пенополистирольных отходов (EPS) в гипс и гипсовые конгломераты для строительства [26]. Кроме того, Демирбога и Кан проанализировали добавление модифицированных отходов пенополистирола (MEPS) в бетон [27]. Сабадор и др. исследовали шлам мелованной бумаги в материале с пуццолановыми свойствами [28]. дель Рио Мерино исследовал гипс, облегченный пробкой, и его применение в качестве гипсокартона в строительстве [29].].
Кроме того, после тщательного изучения литературы и научных статей, посвященных гипсовым композитам, исследований, посвященных минеральной вате из КДВ, обнаружено не было. Поэтому основной целью данного исследования является изучение физико-механических характеристик отходов минеральной ваты, добавляемых в гипсовую матрицу, и возможность создания нового композита с менее значительным воздействием на окружающую среду.
2. Экспериментальный план
Испытания проводились в Лаборатории строительных материалов Школы строительства Мадридского технического университета (UPM). Условия окружающей среды лаборатории: °С средней температуры и % относительной влажности воздуха.
2.1. Материалы
В качестве материалов использовались гипс и переработанные волокна CDW (минеральная вата, каменная вата и стекловата).
Используемый гипс классифицируется как E-30-E35 в зависимости от его происхождения (конгломерат с гипсовой основой) в соответствии со стандартом UNE 13. 279-1 [30] и является продуктом, сертифицированным знаком N AENOR. В таблице 2 представлены основные характеристики гипса E35 Iberyola быстросхватывающегося фирмы Placo, использованного в данном исследовании.
Минеральная вата представляет собой гибкий материал из неорганических волокон, состоящий из переплетенных нитей каменных материалов, образующих войлок, который содержит и удерживает воздух в неподвижном состоянии. Их получают плавлением, центрифугированием и другими видами обработки, и они используются в строительстве в качестве тепло- и звукоизоляции. Некоторые производители минеральной ваты включают в свои этикетки подробную экологическую информацию о каждом продукте, указывая как энергию, необходимую для его производства, так и количество образующихся отходов. В таблице 3 показан пример этого.
Отличие от других изоляционных материалов в том, что это огнестойкий материал с температурой плавления выше 1200°C. В зависимости от минерала, используемого в качестве сырья, существует два вида ваты: стеклянная вата, полученная из стекла, и каменная вата, полученная из базальтовой породы. Обе шерсти продаются во многих форматах, но в основном в виде панелей, жестких или полужестких листов.
В связи с тем, что минеральная вата изготавливается из базальта, некоторые производители считают, что она является натуральным продуктом, на 100% пригодным для повторного использования и, таким образом, идеальным для разработки экологически безопасных строительных проектов [31]. Кроме того, минеральная вата также может быть использована для создания новой ваты. В частности, мы находим следующий процент вторичной переработки: 66% минеральной ваты, отбракованной в процессе производства, и 75% стекловаты [32]. Переработанное стекло также добавляется в процессе производства стекловаты.
Однако, поскольку обе минеральные ваты требуют большого количества энергии для своего производства, представляется интересным поискать другое назначение, как для материала, выброшенного в процессе производства, так и для ЦДВ, потому что этот материал не подвергался переработке, повторному использованию, или процесс восстановления.
Отходы минеральной ваты, используемые в этом исследовании, были получены в новом строящемся здании, расположенном в Мадриде (Испания). В частности, отходы стекловаты получены из панелей минеральной стекловаты, продаваемых Ursa Glasswool, в соответствии со стандартом UNE EN 13162 [33], не гидрофильных и покрытых крафт-бумагой, напечатанной в качестве пароизоляции. Их потенциальное использование — в качестве изоляционного материала как для кирпичной кладки, так и для фасадов с двойными стенками. В Таблице 4 показаны основные характеристики используемой стекловаты Ursa.
С другой стороны, отходы минеральной ваты, используемые в этом исследовании, были получены из панели минеральной ваты Ursa Terra. Эта панель без покрытия, поставляемая в рулонах, соответствует требованиям стандарта UNE EN 13162 и обычно используется в качестве изоляционного материала для внутренних перегородок и панельных стен. В таблице 5 показаны его основные характеристики.
И стеклянная, и каменная вата подвергались одинаковой переработке для включения в гипсовую матрицу; то есть они измельчаются в течение двух минут в машине мощностью 1500 Вт и частотой 50780 Гц (рис. 3).
2.2. Методы
Сначала проводится исследование под микроскопом, чтобы установить полные характеристики переработанной шерсти. Впоследствии были изготовлены различные образцы для испытаний размером 4 × 4 × 16 см из гипса Е35, переработанного камня и стекловаты в соответствии со стандартом UNE-EN 13279-2 [34].
Было проведено четырнадцать серий с использованием предварительно обработанных отходов минеральной ваты с соотношением масса/масса 0,6 и 0,8 и от 1% до 10% отходов минеральной ваты. Затем было проведено одиннадцать серий с обработанными отходами стекловаты с соотношением масса/масса 0,6 и 0,8 и от 1% до 10% отходов стекловаты. В обоих случаях при превышении 10% добавки шерстяных отходов удобоукладываемость смеси становилась невозможной. Поэтому добавки потребуются, если процент отходов шерсти повышен.
На рис. 4 показано, как стекловата и каменная вата равномерно распределяются при включении в гипсовую матрицу.
Измерения твердости по Шору C были выполнены в соответствии с UNE-EN 102-039-85 [35], а эталонным стандартом для прочности на изгиб и сжатие был UNE-EN 13279-2 с использованием модели машины Ibertest.
3. Результаты и обсуждение
Полученные средние результаты приведены в таблице 6 и более подробно описаны в следующих подразделах.
3.1. Микроскопический анализ
Окончательные механические свойства зависят не только от добавленного процентного содержания волокон, но и от специфической связи между волокном и матрицей, вклада, который важен для прочности материала. Поэтому был проведен микроскопический анализ, чтобы определить длину волокон, их состав и сцепление между матрицей и переработанными волокнами.
Как видно на рисунках 5 и 6, волокна минеральной ваты и стекловаты, использованные в этом исследовании, имели толщину менее 0,05 мм, а их длина варьировалась от 10 до 30 мм.
Микроскопическое сцепление можно проанализировать по внутренним поверхностным контактам между матрицей и волокнами. В такого рода отношениях поведение можно наблюдать, устанавливая его извлекающую силу. Чем больше сила связи и чем компактнее матрица внутри, тем больше вклад в усилие извлечения. Этот вклад в повышение прочности равен нулю, если волокно по всей длине заключено в пору. Склеивание улучшается, когда волокна имеют шероховатую или пористую поверхность.
3.2. Сухая объемная плотность
Добавление отходов минеральной ваты в гипсовую матрицу приводит к увеличению плотности во всех случаях, проанализированных в данном исследовании (рис. 7). Результаты показывают, что при добавлении отходов минеральной ваты (до 4 %) в гипсовую матрицу достигаются значения плотности, аналогичные полученным по эталонной серии (менее 3 % отклонения). Это отклонение увеличивается при превышении 4% добавки отходов минеральной ваты. Это увеличение незначительно, так как самая большая разница составляет около 6,75% для образца с добавлением 10% минеральной ваты (RW) и 6% для образца с добавлением 10% стекловаты (GW) (таблица 6).
3.3. Твердость по Шору С
Добавление отходов минеральной ваты в гипсовую матрицу во всех случаях влечет за собой увеличение твердости поверхности (рис. 8). Значения поверхностной твердости по Шору С увеличиваются и достигают максимума при 4% образце минеральной ваты. С таким процентом отходов результаты на 14,64 % выше, чем у эталонной серии для переработанной минеральной ваты и на 11,23 % для переработанной стекловаты. С этого момента твердость немного снижается, но всегда остается выше эталонного значения.
3.4. Прочность на изгиб
Значительное увеличение прочности наблюдается при увеличении количества отходов минеральной ваты (Рисунок 9).
Образцы, содержащие отходы минеральной ваты (до 3,5%), сохраняют значения прочности на изгиб, близкие к контрольным, с изменением менее 5%. Если отходы минеральной ваты добавляются в количестве 4% или более, прочность на изгиб постоянно увеличивается, достигая разницы в 26,58% по сравнению с результатами эталонного образца. Эта ситуация достигается при добавлении 10% отходов минеральной ваты.
Для образцов, содержащих отходы стекловаты, предел прочности при растяжении при изгибе снижается по мере увеличения процентного содержания отходов, уменьшаясь на 12,36% при добавлении 2% по сравнению с эталонными значениями. С этого момента прочность увеличивается по мере увеличения процента добавления, достигая увеличения на 34,38% по отношению к эталонным значениям для серии с добавлением 10% отходов стекловаты.
Плотность и механическая прочность напрямую связаны; увеличение обоих свойств связано с увеличением процентного содержания переработанной минеральной ваты. Рисунок 10 показывает, что образцы с более высокой плотностью достигли более высокой прочности на изгиб в сериях, содержащих отходы стекловаты (GW) или минеральной ваты (RW).
3.5. Прочность на сжатие
Прочность на сжатие нового композита с обеими минеральными ватами была ниже, чем у эталонного образца. Тем не менее, все результаты превышали минимальное значение, установленное UNE-EN 13279-1 для строительных гипсовых композитов (6 МПа) (рис. 11).
4. Выводы
В данном исследовании изучались и обсуждались физико-механические свойства нового композитного материала, армированного вторичной минеральной ватой в гипсовой матрице. По результатам проведенного исследования можно сделать следующие выводы: (1) Максимальный процент отходов минеральной ваты, принимаемый смесью, при весовом соотношении 0,8 и 0,6 составляет 10% (по массе), в том числе более высокое содержание отходов минеральной ваты, которые превышают объем штукатурки и, таким образом, затрудняют ее удобоукладываемость и увеличивают количество воздуха внутри образцов. (2) Обнаружена хорошая совместимость между отходами минеральной ваты, используемыми в строительстве, и гипсовой матрицей. Несмотря на то, что минеральная вата плохо впитывает воду, она равномерно распределяется внутри образцов, не плавая в смеси. (3) Гипсовый композит с переработанными отходами минеральной ваты, проанализированный в этом исследовании, увеличивает плотность до 6,75%. по сравнению с эталонными образцами при использовании отходов минеральной ваты и 6,07% при использовании отходов стекловаты. (4) Значения твердости поверхности по Шору С постепенно увеличиваются до достижения максимального значения для образца, содержащего 4% отходов минеральной ваты.
На этом уровне значение поверхностной твердости превышает более чем на 10% эталонные значения для обеих минеральных ват. (5) Прочность на изгиб увеличивается с увеличением количества переработанной минеральной ваты. Эти значения могут превышать 34,88% эталонных образцов при добавлении переработанной стекловаты и 26,58% при добавлении переработанной минеральной ваты. (6) Значения прочности на сжатие, полученные с обоими типами ваты, ниже, чем у эталонных образцов. Тем не менее, результаты превышают 6 МПа, что является наиболее строгим значением прочности на сжатие, установленным UNE-EN 13279.-1 стандарт. Таким образом, согласно проведенным испытаниям, пропорции смесей, изученных до сих пор, могут быть использованы в качестве гипса или «специального гипса» для строительства. (7) Среди различных исследованных отходов минеральной ваты отходы стекловаты являются наиболее подходящими. для использования в качестве добавки к новым гипсовым композитам без ухудшения механических свойств. Прочность на изгиб увеличивается более чем на 30% по сравнению с эталонной серией и более чем на 5% по сравнению с образцами отходов минеральной ваты.
В соответствии с показателями прочности на сжатие отходы стекловаты ниже, чем результаты, полученные с отходами минеральной ваты, и, таким образом, минимальное значение, требуемое UNE-EN13279.-1 стандарт выполнен. (8) Прочность на изгиб, полученная с переработанной минеральной ватой, немного выше, чем результаты, полученные в предыдущих исследованиях гипса/гипса, армированного волокнами, такими как короткие волокна сизаля, или даже ниже по сравнению с другими волокнами, таких как акриловое, полипропиленовое, полиэфирное и стекловолокно Е. Более того, результаты прочности на сжатие, полученные как с отходами каменной, так и со стеклянной ваты, выше, чем результаты, полученные другими авторами с полипропиленовыми, стекловолокнами Е и полиэфирными волокнами. Тем не менее, для серий с добавлением акриловых волокон результаты ниже, чем для серий с волокнами вторичной минеральной ваты и волокнами вторичной стекловаты с добавкой более 3,5%. подходит для включения в изделия на основе гипса. Например, его можно встроить в сердцевину гипсокартона, увеличивая его прочность на изгиб.
Это поможет сократить огромные объемы отходов, накапливаемых на полигонах, и, следовательно, минимизировать как социальные, так и экологические издержки.
Конфликт интересов
Авторы заявляют об отсутствии конфликта интересов в отношении публикации данной статьи.
Ссылки
П. Виллория Саес, М. Дель Рио Мерино и К. Поррас-Аморес, «Оценка образования объемов отходов строительства и сноса в новых жилых зданиях в Испании», Управление отходами и исследования , том . 30, нет. 2, стр. 137–146, 2012 г.
Посмотреть по адресу: Сайт издателя | Академия GoogleА. М. Пападопулос, «Современное состояние теплоизоляционных материалов и цели будущих разработок», Energy and Buildings , vol. 37, стр. 77–86, 2005.
Посмотреть по адресу: Сайт издателя | Google ScholarО. Вэнци и Т. Кярки, «Отходы минеральной ваты в Европе: обзор количества, качества и текущих методов переработки отходов минеральной ваты»,
16, нет. 2014. Т. 1. С. 62–72. Посмотреть по адресу: Сайт издателя | Академия Google
Министерство окружающей среды и сельского хозяйства и Марино, 2008 г. де-лос-остатки строительства и сноса, 2008.
Afelma, Asociación de Fabricantes españoles de lanas Minerales Aislantes (s.f.), 2015 г., http://www.aislar.com/.
И. де Отейса Сан-Хосе, «Исследование поведения полугидратированного гипса, армированного сизалевым волокном, в качестве компонентов недорогого жилья», в
Али М. А. и Граймер Ф. Дж. гипс», Journal of Materials Science , том. 4, нет. 5, стр. 389–395, 1969.
Посмотреть по адресу: Сайт издателя | Google ScholarМ. дель Рио Мерино и П. Комино Альменара, «Анализ рефуэрзос микстос де фибрас де видрио E y fibras AR en la escayola, como alternativa a los refuerzos monofibras (homogéneos)», Materiales de Construcción , vol.
А. Г. Сантос, «PPF-reenfocad, EPS-облегченная гипсовая штукатурка», Materiales de Construcción , том. 59, нет. 293, pp. 105–124, 2009.
Посмотреть по адресу: Google ScholarAG Santos, Теорическая модель механического оборудования дель дасо и компьюестос фиброзный полимерос [Ph.D. диссертация] , 1988.
Ю.-Х. Денг и Т. Фуруно, «Свойства гипсоволокнистых плит, армированных полипропиленовыми волокнами», Journal of Wood Science , vol. 47, нет. 6, стр. 445–450, 2001.
Посмотреть по адресу: Сайт издателя | Google ScholarPLACO, «Placo Saint-Gobain», 2015 г., http://www.placo.es.
Посмотреть по адресу: Google ScholarURSA, Технический паспорт панели Mur P1281.
URSA, (s.f.), Технический паспорт Ursa Terra—R.
Ф. Эрнандес-Оливарес, И.
Посмотреть по адресу: Сайт издателя | Google ScholarОтейса и Л. де Вильянуэва, «Экспериментальный анализ повышения прочности и модуля разрыва полугидратированного гипса, армированного короткими волокнами сизаля», Composite Structures , vol. 22, нет. 3, стр. 123–137, 1992.
В. Клёк и С. Айхер, «Эффект размера в гипсовых панелях, армированных бумажным волокном, при изгибе в плоскости», Wood and Fiber Science , том. 37, нет. 3, стр. 403–412, 2005.
Просмотр по адресу: Google ScholarТ. Рахман, В. Лутц, Р. Финн, С. Шмаудер и С. Айхер, «Моделирование механического поведения и повреждения в компонентах, изготовленных из гипсовых материалов, армированных целлюлозным волокном, смягчающих деформацию», Computational Materials Science , vol. 39, нет. 1, стр. 65–74, 2007 г.
Посмотреть по адресу: Сайт издателя | Google ScholarЗ. Гао и Г. Ли, «Влияние модификации волокна соломы на характеристики гипсового композита»,
168–170, стр. 1455–1458, 2011. Посмотреть по адресу: Сайт издателя | Google Scholar
С. Варди и К. МакДугалл, «Эксперименты по концентрическому и эксцентрическому сжатию сборок из оштукатуренных соломенных блоков», Journal of Structural Engineering , vol. 139, нет. 3, стр. 448–461, 2013 г.
Посмотреть по адресу: Сайт издателя | Google ScholarЮ.-Ф. Ву и М.П. Дэйр, «Прочность на изгиб и сдвиг композитных перемычек в стеновых конструкциях из гипса, армированного стекловолокном»,
Дж. К. Агилар, Д. Н. Мендоса, Р. Х. Фуэртес, Б. Б. Гонсалес, А. Т. Гилмор и Р. П. Рамирес, «Характеристика гормигонов, разработанная с учетом повторных обращений к продуктам разрушения конструкций». de hormigón», Materiales de Construcción , vol. . 57, нет. 288, стр.
Посмотреть по адресу: Google Scholar5–15, 2007.
A. Abbas, G. Fathifazl, B. Fournier et al., «Количественная оценка содержания остаточного раствора в переработанных бетонных заполнителях с помощью анализа изображений», Materials Characterization , том. 60, нет. 7, стр. 716–728, 2009.
Посмотреть по адресу: Сайт издателя | Google ScholarК.-Л. Лин и С.-Ю. Лин, «Характеристики гидратации золы отработанного шлама, используемой в качестве сырья для цемента», Cement and Concrete Research
, vol. 35, нет. 10, стр. 1999–2007, 2005. Посмотреть по адресу: Сайт издателя | Google ScholarФ. Дж. Мадариага и Дж. Л. Масиа, «Mezclas de residuos de poliestireno Expandido (EPS) conglomerados con yeso o escayola para su uso en la construcción», Informes de la Construcción , vol.
Посмотреть по адресу: Google Scholar60, нет. 509, стр. 35–43, 2008.
Р. Демирбога и А. Кан, «Теплопроводность и усадочные свойства модифицированных отходов полистирольных заполнителей», Строительство и строительные материалы
Э. Сабадор, М. Фриас, М. И. Рохас, Р. Виджил, Р. Гарсия и Х. Т. Хосе, «Характеристики и преобразование промышленных остатков (lodo de papel estucado) en un material con propiedades puzolánicas, Materiales de Construcción , vol. 57, нет. 285, pp. 45–59, 2007.
Посмотреть по адресу: Google ScholarМ. дель Рио Мерино, «Да, алигерадо кон корчо и су приложение в панелях для строительства», Патент №. ES2170612A1, OEPM, Мадрид, Испания, 2002 г.
Просмотр по адресу: Google ScholarAENOR, «Конструкторские и конгломератные предприятия, являющиеся базой для строительства.