Модуль деформации бетона в30: Модуль упругости бетона: В15, В20, В25, В30
Модуль упругости бетона: В15, В20, В25, В30
При проектировании строительной конструкции стоит задача спрогнозировать ее поведение при заданных нагрузках и внешних условиях. Бетон воспринимает значительные усилия, поэтому важный этап расчета — определение деформаций и прогибов при статическом нагружении.В расчете железобетонных конструкций по второй группе предельных состояний применяют физическую величину, называемую модулем упругости бетона, или модулем Юнга. Он характеризует свойства твердого вещества в зоне упругих деформаций.
Модуль упругости бетонных конструкций – важный параметр
Модуль упругости бетона, характеризующий способность массива сохранять целостность под воздействием деформации, используют проектировщики при выполнении прочностных расчетов строительных конструкций. Главная отличительная черта бетонных изделий и конструкций – твердость. Вместе с тем, воздействие нагрузки, величина которой превышает допустимые значения, вызывает сжатие и растяжение композита. Затвердевший монолит в процессе деформации изменяется. Причина – ползучесть материала.
В зависимости от значения коэффициента ползучести и величины приложенной нагрузки, структура монолита изменяется постепенно:
- на первом этапе приложения нагрузки происходит кратковременное изменение структуры бетона. Он сохраняет целостность и восстанавливает первоначальное состояние. Растягивающие и сжимающие усилия, а также изгибающие моменты вызывают упругую деформацию без необратимых разрушений;
- на следующей стадии при резком возрастании нагрузки возникают разрушения необратимого характера. В результате пластичной деформации возникают глубокие трещины, являющиеся, в дальнейшем, причиной постепенного разрушения зданий и различных бетонных конструкций.
Коэффициент упругости – главная характеристика, определяющая прочностные свойства бетона. Показатель представляет интерес для профессиональных проектантов, занимающихся расчетом нагрузочной способности бетонных конструкций. Индивидуальным застройщикам следует ориентироваться на класс материала, с возрастанием которого увеличивается значение модуля упругости бетона.
Коэффициент упругости – главная характеристика, определяющая прочностные свойства бетона
Нормативные данные для расчетов металлических конструкций:
Таблица 8. Нормативные и расчетные сопротивления при растяжении, сжатии и изгибе (согласно СНиП II-23-81 (1990))
(вернуться к списку таблиц)
листового, широкополосного универсального и фасонного проката по ГОСТ 27772-88 для стальных конструкций зданий и сооружений
Примечания:
1. За толщину фасонного проката следует принимать толщину полки (минимальная его толщина 4 мм).
2. За нормативное сопротивление приняты нормативные значения предела текучести и временного сопротивления по ГОСТ 27772-88.
3. Значения расчетных сопротивлений получены делением нормативных сопротивлений на коэффициенты надежности по материалу, с округлением до 5 МПа (50 кгс/см2).
Какие факторы определяют модуль упругости бетона В25 и бетонов других классов
На величину модуля упругости влияют следующие факторы:
- характеристики наполнителя. Величина показателя прямо пропорциональна удельному весу бетона. При небольшой плотности значение модуля упругости меньше, чем у тяжелых мелкозернистых стройматериалов, содержащих плотный гравийный или щебеночной наполнитель;
- классификация бетона. Каждый класс бетона по прочности имеет свое значение модуля упругости. С возрастанием класса бетона одновременно увеличивается значение модуля упругости. Начальное значение модуля упругости бетона класса В10 составляет 19, а для бетона В30 равно 32,5;
- возраст монолита. Величина параметра, характеризующего упругость материала и продолжительность эксплуатации, связаны прямым соотношением. Оно не имеет предела пропорциональности – с увеличением возраста бетона возрастает крепость бетонной структуры. Используя существующие таблицы, специалисты определяют искомую величину с учетом поправочных коэффициентов;
- технологические особенности изготовления бетона. Технологией производства бетона предусмотрена обработка при атмосферном давлении и возможность застывания стройматериала в естественных условиях, а также в автоклавах под воздействием повышенного давления и высокой температуры. Условия, при которых твердел бетон, влияют на показатель;
- продолжительность нахождения бетона под нагрузкой. Расчет модуля упругого сопротивления производится путем умножения табличного значения на корректирующий коэффициент. Для ячеистых бетонов с пористой структурой величина составляет 0,7; для плотного бетона – 0,85;
Модуль упругости бетона разных классов
- концентрация влаги в воздушной среде. В зависимости от влажности воздуха изменяется концентрация влаги в бетоне, что влияет на его способность воспринимать предельные нагрузки. Температура окружающей среды также влияет на значение модуля упругости;
- наличие пространственной решетки, изготовленной из арматурных прутков. Армирование повышает способность бетонного массива сопротивляться разрушающим деформациям и воспринимать действующие нагрузки. Расчетное сопротивление для арматуры указано в нормативных документах.
Модуль зависит от комплекса факторов. Их следует учитывать при выполнении прочностных расчетов. Независимо от упругости массива, помните, что наличие арматурной решетки значительно повышает сопротивляемость бетона действующим нагрузкам.
Для усиления используйте арматуру повышенного класса. Не забывайте, что значение нормативного сопротивления для арматуры класса A6 выше, чем величина сопротивления для арматуры класса А1.
Расчетное и нормативное сопротивление бетона
Что такое расчетное сопротивление?
Вернуться к оглавлению
Кавабанга! Бетон как защита от радиации
Как производить расчеты?
Вернуться к оглавлению
Нормативные показатели
Вернуться к оглавлению
Характеристики расчетного значения
Вернуться к оглавлению
Другие характеристики
Помимо вышеуказанных параметров для выполнения определенных расчетов, понадобится ряд дополнительных характеристик:
Заключение
Этот параметр является важным для проектирования несущих стен и других конструкций. Расчеты значений просты: они сводятся к делению нормативных значений на определенные коэффициенты.
youtube.com/embed/HIvvPDpqROM?feature=oembed» frameborder=»0″ allow=»accelerometer; autoplay; encrypted-media; gyroscope; picture-in-picture» allowfullscreen=»»/>
Модуль упругости бетона – таблица
Коэффициент, характеризующий упругость материала, остается неизменным до определенного температурного порога. Проследить зависимость изменения модуля упругости от марки материала и температурных условий поможет таблица. Например, для материалов, у которых температура плавления 300 °С, после дальнейшего нагрева снижается способность противодействовать упругой деформации. И хотя бетон не плавится, под воздействием повышенной температуры, вызванной пожаром, нарушается структура бетонного массива и он теряет свои свойства.
Модуль упругости бетона – таблица
Разработанная согласно Своду правил 52 101 2003 таблица поможет определить величину начального модуля упругости для различных классов бетона:
- величина показателя упругости для материала класса В3,5 составляет 9,5;
- стройматериал класса В7,5 отличается увеличенным значением модуля, равным 16;
- строительный материал класса В20 при естественном твердении имеет значение модуля 27;
- бетон, классифицируемый как В35, имеет увеличенную до 34,5 величину модуля упругости;
- максимальное значение параметра 40 соответствует прочному бетону класса В60.
Зная класс материала, а также имея информацию о плотности стройматериала и технологии изготовления, несложно определить величину параметра по специальной таблице.
Определения
Расчетное сопротивление – это показатель стойкости материала нагружающим воздействиям. Используется он при проектировочных расчетах, и неотъемлемо связан с нормативными показателями сопротивления сжатию.
До 2000−х годов ориентировались только на марки материала, которые и принимали как расчетный показатель, но по новым техническим документам, каждой марке присвоен новый критерий соответствия образца сжимающим нагрузкам.
Согласно СП 52−101−2003, нормативные значения сопротивления представлены на фото ниже.
Есть еще такое определение, как предел прочности на растяжение. По своей природе, данный материал в разы хуже выдерживает растягивающие нагрузки. Поэтому его и армируют в ЖБИ, стяжках пола большой толщины, фундаментах и прочее.
Таблица 6. 7 из СП 63.13330.2012″СНиП 52-01-2003, в которой указаны марки сопротивление к сжатию, растяжению.
Вид | Бетон | Нормативные сопротивления МПа, и расчетные сопротивления для предельных состояний второй группы и МПа, при классе материалапо прочности на сжатие | |||||||||||||||||||||
В1,5 | В2 | В2,5 | В3,5 | В5 | В7,5 | В10 | В12,5 | В15 | В20 | В25 | В30 | В35 | В40 | В45 | В50 | В55 | В60 | В70 | В80 | В90 | В100 | ||
Сжатие осевое растяжение | Тяжелый, мелкозернистый и напрягающий | — | — | — | 2,7 | 3,5 | 5,5 | 7,5 | 9,5 | 11 | 15 | 18,5 | 22 | 25,5 | 29 | 32 | 36 | 39,5 | 43 | 50 | 57 | 64 | 71 |
Легкий | — | — | 1,9 | 2,7 | 3,5 | 5,5 | 7,5 | 9,5 | 11 | 15 | 18,5 | 22 | 25,5 | 29 | — | — | — | — | — | — | — | — | |
Ячеистый | 1,4 | 1,9 | 2,4 | 3,3 | 4,6 | 6,9 | 9,0 | 10,5 | 11,5 | — | — | — | — | — | — | — | — | — | — | — | — | — | |
Растяжение осевое | Тяжелый, мелкозернистый и напрягающий | — | — | — | 0,39 | 0,55 | 0,70 | 0,85 | 1,00 | 1,10 | 1,35 | 1,55 | 1,75 | 1,95 | 2,10 | 2,25 | 2,45 | 2,60 | 2,75 | 3,00 | 3,30 | 3,60 | 3,80 |
Легкий | — | — | 0,29 | 0,39 | 0,55 | 0,70 | 0,85 | 1,00 | 1,10 | 1,35 | 1,55 | 1,75 | 1,95 | 2,10 | — | — | — | — | — | — | — | — | |
Ячеистый | 0,22 | 0,26 | 0,31 | 0,41 | 0,55 | 0,63 | 0,89 | 1,00 | 1,05 | — | — | — | — | — | — | — | — | — | — | — | — |
Кавабанга! Обзор свойств и характеристик ЦПС марки М-300
От прочности в срезе при скалывании, зависит устойчивость к сжатию от корреляционных показателей.
Примечание. Сопротивление сжатию В25 наиболее часто встречающийся показатель при проектировании материала.
Как определяется модуль упругости бетона В20
Значение модуля для всех классов материала определяется согласно сп 52 101 2003. Таблица нормативного документа содержит значения всех необходимых коэффициентов для выполнения расчетов. Алгоритм определения показателя предусматривает выполнение экспериментальных исследований на стандартных образцах.
Диаграмма модуля упругости бетона в20
В специальной литературе параметр обозначается заглавной буквой Е и известен среди профессиональных проектировщиков как модуль Юнга.
Он имеет различную величину в зависимости от действующей нагрузки и структуры бетона:
- значение начального модуля упругости соответствует исходному состоянию бетона, воспринимающего пластическую деформацию без растрескивания массива;
- приведенная величина модуля упругости характеризует стадию нагружения, после которой бетон теряет целостность в результате необратимых разрушений.
Осуществляя специальные расчеты и зная значение модуля упругости, специалисты определяют запас прочности сооружений арочного типа, автомобильных и железнодорожных мостов, а также перекрытий зданий.
Уже после возведения конструкции или сооружения фактически провести достоверные комплексные испытания бетона на прочность, морозостойкость, влажность и влагопроницаемость можно только в лаборатории. В рамках неразрушающих испытаний есть возможность грубо определить класс бетона ультразвуковыми методами диагностики.
И если после такой экспертной проверки образца возникают сомнения в однозначной классификации, то для оценки прочностных характеристик бетона берется проба – керн непосредственно на объекте строительства. Для практического определения коэффициента упругости материала и фактического документального подтверждения проводится независимая экспертиза бетона.
Очень часто недобросовестные подрядчики экономят финансовые средства на материалах и не закупают / не применяют на объекте бетон, установленного проектом класса. Как следствие, меньший модуль упроугости приводит к преждевременному разрушению сооружения.
Основные сведения
Модуль Юнга, (называемый также модулем продольной упругости и модулем упругости первого рода) это важная механическая характеристика вещества. Он является мерой сопротивляемости продольным деформациям и определяет степень жесткости. Он обозначается как E; измеряется н/м2 или в Па.
Это важный коэффициент применяют при расчетах жесткости заготовок, узлов и конструкций, в определении их устойчивости к продольным деформациям. Вещества, применяемые для изготовления промышленных и строительных конструкций, имеют, как правило, весьма большие значения E. И поэтому на практике значения Е для них приводят в гигаПаскалях (1012Па)
Величину E для стержней поддается расчету, у более сложных конструкций она измеряется в ходе опытов.
Приближенные величины E возможно узнать из графика, построенного в ходе тестов на растяжение.
График теста на растяжение
E- это частное от деления нормальных напряжений σ на относительное удлинение ε.
E=α/ε
Закон Гука также можно сформулировать и с использованием модуля Юнга.
Рекомендации
Профессиональные строители рекомендуют для повышения величины модуля упругости применять различные технологии изготовления. Рассмотрим, как изменяет свойства бетон б15, изготовленный различными методами:
- в результате автоклавной обработки бетон приобретает упругие свойства, характеризуемые модулем, равным 17;
- применение тепловой обработки, выполненной при атмосферном давлении, позволяет увеличить величину модуля упругости до значения 20,5;
- максимальную величину модуля имеет бетон 200 М (B15) при естественных условиях твердения.
Различные технологии изготовления бетона
Аналогичная тенденция прослеживается для других классов бетона, включая популярный b25 бетон.
С рассматриваемой точки зрения прослеживаются следующие тенденции:
- для повышения величины модуля упругости бетона целесообразно использовать технологию естественного твердения;
- применение гидротермической обработки снижает способность материала сопротивляться сжимающим и растягивающим нагрузкам;
- при возрастании класса используемого бетона увеличивается его сопротивление упругим деформациям.
Используя табличные значения, несложно определить модуль сопротивления, и выбрать класс бетона для выполнения конкретных задач.
Значения модуля юнга для некоторых материалов
В таблице показаны значения E ряда распространенных веществ.
Материал | модуль Юнга E, ГПа |
Алюминий | 70 |
Бронза | 75-125 |
Вольфрам | 350 |
Графен | 1000 |
Латунь | 95 |
Лёд | 3 |
Медь | 110 |
Свинец | 18 |
Серебро | 80 |
Серый чугун | 110 |
Сталь | 200/210 |
Стекло | 70 |
Модуль продольной упругости стали вдвое больше модуля Юнга меди или чугуна. Модуль Юнга широко применяется в формулах прочностных расчетов элементов конструкций и изделий в целом.
в25, в30, в20, в15, таблица
Все растворы склонные к затвердеванию обладают определённой плотностью в застывшем состоянии, поэтому и существует такое понятие, как модуль упругости бетона, по которому и определяется его пригодность к тому или иному виду работ. Помимо этого такие смеси классифицируются еще и по маркам, но марка может включать размеров плотности и имеет более общее понятие.
Именно об этом пойдёт речь ниже, а также вы сможете увидеть здесь демонстрацию тематического видео в этой статье.
Испытание на растяжение
Классификация
Виды и таблицы
Заливка плитного фундамента
- Все виды подобных растворов подразделяются на тяжёлые, мелкозернистые, лёгкие, поризованные, а также автоклавного твердения. Вызывает некоторое удивление, что чуть ли не все доморощенные строители об этом не имеют почти никаких знаний, хотя от этого в основном зависит качество возводимой конструкции.
- Сами по себе бетонные изделия являются достаточно твёрдыми материалами, но под воздействием механических нагрузок типа удара, сжатия растяжения и излома даже самый высокий модуль упругости железобетона не может быть вполне достаточным, как абсолютная единица. В связи с этим классификация прочности различается на два основных показателя — сжатие и растяжение, от которых зависит переносимость других нагрузок или упругость.
Наименование бетона | |||||||||||||||||||
B1 | B1,5 | B2 | B2,5 | B3,5 | B5 | B7,5 | B10 | B12,5 | В15 | В20 | В25 | В30 | B35 | B40 | B45 | B50 | B55 | B60 | |
Тяжёлые | |||||||||||||||||||
Естественный цикл затвердевания | — | — | — | 9,5 | 13 | 16 | 18 | 21 | 23 | 27 | 30 | 32,5 | 34,5 | 36 | 37,5 | 39 | 39,5 | 40 | |
Тепловая обработка при атмосферном давлении | — | — | — | — | 8,5 | 11,5 | 14,5 | 16 | 19 | 20,5 | 24 | 27 | 29 | 31 | 32,5 | 34 | 35 | 35,5 | 36 |
Автоклавная обработка | — | — | — | — | 7 | 10 | 12 | 13,5 | 16 | 17 | 20 | 22,5 | 24,5 | 26 | 27 | 28 | 29 | 29,5 | 30 |
Мелкозернистые | |||||||||||||||||||
А-группа (естественное отвердение) | — | — | — | — | 7 | 10 | 13,5 | 15,5 | 17,5 | 19,5 | 22 | 24 | 26 | 27,5 | 28,5 | — | — | — | — |
Тепловая обработка при атмосферном давлении | — | — | — | — | 6,5 | 9 | 12,5 | 14 | 15,5 | 17 | 20 | 21,5 | 23 | 24 | 24,5 | — | — | — | — |
Б-группа (естественное отвердение) | — | — | — | — | 6,5 | 9 | 12,5 | 14 | 15,5 | 17 | 20 | 21,5 | 23 | — | — | — | — | — | — |
Теплообработка при автоклавном давлении | — | — | — | — | 5,5 | 8 | 11,5 | 13 | 14,5 | 15,5 | 17,5 | 19 | 20,5 | ||||||
В-группа автоклавного отвердения | — | — | — | — | — | — | — | — | — | 16,5 | 18 | 19,5 | 21 | 21 | 22 | 23 | 24 | 24,5 | 25 |
Лёгкие и горизонтальные — средняя плотность D | |||||||||||||||||||
800 | — | — | — | 4 | 4,5 | 5 | 5,5 | — | — | — | — | — | — | — | — | — | — | — | — |
1000 | — | — | — | 5 | 5,5 | 6,3 | 7,2 | 8 | 8,4 | — | — | — | — | — | — | — | — | — | — |
1200 | — | — | — | 6 | 6,7 | 7,6 | 8,7 | 9,5 | 10 | 10,5 | — | — | — | — | — | — | — | — | — |
1400 | — | — | — | 7 | 7,8 | 8,8 | 10 | 11 | 11,7 | 12,5 | 13,5 | 14,5 | 15,5 | — | — | — | — | — | — |
1600 | — | — | — | — | 9 | 10 | 11,5 | 12,5 | 13,2 | 14 | 15,5 | 16,5 | 17,5 | 18 | — | — | — | — | — |
— | — | — | — | — | 11,2 | 13 | 14 | 14,7 | 15,5 | 17 | 18,5 | 19,5 | 20,5 | 21 | — | — | — | — | |
2000 | — | — | — | — | — | — | 14,5 | 16 | 17 | 18 | 19,5 | 21 | 22 | 23 | 23,5 | — | — | — | — |
Ячеистые, автоклавное твердение, плотность D | |||||||||||||||||||
500 | 1,4 | — | — | — | — | — | — | — | — | — | — | — | — | — | — | — | — | — | |
600 | 1,4 | 1,7 | 1,8 | 2,1 | — | — | — | — | — | — | — | — | — | — | — | — | — | — | — |
700 | — | 1,9 | 2,2 | 2,5 | 2,9 | — | — | — | — | — | — | — | — | — | — | — | — | — | — |
800 | — | — | — | 2,9 | 3,4 | 4 | — | — | — | — | — | — | — | — | — | — | — | — | — |
900 | — | — | — | — | 3,8 | 4,5 | 5,5 | — | — | — | — | — | — | — | — | — | — | — | — |
1000 | — | — | — | — | — | 6 | 7 | — | — | — | — | — | — | — | — | — | — | — | — |
1100 | — | — | — | — | — | 6,8 | 7,9 | 8,3 | 8,6 | — | — | — | — | — | — | — | — | — | — |
1200 | — | — | — | — | — | — | 8,4 | 8,8 | 9,3 | — | — | — | — | — | — | — | — | — | — |
Таблица модулей упругости бетона с учётом СНИП 2. 03.01-84
Примечание. Не забывайте о том, что при нагрузке конструкции не подвергаются необратимым процессам, вызывающим критические разрушения — их свойства не изменяются. Это следует учитывать при сооружении арок или перекрытий.
Рекомендация. При монтаже тех или иных конструкций всегда следует обращать внимание на таблицы, как того требует инструкция.
Модуль упругости — от чего он зависит
Бетонные арки. Фото
В первую очередь, упругость зависит от характеристик наполнителя, к тому же, если отобразить такое влияние на графической схеме, то мы увидим прямолинейное возрастание. Получается, что чем выше значение модуля, тем больше упругость раствора, где самые высокие показатели у тяжёлых бетонов, так как там используются очень плотные наполнители — щебень и гравий. Повышение таких характеристик связано с будущей возможностью нагрузки на ту или иную конструкцию, а также от того, с какой периодичностью будет осуществляться это воздействие (узнайте здесь, как производится крепление лаг к бетонному полу).
Также, на упругость влияет время заливки конструкции или её возраст, но показатели меняются в зависимости от первоначального модуля. Но в среднем можно сказать, что бетон постоянно набирает крепость примерно в течение 50 лет! Примечательно, что все эти показатели не изменяются под воздействием температуры до 230⁰C, следовательно, вред бетону может быть нанесён только очень сильным пожаром.
Автоклавная обработка
Влияет на показатели процесс затвердевания раствора, который может происходить при термической обработке открытым способом, через автоклав или естественным образом. Для определения продолжительности возможной нагрузки вы берёте начальный модуль (из таблицы) и умножаете его на коэффициент, который равен 0,85.для лёгких, мелкозернистых и тяжёлых бетонов и 0,7 для поризованных.
Приготовление бетона своими руками при строительстве дома
В строительстве домов в частном порядке используется достаточно узкий спектр классности растворов, который в основном от В7,5 до В30, куда включаются такие марки, как М100, М150, М200, М250, М300, М350 и М400. Но этого диапазона вполне достаточно для малоэтажного строительства, даже если там используются плитные фундаменты и возводятся декоративные арки. Как правило, такие растворы делаются в бетономешалке или даже в большом корыте, но зато их цена от этого значительно уменьшается (читайте также статью «Облицовка газобетона: способы и их особенности»).
Примечание. Каким бы ни был модуль упругости, в любом случае сталь будет крепче, нежели бетон, поэтому, наличие армирующего каркаса значительно увеличивает такие показатели. Плотность армирования и сечение прута определяется по ГОСТ 24452-80.
Заключение
В заключение следует сказать, что резка железобетона алмазными кругами или алмазное бурение отверстий в бетоне напрямую зависят от его модуля упругости, так как от этого возрастает или падает сопротивляемость материала. Всё дело в том, что победитовые накладки на сверле или буре не справятся с гравием или даже со щебнем крупной фракции, поэтому в этих случаях целесообразнее использовать инструмент с алмазным напылением (узнайте также как сделать крепеж для газобетона).
Добавить в избранное Версия для печати
Поделитесь:Статьи по теме
Все материалы по теме
Что это такое и почему это важно?
Рэйчел Браун Рэйчел Браун Дизайн интерьера, ремонтРэйчел — писатель-фрилансер, проживающий в настоящее время в Европе. Делать дома красивыми — ее страсть, и она любит эклектичный стиль. Вы можете найти ее в антикварных магазинах в поисках идеального ковра или свернувшись калачиком на диване с хорошей книгой и чашкой чая.
Узнайте больше о редакционном процессе Homedit
| Обновлено Отзыв от Terry Schutz Терри Шуц ПисательТерри Шутц — независимый писатель, специализирующийся на ремонте домов, советах по ремонту и строительству. Терри проработал в строительной отрасли более 30 лет, получив знания в качестве монтажника, менеджера, продавца и владельца бизнеса.
Узнайте больше о редакторском процессе Homedit
Купить сейчасМодуль упругости бетона — это фундаментальное механическое свойство, которое помогает охарактеризовать жесткость и деформацию бетона под нагрузкой. Модуль упругости бетона представляет собой способность комбинации цемента и заполнителей выдерживать большие нагрузки, которым они подвергаются во время строительства. Понимание этого жизненно важного параметра бетона имеет решающее значение для инженеров и проектировщиков, чтобы точно прогнозировать и анализировать бетонные конструкции и обеспечивать их безопасность и долговечность. Это жизненно важный фактор в обеспечении оптимизации конструкции и дизайна.
Что такое модуль упругости бетона?Модуль упругости бетона является мерой способности материала противостоять нагрузке. На самом деле это комбинация двух основных ингредиентов бетона: цементного теста и заполнителей. Цементная паста является связующим материалом бетона, а заполнители обеспечивают объемность и стабильность. Цементная паста имеет более низкий модуль упругости, чем заполнители, которые лучше выдерживают нагрузки. Разные бетонные смеси содержат разное количество этих ингредиентов, поэтому разные 9Бетоны 0029 типа обладают переменным модулем упругости.
Рекомендации по соответствующему модулю упругости бетона всех типов определяются путем испытаний, эмпирических данных и исследований. Эти рекомендации по наилучшему использованию бетона определены в нормах проектирования, стандартах и спецификациях, установленных признанными организациями в каждой стране и органами в области проектирования конструкций.
Измерение модуля упругости бетонаИнженеры и исследователи испытывают бетонные вещества, чтобы понять их реакцию на стресс. Они выполняют широкий спектр расчетов и испытаний для определения динамических и статических упругих характеристик бетона, которые необходимы для конкретных строительных применений.
Динамический модуль упругости проверяет способность бетона выдерживать динамические или циклические нагрузки, другими словами, условия, которые изменяются при различных нагрузках или вибрациях. Они также измеряют статический модуль упругости, когда бетон подвергается постоянному давлению. Некоторые из этих тестов включают следующее:
- Испытание на статическое сжатие – Это испытание включает приложение осевой сжимающей нагрузки к цилиндрическому или кубическому образцу бетона. Кривые напряжения и деформации генерируются на основе полученных измерений нагрузки и деформации.
- Тест скорости ультразвуковых импульсов (UPV) – Этот тест измеряет скорость ультразвуковых импульсов в бетоне. Инженеры оценивают модуль упругости на основе соотношения между скоростью импульса и плотностью бетона.
- Испытание на резонансную частоту — Для этого испытания исследователи воздействуют на образец бетона механическими колебаниями, а затем измеряют результирующие собственные колебания. Инженеры определяют модуль упругости на основе вибраций, массы и плотности бетона.
- Испытание на динамическое сжатие – Это испытание подвергает бетонные образцы динамической или циклической деформации и измеряет результирующую реакцию на напряжение и деформацию.
- Методы неразрушающего контроля (НК) – Это ряд тестов, которые инженеры проводят на существующих конструкциях, не разрушая их. К ним относятся ударное эхо, импульсная характеристика и дисперсия волны напряжения.
Различные типы бетона имеют разные диапазоны модуля упругости. Вот приблизительные диапазоны для распространенных типов бетона. Эксперты измеряют модуль упругости в гигапаскалях (ГПа) или в килофунтах на квадратный дюйм (ksi).
- Обычный бетон – Обычный бетон – наиболее распространенный тип бетона, который используют строители. Он имеет типичный диапазон модуля упругости от 28 ГПа (4000 фунтов на квадратный дюйм) до 41 ГПа (6000 фунтов на квадратный дюйм).
- Легкий бетон – Легкий бетон содержит смесь легких заполнителей, которые уменьшают вес и плотность бетона. Он имеет более низкий модуль упругости, чем обычный бетон, в диапазоне от 14 ГПа (2000 тысяч фунтов на квадратный дюйм) до 28 ГПа (4000 тысяч фунтов на квадратный дюйм).
- Высокопрочный бетон – Высокопрочный бетон имеет более высокий уровень прочности на сжатие и более высокий модуль упругости в диапазоне от 34 ГПа (5000 фунтов на квадратный дюйм) до 48 ГПа (7000 фунтов на квадратный дюйм).
- Бетон, армированный фиброй – Бетон, армированный волокном, содержит стальные или стеклянные волокна для повышения его прочности. Он имеет модуль упругости, аналогичный обычному бетону, в диапазоне от 28 ГПа (4000 фунтов на квадратный дюйм) до 41 ГПа (6000 фунтов на квадратный дюйм).
- Предварительно напряженный бетон – Предварительно напряженный бетон включает в себя натянутые стальные стержни, которые повышают его устойчивость к нагрузкам. Он имеет один из самых высоких модулей упругости в диапазоне от 41 ГПа (6000 фунтов на квадратный дюйм) до 55 ГПа (8000 фунтов на квадратный дюйм).
Модуль упругости может варьироваться в зависимости от нескольких ключевых факторов, включающих производство, обработку и возраст бетона.
Состав бетонной смеси
Доля заполнителей, цементного теста и воды влияет на модуль упругости. Цементная паста имеет более низкий модуль упругости, чем заполнители, которые обладают высоким модулем упругости. Комбинация этих ингредиентов составляет модуль упругости где-то между этими двумя элементами. Несмотря на то, что заполнители имеют более высокий модуль упругости и улучшают модуль упругости бетона в целом, они также могут создавать концентрации напряжений, которые снижают прочность на сжатие. Следовательно, дизайн смеси должен быть протестирован для контроля всех этих факторов.
Возраст бетонаВозраст бетона комплексно влияет на модуль его упругости. В краткосрочной перспективе модуль упругости бетона увеличивается по мере его отверждения и набора прочности. Это связано с тем, что процесс гидратации бетона все еще происходит и приводит к затвердеванию бетона с течением времени. Другие химические реакции в вяжущих материалах также увеличивают прочность и модуль упругости.
Тем не менее, длительное старение бетона также может вызвать ползучесть и усадку. Это деформация бетона из-за постоянного давления с течением времени. Это приводит к уменьшению модуля упругости, поскольку вызывает деформацию и снижает жесткость бетона.
Условия отвержденияУсловия отверждения или условия, при которых высыхает бетон, могут влиять на общий модуль упругости материала. Надлежащие условия отверждения требуют соответствующей температуры и уровня влажности. Это жизненно важно для обеспечения оптимального модуля упругости бетона.
Свойства заполнителяСвойства заполнителей, которые производители используют в бетонных смесях, влияют на композиционный модуль упругости бетона.