Материалы для утепления фасада: Выбираем материал: чем лучше утеплить фасад дома

Материалы для утепления фасадов домов

Предисловие. Для утепления чаще всего частные застройщики сегодня используют пенополистирол, минеральную вату, термопанели и жидкие термоизоляторы. Рассмотрим в этой статье традиционные и проверенные теплоизоляторы, а также современные материалы для утепления фасада дома. Подскажем, как рассчитать стоимость и расход материала на утепление фасада частного дома.

 

Для утепления фасадов можно купить различные листовые и рулонные материалы, маты и плиты из каменной ваты, фольгированные утеплители. Чтобы утеплить здание правильно, необходимо тщательно подобрать теплоизоляционный материал, а для этого следует знать виды современных материалов, стоимость материалов для утепления фасада, их расход и минимальную толщину изоляции.

Утепление фасада частного дома значительно повышает комфорт проживания, создает здоровый микроклимат, а также увеличивает срок службы конструкций здания. Система теплоизоляции представляет собой отделку фасада, при которой здание укрывается сплошным слоем теплоизоляции, а затем отделывается различными декоративными материалами для придания законченного вида экстерьера здания.

Содержание

  1. Материалы для утепления фасадов домов
  2. Плитные утеплители
  3. Минеральная вата
  4. Жидкие утеплители
  5. Современные материалы для утепления фасада
  6. Термопанели для утепления фасадов
  7. Многослойные фасадные теплоизоляционные системы

Материалы для утепления фасадов домов

Плитные утеплители

Утепление фасада пенопластом под штукатурку

Пенополистирол – утеплитель, имеющий высокие теплоизоляционные свойства и низкую стоимость. Благодаря своим характеристикам стал наиболее популярным материалом для утепления фасадов. Экструдированный пенополистирол наряду с низкой теплопроводностью имеет высокую влагоустойчивость и химическую стойкость, успешно применяется и при изоляции фундаментов и отмосток.

Плитные утеплители (пенопласт, пеноплэкс и техноплекс) имеют малый вес, их легко монтировать непосредственно на стены фасада, используя клеевые составы. При этом не требуется создания дополнительного каркаса для крепежа, а утеплитель можно закрыть фасадной штукатуркой, что значительно снизит расход материала на утепление фасада дома и общую стоимость работ.

Минеральная вата

Схема утепления фасада дома минватой

Минеральная и базальтовая вата должна применяться только в сочетании с качественной ветро- гидроизоляцией. Данный тип изоляции впитывает влагу из конструкций и атмосферы, при намокании материал деформируется и теряет все свои свойства. Для наружного утепления следует использовать термоизоляцию, пропитанную составами, снижающими влагопоглощение материала.

Минеральная вата – это универсальный утеплитель, который можно применять для наружного и внутреннего утепления различных конструкций – вертикальных и горизонтальных плоскостей. Чтобы материал не садился со временем и надежно держался на утепляемой конструкции необходимо сооружать каркас из брусков или металлических направляющих, что значительно удорожает работу.

Жидкие утеплители

Нанесение пенополиуретана на фасад дома

Напыляемый пенополиуретан является лучшим теплоизолятором, который применяется для утепления различных конструкций. ППУ создает сплошное монолитное покрытие, обеспечивая надежную сцепку с любой поверхностью. Утеплитель не боится влаги и мелких насекомых, однако для его нанесения требуется специальное оборудование, что значительно увеличивает цену утепления фасада дома.

Пеноизол заливают в пустоты стен эксплуатируемого или строящегося дома. К преимуществам жидких утеплителей относят отсутствие швов и мостиков холода. В процессе монтажа пеноизола и пенополиуретана нет необходимости монтировать гидроизоляцию. Жидкие утеплители позволяют утеплять значительные площади конструкций в сжатые сроки и получать прочное покрытие на металлических и бетонных конструкциях.

Современные материалы для утепления фасада

Термопанели для утепления фасадов

Облицовка пеноблока термопанелями

Термопанелями можно утеплять частные дома и промышленные здания. Утепление фасада термопанелями производится на каркас или напрямую на стены. При монтаже термопанелей без каркаса используют клей для пенопласта, теплоизоляционный материал обладает малым весом и не создает нагрузку на конструкцию. Панели легко монтируются и надежно защищают фасад от промерзания.

Термопанели не требуют ухода в процессе эксплуатации, являются долговечным и прочным материалом, которым можно облицевать любой фасад – из пеноблока, керамзитоблока, газосиликата и т.д. Но это еще не все виды материалов для утепления фасадов. Сегодня утепление фасада дома современными материалами подразумевает использование многослойных фасадных систем.

Многослойные фасадные теплоизоляционные системы

Фото. Фасадная штукатурка Capatect

Многослойные теплоизоляционные системы для фасадов (WDVS) – это современная энергосберегающая технология утепления, обеспечивающая экономию тепла в помещении до 40%. Устройство системы представляет собой сложную многослойную конструкцию, которая состоит из следующих элементов: клей, утеплитель, шпатлевка, стеклосетка, финишная шпатлевка и фасадная штукатурка.

Одну из таких систем предлагает компания Caparol – это фасадная штукатурка Capatect. Штукатурные системы утепления фасадов значительно снизят затраты на отопление, выведут «точку росы» из несущей стены в утеплитель. Подробнее об этом инновационном материале для утепления фасадов частных домов вы сможете узнать на официальном сайте компании caparol-capatect.ru.

Добавим лишь то, что небольшая толщина штукатурки Капатект обеспечит комфортные условия в помещении и микроклимат, независимо от погоды снаружи. При производстве используются только качественные и экологически чистые материалы. Кроме того, широкий выбор цветов финишной отделки фасада обеспечит массу вариантов для создания презентабельного внешнего вида дома после работ по утеплению.

Какой материал для утепления фасада лучше: Обзор материалов


Доброго времени суток уважаемые читатели сайта «Секреты мастера»!
В данной статье будет не большой обзор самых популярных теплоизоляционных материалов на сегодняшний день, которые используется в строительстве.
Я думаю, что чем ближе к зиме, тем вопрос выбора будет интересовать людей всё больше и больше.
Среди большого разнообразия материалов для утепления нелегко выбрать лучший. Каждый из них наделён определенными свойствами и преимуществами, которые стоит знать, чтобы подобрать оптимальный вариант.

Содержание:

  • Минеральная вата
  • Стекловата
  • Пенопласт
  • Жидкие теплоизоляторы
  • Готовые системы утепления
  • Заключение

Минеральная вата

Одним из наиболее популярных материалов, обладающим отличным набором характеристик выступает минеральная вата. На фасад монтируется каркас, внутрь которого прокладывается вата. На каркас набивается любая обшивка (сайдинг, вагонка, фасадные панели и т.д.).

Из достоинств минеральной ваты можно выделить:

  1. Высокий уровень теплоизоляции.
    Этот материал имеет особую структуру – плотно переплетённые волокна, между которыми образуются воздушные прослойки.
  2.  Паропроницаемость.
    Вата позволяет дому «дышать», формируя внутри комфортный микроклимат. Конденсат на стенах дома не накапливается и не оказывает пагубного воздействия.
  3. Хорошая звукоизоляция.
    Посторонний шум внутри не слышен.
  4.  Пожаробезопасность.
    Материал плавится от воздействия огня, но не горит. При этом может выделять опасные вещества.

    Обратите внимание, что это является, чуть ли не единственным недостатком.

  5. Простота монтажа.
    Минеральная вата податлива, её легко крепить к любой поверхности, даже к вертикальной или наклонной. Материал можно приминать, чтобы толщина соответствовала размерам каркаса.

Стекловата

Стекловата также состоит из волокон, но содержит и мелкие частицы стекла (отходы стекольной промышленности). Из-за этого считается небезопасным материалом, требует использования защитных средств, которые предотвратят попадания в дыхательные пути и на кожу.

Важно!
При работе необходимо одевать: защитные очки, перчатки и респиратор.

Из преимуществ стекловаты можно отметить следующее:

  1.  Морозо и термоустойчивость.
  2.  Устойчивость к агрессивным средам.
  3. Выступает защитой от проникновения грызунов.
    Поэтому широко применяется в частном секторе.
  4. Легкость выполнения работ, в т.ч. в труднодоступных местах.
  5. Низкая стоимость.


data-ad-client=»ca-pub-3518738935631683″
data-ad-slot=»6877683473″>

Пенопласт

Пенопласт отличается плотной структурой и лёгким весом.
Также он не колючий, как стекловата. Это упрощает работу с материалом и облегчает его транспортировку на объект.

Основные преимущества пенопласта:

  1. Хороший уровень теплоизоляции.
    По показателям пенопласт незначительно уступает только минеральной вате.
  2. Влагонепроницаемость.
    Материал не поглощает и отталкивает влагу.
  3. Долговечность.
    Пенопласт не гниёт, не меняет структуру, не разрушается от воздействия химических средств.
  4. Большое разнообразие вариантов отделки.
    Кроме установки в каркас, пенопласт можно крепить «мокрым способом» при помощи специальной клеящей смеси, например, Ceresit CT 8.

    Поверхность материала необходимо обработать грунтом, поштукатурить и покрасить.
  5. Простота монтажа.
    Пенопласт реализуется листами большого размера, за счёт чего утепление фасада любой площади происходит довольно быстро. При этом выравниваются небольшие погрешности стен.
  6. Невысокая стоимость.
    По цене уступает только стекловате.

Читайте также: Утепление фасадов пенопластом — www.caparol-capatect.ru

Жидкие теплоизоляторы

К ним относится пенополиуретан.
Этот материал на поверхность наносят напылением. Жидкая субстанция при застывании образует вещество, по структуре схожее с пенопластом.

Я когда-то работал на винзаводе в Крыму, где стояли огромные эмалированные ёмкости с вином. Так вот, ёмкости, которые находились на улице и были покрыты именно пенополиуретаном.

Из основных достоинств выделяют:

  1.  Высокая степень теплоизоляции.
    Дает возможность полноценно утеплить фасад, так как веществом заполняются все щели.

    Обратите внимание, что этот метод не зря называют бесшовным утеплением.

  2. Влагонепроницаемость.
    Пенополиуретан не впитывает влагу и не подвержен воздействию конденсата.
  3. Материал не опасен для человека.
    Как утверждают эксперты — он не содержит асбеста, фреона, формальдегида и других различных вредных для здоровья и окружающей среды химических продуктов.
    Но, соблюдать меры безопасности всё же следует во время напыления материала!
  4. Пожаробезопасность.
    Тлеет, но не горит.
  5. Невосприимчивость к химическим веществам.
  6. Сравнительная простота монтажа.

Для выполнения работ потребуется оборудование, в котором происходит смешивание компонентов и производится пенополиуретан. Толщина слоя определяется самостоятельно, согласно параметрам выстроенного каркаса.

Готовые системы утепления

Существуют инновационные разработки, позволяющие решить проблему утепления и отделки одновременно. Например, системы Capatect используются для монтажа пенопласта и ваты, заделки швов, мест завода коммуникаций и иных «мостиков» холода, которые затруднительно качественно изолировать иными средствами.

Кроме того, минеральные и силиконовые системы Capatect применяют для финишной отделки фасада.
Преимущества готовых систем:

  1. Повышение теплоизоляционных качеств утеплителя.
  2. Надежность.
    Системы содержат армирующий слой, который не подвержен механическому воздействию, колебанию температур и воздействию осадков.
  3. Эластичность.
  4. Устойчивость к образованию трещин, материал не деформируется.
  5. Широкий выбор цветового решения.
    Capatect дает возможность выбрать любой оттенок, в т.ч. интенсивные, яркие цвета. При этом цвет фасада не меняется и не выцветает от воздействия ультрафиолета и высоких температур.

Заключение

На основе анализа характеристик современных утеплителей, можно отметить высокие теплоизоляционные свойства минеральной ваты. Но она гигроскопична и со временем может терять свои свойства за счёт провисания.

Стекловата уступает ей по многим параметрам и небезопасна для организма человека, но имеет самую низкую стоимость.

Пенопласт незначительно уступает по уровню теплоизоляции минеральной вате, однако влагоустойчив, даёт больше вариантов для отделки фасада и имеет меньшую стоимость.

Пенопласт и пенополиуретан не защитят от проникновения грызунов. Не стоит их выбирать для деревянного дома. За счёт паробарьерной функции (не пропускают воздух), на дереве образуется конденсат и негативно на него воздействует.

Для монтажа ваты и пенопласта стоит использовать готовые системы, например, Capatect. Они обеспечат более полноценное утепление. С их помощью можно заизолировать щели, места вывода коммуникаций и дымохода, а также выполнить отделку фасада.

Есть вопросы – обращайтесь через страницу «Контакты». или через форму обратной связи (синяя кнопка слева). Я всегда на связи и отвечу на все ваши вопросы.
Также подписывайтесь на новости сайта — это бесплатно.

В следующей статье расскажу о том, как быстро перекрыть плоскую крышу.
С уважением Филиппов Юрий.

Изоляция фасада — Изоляция наружных стен

Основным источником потерь тепла из дома являются через стены и фасады . Изоляция фасада — это теплоизоляционная, защитная, декоративная процедура наружной облицовки, включающая использование пенополистирольной изоляции, стекловаты или минеральной ваты, пенополиуретана или фенольной пены, поверх которой наносится армированное цементное, минеральное или синтетическое покрытие и штукатурка. .

Цель 9Утепление фасада 0003 заключается в снижении общего коэффициента теплопередачи за счет добавления материалов с низкой теплопроводностью. Изоляция наружных стен в зданиях является важным фактором обеспечения теплового комфорта для его жителей. Изоляция наружных стен, а также другие виды изоляции уменьшают нежелательные теплопотери, а также снижают нежелательное приращение тепла. Они могут значительно снизить энергопотребление систем отопления и охлаждения. Необходимо добавить, что ни один материал не может полностью предотвратить потери тепла. Потери тепла можно только свести к минимуму.

Изоляционные материалы

Как уже было сказано, теплоизоляция основана на использовании веществ с очень низкой теплопроводностью . Эти материалы известны как изоляционные материалы . Распространенными изоляционными материалами являются шерсть, стекловолокно, минеральная вата, полистирол, полиуретан, гусиное перо и т. д. Поэтому эти материалы очень плохо проводят тепло и являются хорошими теплоизоляторами.

Следует добавить, что теплоизоляция в первую очередь основана на очень низкой теплопроводности газов. Газы обладают плохой теплопроводностью по сравнению с жидкостями и твердыми телами и, таким образом, являются хорошим изоляционным материалом, если их можно уловить (например, в пенообразная структура ). Воздух и другие газы обычно являются хорошими изоляторами. Но главное преимущество в отсутствии конвекции . Таким образом, многие изоляционные материалы (например, полистирол) функционируют просто за счет наличия большого количества заполненных газом карманов, которые предотвращают крупномасштабную конвекцию . Во всех типах теплоизоляции удаление воздуха из пустот еще больше снижает общую теплопроводность изолятора.

Чередование газового кармана и твердого материала вызывает передачу тепла через много интерфейсов, вызывает быстрое снижение коэффициента теплопередачи.

Для изоляционных материалов можно определить три основные категории. Эти категории основаны на химическом составе основного материала, из которого производится изоляционный материал.

Далее дается краткое описание этих типов изоляционных материалов.

Неорганические изоляционные материалы

Как видно из рисунка, неорганические материалы можно классифицировать соответственно:

  • Волокнистые материалы
    • Стекловата
    • Минеральная вата
  • Ячеистые материалы
    • Силикат кальция
    • Ячеистое стекло

Органические изоляционные материалы

Все органические изоляционные материалы, рассматриваемые в этом разделе, являются производными из нефтехимического или возобновляемого сырья (на биологической основе). Почти все нефтехимические изоляционные материалы представляют собой полимеры. Как видно из рисунка, все нефтехимические изоляционные материалы являются ячеистыми, а материал ячеистым, когда структура материала состоит из пор или ячеек. С другой стороны, многие растения содержат волокна для прочности. Поэтому почти все изоляционные материалы на биологической основе являются волокнистыми (кроме вспененной пробки, которая является ячеистой).

Органические изоляционные материалы можно соответственно классифицировать:

  • Нефтехимические материалы (полученные из нефти/угля)
    • Пенополистирол (EPS)
    • Экструдированный полистирол (XPS)
    • Полиуретан (PUR)
    • Фенольная пена
    • Полиизоциануратная пена (PIR)
  • Возобновляемые материалы (растительного/животного происхождения)
    • Целлюлоза
    • Пробка
    • Древесное волокно
    • Конопляное волокно
    • Льняная шерсть
    • Овечья шерсть
    • Хлопковая изоляция

Другие изоляционные материалы

  • Ячеистое стекло
  • Аэрогель
  • Вакуумная панель s

Пример изоляции – полистирол

Как правило, полистирол представляет собой синтетический ароматический полимер, из мономера стирола, полученного из бензола и этилена, оба нефтепродукта. Полистирол может быть твердым или вспененным. Полистирол представляет собой бесцветный прозрачный термопласт, который обычно используется для изготовления изоляции из пенопласта или картона, а также типа насыпной изоляции, состоящей из небольших шариков полистирола. Пенополистирол 95-98% воздуха. Пенополистирол являются хорошими теплоизоляторами и часто используются в качестве строительных изоляционных материалов, таких как изоляционные бетонные формы и конструкционные теплоизоляционные панельные строительные системы. Вспененный полистирол (EPS) и экструдированный полистирол (XPS) изготовлены из полистирола. Тем не менее, EPS состоит из маленьких пластиковых шариков, сплавленных между собой, а XPS начинается с расплавленного материала, выдавливаемого из формы в листы. XPS чаще всего используется в качестве пенопластовой изоляции.

Пенополистирол (EPS) представляет собой жесткий и прочный пенопласт с закрытыми порами. На строительство и строительство приходится около двух третей спроса на пенополистирол, и он используется для изоляции (полости) стен, крыш и бетонных полов. Благодаря своим техническим свойствам, таким как малый вес, жесткость и формуемость, пенополистирол может использоваться в самых разных областях, например, для изготовления подносов, тарелок и ящиков для рыбы.

Хотя как вспененный, так и экструдированный полистирол имеют структуру с закрытыми порами, они проницаемы для молекул воды и не могут считаться пароизоляцией. Между вспененными гранулами с закрытыми порами в пенополистироле имеются промежуточные зазоры, которые образуют открытую сеть каналов между склеенными гранулами. Если вода замерзнет и превратится в лед, она расширится и может привести к отрыву гранул полистирола от пены.

Пример – Потери тепла через стену

Основным источником потерь тепла из дома являются стены. Рассчитайте скорость теплового потока через стену 3 м х 10 м на площади (А = 30 м 2 ). Стена имеет толщину 15 см (L 1 ) и выполнена из кирпича с теплопроводностью k 1 = 1,0 Вт/м.К (плохой теплоизолятор). Предположим, что температура внутри и снаружи помещения составляет 22°С и -8°С, а коэффициенты конвективной теплоотдачи на внутренней и внешней сторонах равны h 1 = 10 Вт/м 2 К и ч 2 = 30 Вт/м 2 К соответственно. Обратите внимание, что эти коэффициенты конвекции сильно зависят, в частности, от окружающих и внутренних условий (ветер, влажность и т. д.).

  1. Рассчитайте тепловой поток ( потери тепла ) через эту неизолированную стену.
  2. Теперь предположим теплоизоляцию на внешней стороне этой стены. Использовать утеплитель из пенополистирола толщиной 10 см (L 2 ) с теплопроводностью k 2 = 0,03 Вт/м.К и рассчитайте тепловой поток ( потери тепла ) через эту композитную стену.

Решение:

Многие процессы теплопередачи включают составные системы и даже включают комбинацию теплопроводности и конвекции. Часто бывает удобно работать с общим коэффициентом теплопередачи , , известным как U-фактор , с этими композитными системами. Коэффициент U определяется выражением, аналогичным закону охлаждения Ньютона :

Общий коэффициент теплопередачи связан с общим тепловым сопротивлением и зависит от геометрии задачи.

  1. голая стена

Предполагая одномерную теплопередачу через плоскую стенку и пренебрегая излучением, общий коэффициент теплопередачи можно рассчитать как:

9000 3 общий коэффициент теплопередачи тогда равен:

U = 1 / (1/10 + 0,15/1 + 1/30) = 3,53 Вт/м 2 K

Тепловой поток можно рассчитать следующим образом:

q = 3,53 [Вт/м 2 K] x 30 [K] = 105,9 Вт/м 2

Суммарный потери тепла через эта стена будет:

q потери = q . A = 105,9 [Вт/м 2 ] x 30 [м 2 ] = 3177 Вт

  1. Композитная стена с теплоизоляцией

Предполагая одномерную теплопередачу через плоскость композита стена, без термоконтактного сопротивления , и пренебрегая излучением, общий коэффициент теплопередачи может быть рассчитан как:

Тогда общий коэффициент теплопередачи равен:

U = 1 / (1/10 + 0,15/1 + 0,1/0,03 + 1/30) = 0,276 Вт/м 2 К

Тепловой поток можно рассчитать следующим образом:

q = 0,276 [Вт/м 2 К] x 30 [К] = 8,28 Вт/м 2

900 02 Всего потери тепла через эту стену составят:

q потери = q . А = 8,28 [Вт/м 2 ] x 30 [м 2 ] = 248 Вт

Как видно, добавление теплоизолятора приводит к значительному снижению тепловых потерь. Необходимо добавить, что добавление очередного слоя теплоизолятора не дает столь высокой экономии. Это лучше видно из метода термического сопротивления, который можно использовать для расчета теплопередачи через композитных стен . Скорость устойчивого теплообмена между двумя поверхностями равна разности температур, деленной на общее тепловое сопротивление между этими двумя поверхностями.

 

Ссылки:

Теплопередача:

  1. Основы тепломассообмена, 7-е издание. Теодор Л. Бергман, Эдриенн С. Лавин, Фрэнк П. Инкропера. John Wiley & Sons, Incorporated, 2011. ISBN: 9781118137253.
  2. Тепло- и массообмен. Юнус А. Ценгель. McGraw-Hill Education, 2011. ISBN: 9780071077866.
  3. Министерство энергетики, термодинамики, теплопередачи и потока жидкости США. Справочник по основам Министерства энергетики, том 2 из 3. Май 2016 г.

Ядерная и реакторная физика:

  1. Дж. Р. Ламарш, Введение в теорию ядерных реакторов, 2-е изд., Addison-Wesley, Reading, MA (1983).
  2. Дж. Р. Ламарш, А. Дж. Баратта, Введение в ядерную технику, 3-е изд., Prentice-Hall, 2001, ISBN: 0-201-82498-1.
  3. WM Стейси, Физика ядерных реакторов, John Wiley & Sons, 2001, ISBN: 0-471-39127-1.
  4. Гласстоун, Сесонске. Разработка ядерных реакторов: разработка реакторных систем, Springer; 4-й выпуск, 1994, ISBN: 978-0412985317
  5. WSC Уильямс. Ядерная физика и физика элементарных частиц. Кларендон Пресс; 1 издание, 1991 г., ISBN: 978-0198520467
  6. Г. Р. Кипин. Физика ядерной кинетики. Паб Эддисон-Уэсли. Ко; 1-е издание, 1965 г.
  7. Роберт Рид Берн, Введение в работу ядерных реакторов, 1988 г.
  8. Министерство энергетики, ядерной физики и теории реакторов США. Справочник по основам Министерства энергетики, том 1 и 2. Январь 1993 г.
  9. Пол Ройсс, Нейтронная физика. EDP ​​Sciences, 2008. ISBN: 9.78-2759800414.

Advanced Reactor Physics:

  1. К. О. Отт, В. А. Безелла, Введение в статистику ядерных реакторов, Американское ядерное общество, исправленное издание (1989 г.), 1989 г., ISBN: 0-894-48033 -2.
  2. К. О. Отт, Р. Дж. Нойхольд, Введение в динамику ядерных реакторов, Американское ядерное общество, 1985, ISBN: 0-894-48029-4.
  3. Д. Л. Хетрик, Динамика ядерных реакторов, Американское ядерное общество, 1993, ISBN: 0-894-48453-2.
  4. Э. Э. Льюис, В. Ф. Миллер, Вычислительные методы переноса нейтронов, Американское ядерное общество, 1993, ISBN: 0-894-48452-4.

См. выше:

Тепловые потери

сообщите об объявлении

AMMERHEIM — Жидкая теплоизоляция Ammerheim Facade

Килограмм
Пакет Цвет
10 литров20 литров Белый

380 руб. /литр

 

Актуальные цены на товары в файле или на сайте ammerheim.ru

 

Жидкий утеплитель Ammerheim Facade предназначен для использования на бетонных, кирпичных, деревянных поверхностях.

 

Рабочая температура от -60°C до +180°C (пиковая температура +230°C в течение 2 часов)

Применяется при температуре окружающей среды от +5°C

 

Для внутреннего и наружного использования. Допускается колеровка пигментными пастами.

 

 

Жидкий теплоизоляционный материал на водной основе, специально разработанный для утепления и окраски жилых и нежилых зданий и сооружений. Покрытие защищает от воздействия климатических факторов, образования конденсата и замерзания. Содержит ингибиторы плесени и грибка. Не содержит органических растворителей и летучих соединений, безопасен, нетоксичен. Обладает стойкостью к УФ-излучению, высокой паропроницаемостью и свойствами высококачественной фасадной краски. После высыхания не требует дополнительной защиты от механических повреждений и агрессивных факторов внешней среды.

Поверхность утепления

фасады зданий

внутренние стены

крыша

лоджии и балконы 9 0011

внутренние перекрытия

межпанельные швы

оконные откосы

 

 

 

Инструкция

 

1. Очистить поверхность от пыли и грязи, при необходимости обработать грунт для бетона.

 

2. Смешайте ведро с материалом Ammerheim Facade до получения однородной массы. Перемешивание производят вручную или дрелью со скоростью вращения 300 об./мин.

 

3. Наносить изоляцию кистью, валиком, шпателем, краскопультом. Поскольку материал густой, рекомендуется разбавлять его водой (не более 50 г на 1 л Аммергейма) до нужной консистенции для удобства нанесения. При нанесении шпателем смешайте изоляцию дрелью без разбавления.

 

 

Толщина слоя и расход

 

Толщина одного слоя материала не должна превышать 1 мм, что составляет расход 1 л на 1 кв.м. Общая толщина наносимого слоя определяется термическим расчетом и составляет от 1,0 до 3,5 мм. После высыхания состав образует на поверхности основного материала эластичное покрытие, устойчивое к влаге.

 

 

Характеристики

 

Время высыхания

между слоями толщиной 0,5-1,0 мм — 6-12 часов при температуре от +5°С

Температура нанесения

от +5°C до +90°C и относительной влажности до 80%

Срок и условия хранения

18 месяцев при температуре от +5°С до +35°С в заводской невскрытой упаковке, допускается хранение и до -20°С, не более двух циклов замораживания

Растворитель

вода

Плотность

0,53 кг/л

Цвет

белый

Упаковка

10, 20 л

Поверхность жидкой изоляции

матовый, равномерный

Вязкость

тиксотропный

Удельный вес (жидкость)

0,5-0,75 г/см3

Удельный вес (сухой)

0,3-0,45 г/см3

Прочность на растяжение

4,84 кг/кв. см

Адгезия (адгезия)

100%

Расчетная проводимость

0,0012 Вт/м°C

Восприятие тепла

2,1 Вт/м°C

Тепловыделение

4,2 Вт/м°C

Паропроницаемость

0,033 мг/м ч ПА

Коэффициент отражения лучистой энергии

95%

 

 

Для заказа продукции

Позвоните нам по телефону или отправьте заявку на электронную почту info@ammerheim.

LEAVE A REPLY

Ваш адрес email не будет опубликован. Обязательные поля помечены *