Максимальная длина плиты перекрытия без опоры: Максимальная длина плиты перекрытия без опоры

Содержание

Несущая способность монолитного перекрытия 200 мм, нагрузка на плиту

Нагрузка на перекрытие

Разновидности пустотных плит перекрытия

Пустотные плиты наиболее широко применяют при обустройстве перекрытий при строительстве жилых домов, общественных и промышленных сооружений. Толщина таких панелей составляет 160, 220, 260 или 300 мм. По типу отверстий (пустот) изделия бывают:

  • с круглыми отверстиями;
  • с пустотами овальной формы;
  • с отверстиями грушевидной формы;
  • с формой и размерами пустот, которые регламентируются техусловиями и специальными стандартами.

Самые востребованные на современном строительном рынке – изделия с толщиной 220 мм и отверстиями цилиндрической формы, так как они рассчитаны на значительные нагрузки на каждую пустотную плиту перекрытия, а ГОСТ предусматривает их применение для обустройства перекрытий практически всех типов зданий. Различают три типа таких конструкционных изделий:

  • Плиты с цилиндрическими пустотами Ø=159 мм (маркируют символами 1ПК).
  • Изделия с круглыми отверстиями Ø=140 мм (2ПК), которые изготавливают только из тяжелых видов бетона.
  • Панели с пустотами Ø=127 мм (3ПК).

На заметку! Для малоэтажного индивидуального строительства допустимо применение панелей толщиной 16 см и отверстиями Ø=114 мм. Важный момент, который надо учитывать, выбирая изделие такого типа, уже на этапе проектирования сооружения – максимальная нагрузка, которую выдержит плита.

Характеристики пустотных плит перекрытий

К основным техническим характеристикам пустотных плит относятся:

  • Геометрические размеры (стандартные: длина – от 2,4 до 12 м; ширина – от 1,0 до 3,6 м; толщина – от 160 до 300 мм). По желанию заказчика производитель может изготовить нестандартные панели (но только при строгом соблюдении всех требований ГОСТа).
  • Масса (от 800 до 8600 кг в зависимости от размеров панели и плотности бетона).
  • Допустимая нагрузка на плиту перекрытия (от 3 до 12,5 кПа).
  • Тип бетона, который использовали при изготовлении (тяжелый, легкий, плотный силикатный).
  • Нормированное расстояние между центрами отверстий от 139 до 233 мм (зависит от типа и толщины изделия).
  • Минимальное количество сторон, на которые должна опираться панель перекрытия (2, 3 или 4).
  • Расположение пустот в плите (параллельно длине либо ширине). Для панелей, предназначенных для опоры на 2 или 3 стороны, пустоты необходимо обустраивать только параллельно длине изделия. Для плит, опирающихся на 4 стороны, возможно расположение отверстий параллельно как длине, так и ширине.

  • Арматура, использованная при изготовлении (напрягаемая или ненапрягаемая).
  • Технологические выпуски арматуры (если таковые предусмотрены проектным заданием).

Маркировка пустотных плит

Марка панели состоит из нескольких групп букв и цифр, разделенных дефисами. Первая часть – тип плиты, ее геометрические размеры в дециметрах (округленные до целого числа), количество сторон опоры, на которое рассчитана панель. Вторая часть – расчетная нагрузка на плиту в кПа (1 кПа = 100 кг/м²).

Внимание! В маркировке указана расчетная, равномерно распределенная нагрузка на бетонное перекрытие (без учета собственной массы изделия).

Дополнительно в маркировке указывают тип бетона, примененного для изготовления (Л – легкий; С – плотный силикатный; тяжелый бетон индексом не обозначают), а также дополнительные характеристики (например, сейсмологическую устойчивость).

Например, если на плиту нанесена маркировка 1ПК66.15-8, то это расшифровывается следующим образом:

1ПК – толщина панели – 220 мм, пустоты Ø=159 мм и она предназначена для установки с опорой на две стороны.

66.15 – длина составляет 6600 мм, ширина – 1500 мм.

8 – нагрузка на плиту перекрытия, которая составляет 8 кПа (800 кг/м²).

Отсутствие в конце маркировки буквенного индекса указывает на то, что для изготовления был применен тяжелый бетон.

Еще один пример маркировки: 2ПКТ90.12-6-С7. Итак, по порядку:

2ПКТ – панель толщиной 220 мм с пустотами Ø=140 мм, предназначенная для установки с упором на три стороны (ПКК означает необходимость установки панели на четыре стороны опоры).

90.12 – длина – 9 м, ширина – 1,2 м.

6 – расчетная нагрузка 6 кПа (600 кг/м²).

С – означает, что она изготовлена из силикатного (плотного) бетона.

7 – панель может быть использована в регионах с сейсмологической активностью до 7 баллов.

Достоинства и недостатки пустотных плит

По сравнению со сплошными аналогами пустотные панели обладают рядом несомненных преимуществ:

  • Меньшей массой по сравнению со сплошными аналогами, причем без потери надежности и прочности. Это значительно уменьшает нагрузки на фундамент и несущие стены. При монтаже можно использовать технику меньшей грузоподъемности.
  • Меньшей стоимостью, так как для их изготовления необходимо значительно меньшее количество строительного материала.
  • Более высокой тепло- и звукоизоляцией (за счет пустот в «теле» изделия).
  • Отверстия могут быть использованы для прокладки различных инженерных коммуникаций.
  • Изготовление плит осуществляют только на крупных заводах, оснащенных современным высокотехнологичным оборудованием (производство их в кустарных условиях, практически, невозможно). Поэтому можно быть уверенным в соответствии изделия заявленным техническим характеристикам (согласно ГОСТ).

  • Многообразие стандартных типоразмеров позволяет осуществлять строительство сооружений самых различных конфигураций (доборные элементы перекрытий можно изготовить из стандартных панелей или заказать у производителя).
  • Быстрый монтаж перекрытия по сравнению с обустройством монолитной железобетонной конструкции.

К недостаткам таких плит можно отнести:

  • Возможность монтажа только с применением грузоподъемной техники, что приводит к удорожанию постройки при индивидуальном строительстве жилого дома. Необходимость свободного места на частном участке для маневрирования подъемного крана при монтаже перекрытий.

На заметку! Деревянные перекрытия, которые очень популярны в индивидуальном строительстве, устанавливают на балки, для монтажа которых также необходимо применение техники достаточной грузоподъемности.

  • При использовании стеновых блоков необходимо обустройство железобетонного армопояса.

  • Невозможность изготовления своими руками.

Примерный расчет предельной нагрузки на пустотную плиту перекрытия

Для того чтобы самостоятельно рассчитать, какую максимальную нагрузку могут выдерживать плиты перекрытия, которые вы планируете использовать при строительстве, необходимо учесть все моменты. Допустим, что для обустройства перекрытий вы хотите использовать панели 1ПК63.12-8 (то есть, величина расчетной нагрузки, которую выдерживает одно изделие, составляет 800 кг/м²: для дальнейших расчетов обозначим ее буквой Q₀). Рассчитав сумму всех динамических, статических и распределенных нагрузок (от веса самой плиты; от людей и животных, мебели и бытовой техники; от стяжки, утеплителя, финишного напольного покрытия и перегородок), которую обозначаем QΣ, можно определить, какую нагрузку выдерживает ваша конкретная плита. Основной момент, на который надо обратить внимание: в результате всех расчетов (разумеется, с учетом повышающего коэффициента прочности) должно получиться, что QΣ ≤ Q₀.

Для того чтобы определить равномерно распределенную нагрузку от собственного веса плиты, необходимо знать ее массу (M). Можно воспользоваться либо величиной массы, указанной в сертификате завода-изготовителя (если его предоставили в месте продажи), либо справочной величиной из таблицы ГОСТ-а, которая составлена для изделий, изготовленных из тяжелых видов бетона со средней плотностью 2500 кг/м³. В нашем случае справочный вес плиты составляет 2400 кг.

Сначала вычисляем площадь плиты: S = L⨯H = 6,3⨯1,2 = 7,56 м². Тогда нагрузка от собственного веса (Q₁) составит: Q₁ = M:S = 2400:7,56 = 317,46 ≈ 318 кг/м².

В некоторых строительных справочниках рекомендуют при расчетах использовать суммарное усредненное значение полезной нагрузки на перекрытие жилых помещений – Q₂=400 кг/м².

Тогда суммарная нагрузка, которую необходимо выдерживать плите перекрытия, составит:

QΣ = Q₁ + Q₂ = 318 + 400 = 718 кг/м² ˂ 800 кг/м², то есть основной момент QΣ ≤ Q₀ соблюден и выбранная плита пригодна для обустройства перекрытий жилых помещений.

Для точных расчетов будут необходимы значения удельной плотности (стяжки, теплоизолятора, финишного покрытия), значение нагрузки от перегородок, вес мебели и бытовой техники и так далее. Нормативные показатели нагрузок (Qн) и коэффициенты надежности (Үн) указаны в соответствующих СНИП-ах.

Виды пустотных панелей перекрытия

Панели с продольными полостями применяют при сооружении перекрытий в жилых зданиях, а также строениях промышленного назначения.

Железобетонные панели отличаются по следующим признакам:

  • размерам пустот;
  • форме полостей;
  • наружным габаритам.

В зависимости от размера поперечного сечения пустот железобетонная продукция классифицируется следующим образом:

  • изделия с каналами цилиндрической формы диаметром 15,9 см. Панели маркируются обозначением 1ПК, 1 ПКТ, 1 ПКК, 4ПК, ПБ;
  • продукция с кругами полостями диаметром 14 см, произведенная из тяжелых марок бетонной смеси, обозначается 2ПК, 2ПКТ, 2ПКК;
  • пустотелые панели с каналами диаметром 12,7 см. Они маркируются обозначением 3ПК, 3ПКТ и 3ПКК;
  • круглопустотные панели с уменьшенным до 11,4 см диаметром полости. Применяются для малоэтажного строительства и обозначаются 7ПК.

Виды плит и конструкция перекрытия

Панели для межэтажных оснований отличаются формой продольных отверстий, которая может быть выполнены в виде различных фигур:

  • круга;
  • эллипса;
  • восьмигранника.

По согласованию с заказчиком стандарт допускает выпуск продукции с отверстиями, форма которых отличается от указанных. Каналы могут иметь вытянутую или грушеобразную форму.

Круглопустотная продукция отличается также габаритами:

  • длиной, которая составляет 2,4–12 м;
  • шириной, находящейся в интервале 1м3,6 м;
  • толщиной, составляющей 16–30 см.

По требованию потребителя предприятие-изготовитель может выпускать нестандартную продукцию, отличающуюся размерами.

Основные характеристики пустотных панелей перекрытий

Плиты с полостями пользуются популярностью в строительной отрасли благодаря своим эксплуатационным характеристикам.

Расчет на продавливание плиты межэтажного перекрытия

Главные моменты:

  • расширенный типоразмерный ряд продукции. Габариты могут подбираться для каждого объекта индивидуально, в зависимости от расстояния между стенами;
  • уменьшенная масса облегченной продукции (от 0,8 до 8,6 т). Масса варьируется в зависимости от плотности бетона и размеров;
  • допустимая нагрузка на плиту перекрытия, равная 3–12,5 кПа. Это главный эксплуатационный параметр, определяющий несущую способность изделий;
  • марка бетонного раствора, который применялся для заливки панелей. Для изготовления подойдут бетонные составы с маркировкой от М200 до М400;
  • стандартный интервал между продольными осями полостей, составляющий 13,9-23,3 см. Расстояние определяется типоразмером и толщиной продукции;
  • марка и тип применяемой арматуры. В зависимости от типоразмера изделия, используются стальные прутки в напряженном или ненапряженном состоянии.

Подбирая изделия, нужно учитывать их вес, который должен соответствовать прочностным характеристикам фундамента.

Как маркируются плиты пустотные

Государственный стандарт регламентирует требования по маркировке продукции. Маркировка содержит буквенно-цифровое обозначение.

Маркировка пустотных плит перекрытия

По нему определяется следующая информация:

  • типоразмер панели;
  • габариты;
  • предельная нагрузка на плиту перекрытия.

Маркировка также может содержать информацию по типу применяемого бетона.

На примере изделия, которое обозначается аббревиатурой ПК 38-10-8, рассмотрим расшифровку:

  • ПК – эта аббревиатура обозначает межэтажную панель с круглыми полостями, изготовленную опалубочным методом;
  • 38 – длина изделия, составляющая 3780 мм и округленная до 38 дециметров;
  • 10 – указанная в дециметрах округленная ширина, фактический размер составляет 990 мм;
  • 8 – цифра, указывающая, сколько выдерживает плита перекрытия килопаскалей. Это изделие способно выдерживать 800 кг на квадратный метр поверхности.

При выполнении проектных работ следует обращать внимание на индекс в маркировке изделий, чтобы избежать ошибок. Подбирать изделия необходимо по размеру, уровню максимальной нагрузки и конструктивным особенностям.

Преимущества и слабые стороны плит с полостями

Плиты перекрытия с полостями

Пустотелые плиты популярны благодаря комплексу достоинств:

  • небольшому весу. При равных размерах они обладают высокой прочностью и успешно конкурируют с цельными панелями, которые имеют большой вес, соответственно увеличивая воздействие на стены и фундамент строения;
  • уменьшенной цене. По сравнению с цельными аналогами, для изготовления пустотелых изделий требуется уменьшенное количество бетонного раствора, что позволяет обеспечить снижение сметной стоимости строительных работ;
  • способности поглощать шумы и теплоизолировать помещение. Это достигается за счет конструктивных особенностей, связанных с наличием в бетонном массиве продольных каналов;
  • повышенному качеству промышленно изготовленной продукции. Особенности конструкции, размеры и вес не позволяют кустарно изготавливать панели;
  • возможности ускоренного монтажа. Установка выполняется намного быстрее, чем сооружение цельной железобетонной конструкции;
  • многообразию габаритов. Это позволяет использовать стандартизированную продукцию для строительства сложных перекрытий.

К преимуществам изделий также относятся:

  • возможность использования внутреннего пространства для прокладки различных инженерных сетей;
  • повышенный запас прочности продукции, выпущенной на специализированных предприятиях;
  • стойкость к вибрационному воздействию, перепадам температур и повышенной влажности;
  • возможность использования в районах с повышенной до 9 баллов сейсмической активностью;
  • ровная поверхность, благодаря которой уменьшается трудоемкость отделочных мероприятий.

Изделия не подвержены усадке, имеют минимальные отклонения размеров и устойчивы к воздействию коррозии.

Пустотные плиты перекрытия

Имеются также и недостатки:

  • потребность в использовании грузоподъемного оборудования для выполнения работ по их установке. Это повышает общий объем затрат, а также требует наличия свободной площадки для установки подъемного крана;
  • необходимость выполнения прочностных расчетов. Важно правильно рассчитать значения статической и динамической нагрузки. Массивные бетонные покрытия не стоит устанавливать на стены старых зданий.

Для установки перекрытия необходимо сформировать армопояс по верхнему уровню стен.

Расчет нагрузки на плиту перекрытия

Расчетным путем несложно определить, какую нагрузку выдерживают плиты перекрытия. Для этого необходимо:

  • начертить пространственную схему здания;
  • рассчитать вес, действующий на несущую основу;
  • вычислить нагрузки, разделив общее усилие на количество плит.

Определяя массу, необходимо просуммировать вес стяжки, перегородок, утеплителя, а также находящейся в помещении мебели.

Рассмотрим методику расчета на примере панели с обозначением ПК 60.15-8, которая весит 2,85 т:

  1. Рассчитаем несущую площадь – 6х15=9 м2.
  2. Вычислим нагрузку на единицу площади – 2,85:9=0,316 т.
  3. Отнимем от нормативного значения собственный вес 0,8-0,316=0,484 т.
  4. Вычислим вес мебели, стяжки, полов и перегородок на единицу площади – 0,3 т.
  5. Сопоставимый результат с расчетным значением 0,484-0,3=0,184 т.

Многопустотная плита перекрытия ПК 60.15-8

Полученная разница, равная 184 кг, подтверждает наличие запаса прочности.

Плита перекрытия – нагрузка на м2

Методика расчета позволяет определить нагрузочную способность изделия.

Рассмотрим алгоритм вычисления на примере панели ПК 23.15-8 весом 1,18 т:

  1. Рассчитаем площадь, умножив длину на ширину – 2,3х1,5=3,45 м2.
  2. Определим максимальную загрузочную способность – 3,45х0,8=2,76т.
  3. Отнимем массу изделия – 2,76-1,18=1,58 т.
  4. Рассчитаем вес покрытия и стяжки, который составит, например, 0,2 т на 1 м2.
  5. Вычислим нагрузку на поверхность от веса пола – 3,45х0,2=0,69 т.
  6. Определим запас прочности – 1,58-0,69=0,89 т.

Фактическая нагрузка на квадратный метр определяется путем деления полученного значения на площадь 890 кг:3,45 м2= 257 кг. Это меньше расчетного показателя, составляющего 800 кг/м2.

Грамотная укладка плит перекрытия на цоколь фундамента

Завершение большого этапа строительных работ заключается в монтаже плит перекрытия на фундамент. Чаще всего укладка железобетонных плит перекрытия на цоколь применяется для кирпичных зданий или домов и пенобетонных блоков. О производстве работ на последующих этажах и типах перекрытий подробно рассказано в статье «Монтаж плит перекрытия». Далее речь пойдет только о перекрытии подвала. Чтобы правильно положить элементы на подвальную стену, необходимо учитывать особенности производства работ.

Блок: 1/3 | Кол-во символов: 495
Источник: https://DomZastroika.ru/slabs/ukladka-plit-perekritiya-na-cokol-fundamenta.html

Общая информация


Монолитная плита на ленточном фундаменте представляет собой цельную железобетонную конструкцию, опирающуюся на основание ленточного типа по периметру.

При этом возможны варианты как с опорой плиты на грунт, так и без опоры. Во втором случае монолитная плита опирается на ленточное основание, напоминая фундамент с использованием плит перекрытия.

Что лучше: ленточный фундамент или монолитная плита? На вопрос ответить однозначно нельзя, потому что обе конструкции отлично взаимно дополняют друг друга.

При таком типе фундамента возможно обустройство цокольного этажа или подземного гаража под каркасным домом. Данная конструкция в обоих случаях позволяет связать фундамент ленточного типа в единое целое.

Монолитная плита на ленточном фундаменте применяется:

  • при строительстве зданий на нестабильных, «плавающих» грунтах, где применение фундамента другого типа нецелесообразно или невыгодно;
  • когда конструкция строения предполагает быть тяжелой, например, выполненной из кирпича или монолитного железобетона;
  • когда планируется сооружение единого цокольного этажа под всем зданием – монолитная плита на ленточном фундаменте будет незаменима для возведения перегородок в остальных помещениях.

Важно! При планировании фундамента с использованием монолитной плиты необходимо помнить, что максимальная длина ее пролета в висячем состоянии должна быть не более 6 метров без дополнительных опор.

Блок: 2/7 | Кол-во символов: 1410
Источник: https://ochag.online/konstrukciya/fundament/lentochnyj/monolitnyj/plita-na-lente.html

Монолитный железобетонный пояс

Если фундамент под здание изготовлен из сборных бетонных блоков, потребуется перед началом монтажа принять дополнительные меры по усилению конструкции. Укладка бетонного пояса на стену под плиты необходима чтобы:

  • обеспечить равномерное распределение нагрузки от отдельных элементов перекрытия на отдельные фундаментные блоки;
  • повысить прочность ленты фундамента на изгиб;
  • выровнять обрез фундамента для того, чтобы правильно уложить плиты;
  • увеличить жесткость здания при небольших подвижках грунта.

Укладка бетонного пояса на стену

Дело в том, что фундаментные блоки заводского изготовления не имеют армирования. Они рассчитаны на центральное сжатие.

Плиты перекрытия на фундамент под наружные стены опираются только на внутреннюю их часть, что создает эксцентриситет нагрузки (смещение относительно центра), вследствие чего появляется изгибающая сила, которую бетон без армирования выдержать не сможет.

По нормативным документам по обрезу фундаментной стены предусматривается пояс из бетона В20 толщиной 200 мм. Пояс изготавливается по монолитной технологии. С укладкой продольных арматурных стержней в два ряда.

Армирование представляет собой пространственный каркас, чаще всего состоящий из четырех продольных прутов, соединенных между собой в горизонтальной и вертикальной плоскости стержнями арматуры меньшего диаметра (хомутами).

Благодаря армированию конструкция легко справляется с изгибом. Вследствие монолитной технологии изготовления лента не имеет вертикальных швов и обеспечивает пространственную жесткость по всему периметру здания.

Лучше всего заливать сразу всю смесь, чтобы не образовалось стыков

Заливку выполняют двумя способами:

  • весь периметр за один раз;
  • послойно.

Послойное производство работ может понадобиться, если высота пояса больше рекомендуемой, и возникли обстоятельства, которые вынуждают прервать выполнение работ. Правильно заливать всю смесь за один раз. В этом случае не образуется стыков бетонной смеси с различными характеристиками и степенью застывания, что существенно увеличит прочность всей конструкции.

Блок: 2/3 | Кол-во символов: 2061
Источник: https://DomZastroika.ru/slabs/ukladka-plit-perekritiya-na-cokol-fundamenta.html

Физические свойства грунта

Схема закладки ленточного фундамента в промерзающем грунте.

От физических свойств грунта зависит его способность выдерживать вес, который создает дом. Этот параметр называют несущей способностью, и он определяет, какой вес, приходящийся на единицу площади, может выдержать грунт. Обычно единицей измерения применяют кг силы на /см2.

В свою очередь, этот параметр зависит от плотности грунта и его влажности. Увеличение влажности ведет к уменьшению несущей способности. Для самостоятельного определения влажности грунта достаточно пробурить скважину с помощью рыбацкого бура или вскрыть грунт на глубину закладываемого фундамента. Появление в яме все увеличивающегося со временем объема воды свидетельствует о том, что грунт влажный, отсутствие воды свидетельствует в пользу сухого грунта.

От содержания влаги зависит величина пучности грунта в процессе замерзания в зимний период и его подготовка. Поэтому делить его на 2 состояния, влажный и сухой, недостаточно. В связи с тем, что влажность грунта существенно зависит от находящейся в нем глины, ее относительное содержание можно определить по некоторым субъективным признакам.

Если, раскатывая в ладонях комочек грунта, не получается придать ему удлиненную форму, на пальцах ощущается присутствие песка и при малейшем приложении усилий ладоней к шарику грунт рассыпается, то это свидетельствует, что он содержит менее 10 % глины. Такой грунт называют супесь, и его подготовка имеет свои особенности.

Конструкция фундамента в тяжелых грунтах.

Если в нем содержится до 30% глины, его называют суглинок. Субъективно определить такой грунт можно, придав в ладонях шарику форму чечевицы. Образование трещин по краям такой «чечевицы» свидетельствует о типе суглинок.

Если трещины по краям «чечевицы» не образуются, то это является признаком содержания в нем более 30% глины. Далее следует попытаться раскатать образец в шнурок. Если это удается, значит, в грунте действительно содержится более 30% глины.

Особое внимание необходимо уделять глубине промерзания грунта. От этого зависит подготовка грунта и высота, которую будет иметь ленточный фундамент. Низ его как минимум должен быть ниже глубины промерзания на 15‑20 см. Каждый см — это существенные расходы. В таблице 3 приведены глубины промерзания в достаточно близко расположенных друг от друга районах. Из таблицы видно, что глубина промерзания отличается существенно, при завышении этого параметра глубина заложения фундамента может быть существенно увеличена.

Таблица № 3. Глубина промерзания грунта, м

ГородТип грунта
Суглинки, глиныМелкие пескиСредние и крупные пескиКаменистый грунт
Москва1,351,641,762,00
Владимир1,441,751,872,12
Тверь1,371,671,792,03

Блок: 3/6 | Кол-во символов: 2706
Источник: https://moifundament.ru/lentochnyj/fundament-s-plitoj-perekrytiya.html

Строительство ленточного фундамента

Рис. 1. Схема поперечного сечения ленточного незаглубленного фундамента.

Ленточный фундамент можно залить в виде сплошного монолитного железобетонного основания, либо бетонная лента может иметь сборный тип и состоять из отдельных блоков. На такое основание и укладывают плиты перекрытия. Если конструкция имеет сборный тип, то перед размещением плит перекрытия, бетонная поверхность должна быть выровнена. Во-первых, это необходимо, так как укладка плит обычно не ровная в горизонтальной плоскости, а во-вторых, специалисты не рекомендуют, чтобы бетонные плиты перекрытия укладывали на бетонные же плиты фундамента.

Рассмотрим 2 варианта основания: мелкого и глубокого заложения.
Дом с относительно легкими стенами возводят, применяя мелкозаглубленное основание. Глубина его заложения обычно не превышает 60 см. Преимущества такого монолитного фундамента состоит в его дешевизне. Это и понятно, ведь потребуется залить меньше бетона.

Естественно, что в большинстве районов России глубина промерзания грунта значительно превышает 60 см. Поэтому укладка такого типа монолитного фундамента может быть применена либо на непучинистых грунтах, либо следует предусмотреть предварительное утепление грунта с целью уменьшения глубины его промерзания. Под основанием монолитного фундамента должна быть предусмотрена укладка песчаной подушки толщиной 20 см.

Рис. 2. Схема строительства заглубленного ленточного фундамента.

Применяя песчаную подушку, необходимо принять меры, чтобы в нее не попала грунтовая вода, ибо сырой песок нисколько не лучше любого пучинистого грунта. Песок необходимо обязательно уплотнить. Для этого используют катки или площадочные вибраторы. Утрамбовка необходима для предотвращения неравномерного оседания монолитного фундамента.

На рис. 1 показан вариант (поперечное сечение) конструкции мелкого заглубления.

Это армированная монолитная лента готова для укладки плит перекрытия. Она лежит на песчаной и щебеночной полушке. Слои подушки насыпаны в траншею, имеющую дренаж. Видно, что с внутренней стороны щебень не укладывают.

  1. Вот основные этапы строительства.
  2. Разметка периметра.
  3. Разметка ширины траншеи.
  4. Подготовка территории и рытье канавы в верхней части участка для защиты от дождевой воды.
  5. Рытье траншеи.
  6.  Укрепление грунта слоем песка и гравия. Песок трамбуют. Суммарная толщина слоев не должна превышать 1/3 высоты фундамента.
  7. Монтаж опалубки.
  8. Обвязка или сварка арматуры.
  9. Заливка бетона.
  10. Снятие опалубки после полного высыхания бетона.

Блок: 5/6 | Кол-во символов: 2502
Источник: https://moifundament.ru/lentochnyj/fundament-s-plitoj-perekrytiya.html

Устройство пола

В зависимости от назначения, личных предпочтений и климата, монолитный пол на ленточном фундаменте можно сделать различными способами.

Пол на лагах


Что выполнить такое монолитное перекрытие на ленточном фундаменте, сначала на ровное основание укладывается слой гидроизоляции. Это может быть рубероид, битумная смесь или обычный плотный полиэтилен.

Затем, строго по уровню, устанавливаются деревянные лаги 15*5 см. Если помещение достаточно большое, по центру между лагами нужно поставить деревянные распорки во избежание деформации доски.

Все свободное пространство плотно заполняется утеплителем. Если используется минеральная вата, необходимо сверху утеплителя настелить пароизоляционную пленку. При использовании полимерных утеплителей в этом нет необходимости.

Сверху на лаги нашивается фанера толщиной 16 мм или половая рейка.

Наливной пол


На монолитную плиту настилается гидроизоляционная пленка. Сверху – слой полимерного утеплителя, желательно пенопласт или пеноплекс плотных марок.

Стыки между плитами тщательно промазываются или пропениваются.

На утеплитель наливается цементная стяжка толщиной 3–5 см с применением армирующей сетки. На такое основание можно уложить плитку, керамогранит или наливные полы.

При такой конструкции можно легко реализовать теплые полы, уложив их в цементную стяжку.

Пол сразу на плиту

При реализации технологии монолитной плиты без цоколя, когда теплоизоляция уже включена в пирог самого основания, можно класть полы прямо на плиту, предварительно уложив слой гидроизоляции и специальную тканевую прослойку, цель которой – выравнивать мельчайшие неровности плиты.

Монолитная плита на ленточном фундаменте: технология гласит, что на такую прослойку с помощью клея можно укладывать как керамическую плитку, так и ламинат и паркетную доску.

Блок: 4/7 | Кол-во символов: 1800
Источник: https://ochag.online/konstrukciya/fundament/lentochnyj/monolitnyj/plita-na-lente.html

Зависимость несущей способности от грунта от его свойств

Несущая способность грунта зависит и от его пористости, которую можно определить самостоятельно. Для этого необходимо взвесить образец грунта известного объема в естественном состоянии и определить его плотность ρвл (г/см3), затем высушить и определить плотность ρсух. Коэффициент пористости С определяем по формуле:

С=(ρвл— ρсух)/ρсух,

Теперь определяем по формуле (1) коэффициент пористости для максимально разрыхленного грунта Сmax и в минимально рыхлом состоянии, Cmin.

По полученным значениям определяем коэффициент относительной плотности D

D=( Сmax-C)/( Сmax— Cmin)

Теперь проверяя приведенные далее условия, находим расчетное сопротивление нагрузкам R:

0≤D≤1/3 — рыхлое состояние R=0, и дом строить нельзя
1/3≤D≤2/3 — средняя плотность R≈0,25 МПа = 2,5 кгс/см2;
2/3≤D≤1 — грунт плотный R≈0,5 МПа = 5 кгс/см2.

Формулы (1) и (2) применяют для песчаных грунтов.

Конструктивная схема ленточного фундамента при высоком уровне грунтовых вод.

Для супеси введены такие определения, как твердая, пластичная и текучее состояние, а для суглинков и глин между твердым и текучим состояниями дополнительно введены полутвердое, тугопластичное, мягкопластичное и текуче-пластичное состояния. Разделение по состояниям определяется через показатель текучесть

JL=(W-WP)/(WL-WP),

где W — фактическая влажность грунта.

WP — влажность, малейшее уменьшение которой переводит грунт в сухое состояние.

WL — влажность, малейшее увеличение которой переводит грунт в текучее состояние.

Теперь, проверяя приведенные далее условия, находим расчетное сопротивление нагрузкам R:

JL < 0 R=0,4 МПа = 4 кгс/см2
JL < 0 R=0,2 МПа = 2 кгс/см2
JL > 1 R=0 — строить нельзя.
Чтобы определить, выдержит ли грунт нагрузку, которую создает дом, необходимо проверить условие:

R > P/SФ, где (1)
Р — вес сооружения
SФ — площадь нижнего основания фундамента.

Если условие (1) не выполняется, необходимо бетон залить так, чтобы увеличить ширину нижнего монолитного основания, при этом в целях экономии материала сечение следует делать трапецеидальным.

Для ориентирования в правильности расчетов, в таблице № 4 приведены значения несущей способности R некоторых типов плотных и средней плотности грунтов

Таблица № 4.

ВидСостояниеНесущая способность, кп/см2
плотныйсредней плотности
ПесокМелкий (маловлажный)43
ПесокМелкий (влажный)32
Песоккрупный65
Песоксреднего размера54
Супесьсухая32,5
Супесьвлажная (пластичная)2,52
Суглиноксухой32
Суглиноквлажный (пластичный)31
Глинасухая62.5
Глинавлажная (пластичная)41

Блок: 4/6 | Кол-во символов: 2584
Источник: https://moifundament.ru/lentochnyj/fundament-s-plitoj-perekrytiya.html

Преимущества и недостатки монолитного перекрытия

При выполнении монтажных работ нет необходимости привлекать тяжелое оборудование, например, кран

Фундаментная плита имеет ряд преимуществ по сравнению с другими видами укладки, в частности:

  • Требует меньшей высоты/толщины фундамента;
  • Служит для обеспечения звукоизоляции;
  • При выполнении монтажных работ нет необходимости привлекать тяжелое оборудование, например, кран. Достаточно заказать бетономешалку с готовым классом бетона;
  • Доступность строительных материалов;
  • Низкая цена по сравнению с аналогами;
  • Возможность сделать форму по нетипичному проекту;
  • После снятия опалубки низ перекрытия имеет ровную однородную поверхность, что значительно облегчает штукатурные работы.

К сожалению, монолитные перекрытия плит имеют некоторые недостатки, которые важно учесть при строительных работах. Их немного, но нужно быть к ним готовыми:

  • Высокая трудоёмкость. К данному виду укладки фундамента нужно приложить максимум усилий;
  • При работе с крупными объектами требуется привлечение высококвалифицированных специалистов;
  • Большую часть времени следует уделить изготовлению опалубки, создание которой предполагает наличие больших запасов древесины. Можно сэкономить в случае взятия в аренду элементов опалубки либо воспользоваться фанерными плитами;
  • Следует учитывать сложность работ, производимых при низких (требуют использования дополнительных добавок либо обогрева) и высоких (придётся укрывать слой термоплёнкой) температурах.

Таким образом, недостатки могут представлять определенные неудобства при укладке плит, но это ни в коей мере не отражается на конечном результате.

Блок: 3/6 | Кол-во символов: 1618
Источник: https://KakPostroitDomic.ru/fundament/monolitnyj-fundament/monolitnoe-perekrytie-fundamenta.html

Виды монолитного ленточного фундамента

Такой фундамент при строительстве зданий бывает двух видов:

  1. Мелко-загубленный. Служит для перекрытия полов, стен и укладки фундамента, залить бетон нужно на глубину промерзания грунта в пределах 1,5 м глубины и в диапазоне 0-0,07 м;
  2. Загубленный. Нужно залить бетон глубже промерзания грунта на глубину свыше 1,6 м.

Блок: 5/6 | Кол-во символов: 354
Источник: https://KakPostroitDomic.ru/fundament/monolitnyj-fundament/monolitnoe-perekrytie-fundamenta.html

Полезное видео

Как выглядит комбинированный фундамент: монолитная плита + лента, наглядно представлено на видео ниже:

Блок: 6/7 | Кол-во символов: 120
Источник: https://ochag.online/konstrukciya/fundament/lentochnyj/monolitnyj/plita-na-lente.html

Особенности укладки монолитного перекрытия для фундамента

Строительство в летнее время осложняется тем, что нужно затормозить процесс испарения влаги из бетона путём покрытия последнего полиэтиленовой термоустойчивой прочной плёнкой

Если строительство ведется в зимнее время, то нужно учитывать, что бетон твердеет при плюсовой температуре. Когда температура воздуха ниже нуля, то залитый бетон нужно либо утеплить при помощи полиэтиленовой плёнки, специальных добавок, либо производить постоянный прогрев бетона для равномерного затвердевания.

Строительство в летнее время при температуре воздуха свыше 30 градусов по Цельсию осложняется тем, что нужно затормозить процесс испарения влаги из бетона путём покрытия последнего полиэтиленовой термоустойчивой прочной плёнкой. Это мероприятие позволит приостановить процесс затвердения, а, соответственно, и выхода влаги, потому что при быстром испарении появляются микротрещины или усадочные трещины, что может в дальнейшем спровоцировать аварийные ситуации.

Заказывать бетон нужно только у тех производителей, которым вы лично доверяете.

Блок: 6/6 | Кол-во символов: 1088
Источник: https://KakPostroitDomic.ru/fundament/monolitnyj-fundament/monolitnoe-perekrytie-fundamenta.html

Выводы

Фундамент монолитная плита на ленточном основании по праву является одним из самых надежных, долговечных и оправданных в строительстве, особенно на нестабильных грунтах. Его применение в строительстве каркасных домов будет не только оправдано экономически, но и решит многие проблемы при эксплуатации строения.

Блок: 7/7 | Кол-во символов: 318
Источник: https://ochag.online/konstrukciya/fundament/lentochnyj/monolitnyj/plita-na-lente.html

Кол-во блоков: 14 | Общее кол-во символов: 19557
Количество использованных доноров: 4
Информация по каждому донору:
  1. https://ochag.online/konstrukciya/fundament/lentochnyj/monolitnyj/plita-na-lente.html: использовано 4 блоков из 7, кол-во символов 3648 (19%)
  2. https://moifundament.ru/lentochnyj/fundament-s-plitoj-perekrytiya.html: использовано 4 блоков из 6, кол-во символов 9410 (48%)
  3. https://KakPostroitDomic.ru/fundament/monolitnyj-fundament/monolitnoe-perekrytie-fundamenta.html: использовано 4 блоков из 6, кол-во символов 3943 (20%)
  4. https://DomZastroika.ru/slabs/ukladka-plit-perekritiya-na-cokol-fundamenta.html: использовано 2 блоков из 3, кол-во символов 2556 (13%)

Расчет параметров плиты перекрытия — О цементе инфо

Несмотря на изобилие готовых плит, монолитные железобетонные плиты по-прежнему пользуются спросом. Особенно, если цель постройки – частный дом, которому присуща своя планировка, с комнатами разных размеров или же в процессе строительства не используются подъемные краны. В подобных случаях монтаж монолитных железобетонных плит перекрытия позволит существенно уменьшить затраты на материалы, их установку или доставку. Однако стоит учитывать, что при этом подготовительные работы, в том числе связанные с опалубкой, займут больше времени. Но не это отпугивает энтузиастов, замышляющих бетонирование перекрытия, ведь изготовление опалубки, заказ арматуры и бетона в наше время не представляют трудностей, гораздо сложнее определить тип необходимого для строительства бетона и арматуры.

Схема монолитного перекрытия своими руками.

Не стоит воспринимать данную статью как руководство к действию, а лишь как носящую сугубо информативный характер.

Все тонкости процесса расчета конструкций из железобетона строго определены нормами СНиП 52-01-2003 и СП 52-101-2003.

Со всеми вопросами, связанными с расчетом железобетонных конструкций, необходимо обратиться за помощью к этим документам. Далее будет рассмотрен расчет железобетонной конструкции – плиты, согласно этим двум приведенным выше нормам и правилам.

Самостоятельный расчет каких-либо строительных конструкций в целом и железобетонных плит в частности делится на несколько этапов, назначение которых заключается в подборе оптимальных параметров, таких как поперечное сечение, класс арматуры или класс бетона, чтобы избежать разрушения железобетонной плиты под действием максимальной нагрузки.

Вычисления будут производиться для поперечного сечения, перпендикулярного оси X. Расчет местного сжатия, продавливания, расчет действия поперечных сил, сил кручения (которые носят название предельных состояний первой группы), расчет на деформацию и раскрытие трещин (называемые еще предельными состояниями второй группы) в данном руководстве производиться не будет, исходя из предположения, подтверждающегося практикой, что для обычной железобетонной плиты перекрытия в условиях жилого дома в таком расчете нет необходимости. Исходя из вышесказанного, стоит ограничиться лишь расчетом, где на поперечное (нормальное) сечение действует изгибающий момент.

Расчетная длина плиты

Размеры плиты –  это расстояние от стены до стены.

Действительная длина железобетонной плиты может иметь любые значения, тогда как значение расчетной длины или же, выражаясь техническим языком, пролета балки (плиты перекрытия) будет совершенно другим. Пролетом называется расстояние между двумя стенами, поддерживающими плиту. То есть пролет представляет собой длину или ширину помещения. Определить его довольно просто: достаточно измерить рулеткой это расстояние, меряя от стены и до стены. Реальная длина монолитной железобетонной плиты, разумеется, будет больше. Опорой для плиты перекрытия могут служить стены из кирпича, камня, шлакоблока, пено-, газо- или керамзитобетона. Учитывая характер наших расчетов, материал стен кажется не столь важным, но если прочность материалов недостаточная для плиты (в случае шлакоблока, керамзитобетона, пенобетона и газобетона), то стены должны быть рассчитаны для соответствующих нагрузок. Ниже будет рассмотрена однопролетная длина перекрытия, опорой для которой служат две стены. Расчет плиты, опирающейся на четыре несущие стены (по контуру), в этой части рассматриваться не будет.

Чтобы лучше усвоить всю приведенную выше информацию, примем какое-то конкретное значение длины, например, 4 м.

Геометрические параметры плиты, класс бетона и арматуры

Для расчета перекрытия нужно определить ее геометрические параметры: класс бетона и арматуры

Вышеперечисленные параметры пока являются неизвестными для нас, но с целью проведения расчета можно их предварительно задать.

Пусть высота плиты будет h = 0.1 м, а условная ширина b = 1 м. Условность в рассматриваемом случае будет означать, что плита перекрытия расценивается как балка высотой 0,1 м и шириной 1 м и получившиеся результаты расчета будут применяться для всей ширины плиты. То есть если расчетная длина плиты будет 4 м и ширина 6 м, то для каждого ее метра будут применяться параметры, которые определялись для нашего расчетного 1 метра.

Итак, принимаемое значение высоты – 0.1 м, ширины – 1 м, класс арматуры – A400, класс бетона – В20.

Выбор опоры

Железобетонные балки служат для поддержания всей конструкции перекрытия.

В зависимости от того на какую ширину плита перекрытия опирается на стену, а кроме того, от типа материала, из которого состоит несущая стена, ее веса, существуют такие методы рассматривания железобетонной плиты перекрытия: шарнирно-опертая бесконсольная балка, шарнирно-опертая консольная балка или балка с жестким защемлением на опорах. Тип опоры играет огромную роль при расчетах.

Ниже будет рассмотрена шарнирно-опертая бесконсольная балка, так как это самый распространенный случай инсталляции.

Нагрузка на балку

Существуют самые разнообразные виды нагрузок на балку. Через призму строительной механики любой объект, который лежит, приклеен, прибит или подвешен на плите, представляет собой статическую нагрузку, и нагрузка эта чаще всего постоянная. Все же объекты, способные ходить, ползать, бегать, ездить и даже падать на поверхность балки, представляют собой динамические нагрузки, которые, как правило, являются временными. При произведении расчета в данном примере разницей между динамической и статической нагрузкой можно будет пренебречь.

Кроме того, нагрузки делятся на равномерно распределенные, сосредоточенные, неравномерно распределенные и т.д., но тем не менее нет нужды настолько сильно углубляться в подробное рассмотрение, как именно сочетаются всевозможные нагрузки. В примере расчета достаточно будет ограничиться равномерным распределением нагрузки. Этот тип нагрузки железобетонных плит наиболее часто встречается в жилых домах. Сосредоточенную нагрузку измеряют в килограммах, или в ньютонах и кг-силах (кгс).

Схема распределения нагрузки на балки.

Равномерно распределенную нагрузку измеряют в Н/м. Стоит заметить, что в жилых домах плиты перекрытия обычно рассчитаны на величину распределенной нагрузки, равную 400 Н/м2. Если высота плиты равна 0.1 м, ее собственный вес прибавит около 250 кг/м2 к приведенной выше нагрузке, керамическая плитка и стяжка способны добавить еще 100 кг/м2. Такая величина распределенной нагрузки учитывает практически все возможные сочетания конструктивных нагрузок на бетонные перекрытия в жилых помещениях, но, конечно, никто не запретит рассчитывать перекрытия на большие нагрузки, тем не менее пока что ограничимся таким значением. Можно на всякий случай умножить его на так называемый коэффициент надежности ?, равный 1.2, если все-таки, выполняя расчет, что-то упустим:

q = (400 Н/м + 250 Н/м +100 Н/м)1.2 = 900 Н/м

так как рассчитываются параметры для плиты шириной 0.1 м, то эту распределенную нагрузку можно рассматривать как плоскую нагрузку, действующую на плиту вдоль оси у и измеряемую в Н/м.

Максимальный изгибающий момент на поперечное сечение

Нагрузка на балки достаточно большая, около 2000 кг.

Для нашей бесконсольной балки с действующей на нее равномерно распределенной нагрузкой и, как уже было обусловлено, находящейся на опорах шарнирного типа, в данном случае плиты перекрытия, положенной на стены, значение максимального изгибающего момента:

Мmax = (q * l2) / 8

и прикладываться он будет посередине балки. Для пролета длиной 4 м он равен:

Мmax = (900 * 42)/ 8 = 1800 кг.м

Основы расчета

Схема сборно-монолитного перекрытия СМП-200

Основой для расчета железобетонных плит перекрытия в согласованности с СП 52-101-2003 и СНиП 52-01-2003 служат такие расчетные предпосылки:

Сопротивление бетона силам растяжения считается равным нулю. Подобное допущение сделано на том основании, что, по сравнению с сопротивлением к растяжению арматуры, сопротивлением бетона к растяжению можно пренебречь (разница между сопротивлениями этих двух элементов порядка 100). По этой причине в зоне, на которую действуют растягивающие силы, из-за разрыва бетона появляются трещины, поэтому в поперечном сечении балки на растяжение может работать только арматура (схема 1).

Сопротивление, которое бетон оказывает сжатию, принимаем распределяющимся равномерно вдоль зоны сжатия. В итоге для сопротивления бетона к сжатию принимаем значение не больше Rb – расчетного сопротивления.

Для максимального, растягивающего в арматуре напряжения также принимается значение, не превышающее расчетное сопротивление Rs;

В качестве основания для подобных предпосылок используется такая расчетная схема:

Схема 1. Распределение усилий, действующих на прямоугольное поперечное сечение железобетонной плиты

Для избегания возможного обрушения конструкции в результате эффекта образования пластического шарнира, существующее соотношение между ?, высотой зоны сжатия бетона y и расстоянием между центром тяжести арматуры и верхом балки h0, ? = у/ho (6.1) не должно превышать определенное предельное значение ?R, которое можно определить по такой формуле:

Приведенная формула является эмпирической, основанной на опыте, полученном при проектировании конструкций из железобетона, где Rs – сопротивление арматуры, полученное расчетным путем, измеряемое в мПа, хотя на данном этапе можно ограничиться табличными значениями параметров:

Важно: Если расчет выполняют проектировщики, не обладающие достаточным опытом, рекомендуется использовать заниженное в 1.5 раза значение ?R.

Где аR – расстояние между центром окружности, образованной плоскостью поперечного сечения арматуры и нижней частью балки. Необходимость в этом расстоянии продиктована обеспечением надежного сцепления арматуры с материалом бетона. Чем больше значение а, тем лучший обхват у прутьев арматуры, но стоит заметить, что при этом полезное значение параметра h0 уменьшается.

Принимаемые значения а обычно тесно связаны с диаметром арматуры, причем расстояние между низом балки (в нашем случае представленной в качестве плиты перекрытия) и нижней частью арматуры не должно быть меньше диаметра арматуры и не менее 0.01 м, в случае если диаметр арматуры меньше этой величины. Для дальнейших расчетов примем значение а, равное 0.02 м.

При условии ? ? ?R и если арматура отсутствует в зоне действия сил сжимания, то прочность бетона следует проверять по этой формуле:

M < Rbbу (h0 – 0.5у)

Полагаем, что физический смысл вышеприведенной формулы ясен. Любой момент можно представить как силу, действующую с определенным плечом, поэтому необходимо, чтобы для бетона соблюдалось условие, описанное в приведенной выше формуле.

– Прочность прямоугольных сечений при ? ? ?R и наличии одиночной арматуры проверяется по формуле:

M ?RsAs (h0 – 0.5у)

Перекрытие армируют для большей несущей способности.

Пояснение формулы: опираясь на расчет, арматура должна выдержать нагрузку, идентичную той, что выдерживает бетон, так как к арматуре приложена та же сила с тем же плечом, что и к бетону.

Примечание: приведенная выше расчетная схема предполагает, что сила действует вдоль плеча, равного (h0 – 0.5у), дает возможность сравнительно легко и просто определить основные параметры, характерные для поперечного сечения, как будет показано в последующих формулах, логичным путем выведенных из M < Rbbу (h0 – 0.5у) и M ?RsAs (h0 – 0,5у). Однако это не единственная расчетная схема, ниже будет рассмотрен также альтернативный расчет по отношению к центру тяжести приведенного сечения, но, в отличие от балок из дерева и металла, расчет железобетона по предельным растягивающим или сжимающим напряжениям, локализованным в нормальном (поперечном) сечении балки, довольно сложен. Сам по себе железобетон как материал сложный, обладающий неоднородной структурой, и даже это еще не все сложности. Данные, полученные в результате многочисленных экспериментов, показали, что такие параметры, как предел текучести, модуль упругости, предел прочности и другие, обладают весьма значительным разбросом.

К примеру, в ходе определения такого параметра бетона, как предел прочности на сжатие, оказалось, что результаты различались между собой, даже когда бетон был представлен образцами одного замеса. Единственное объяснение этому факту заключается в том, что прочность бетона зависит от большого количества факторов: активности цемента, качества (учитывая и степень загрязнения), крупности, способа уплотнения и других технологических факторов. Принимая все вышесказанное во внимание, необходимо понимать, что предел прочности железобетона, будучи результатом случайных факторов, тоже по своей природе будет обладать определенной случайностью.

Ситуация с другими стройматериалами: древесиной, кирпичной кладкой или полимерными композитными материалами – будет аналогичной. Даже в случае таких, казалось бы, классических материалов, как алюминиевые сплавы или сталь, есть хорошо заметный разброс для различных прочностных параметров. Для того чтобы описать такие случайные величины, используют разнообразные вероятностные характеристики, определяемые в результате проведения статистического анализа данных многочисленных опытов. Самые простые из них – это коэффициент вариации, который еще называют коэффициентом изменчивости и математическое ожидание. Коэффициент вариации – это результат от деления среднеквадратического разброса на математическое ожидание случайной величины. Согласно нормам проектирования конструкций из железобетона, коэффициент вариации учитывается при расчете коэффициента надежности для бетона. В связи с этим сложно найти идеальную схему расчета для железобетона, но тем не менее вернемся к дальнейшим расчетам.

Высота сжатой зоны для бетона при условии отсутствия в ней арматуры определяется согласно следующей формуле:

Чтобы определить сечение арматуры, предварительно определяем коэффициент am:

Если выполняется условие аm < aR , то в сжатой зоне нет необходимости использовать арматуру, значение аR можно определить, используя значения из приведенной выше таблицы.

При условии, что в сжатой зоне нет арматуры, ее сечение определяется исходя из следующей формулы:

Альтернативный пример расчета железобетонной конструкции

Выполняя расчет железобетонных плит и других конструкций, могут оказаться полезными такие предпосылки:

Для упрощения расчетов момент сопротивления арматуры по отношению к своему же центру тяжести, ввиду своей незначительности по сравнению с таким же моментом сопротивления, но взятым относительно общего центра масс. Тем не менее, попробуем учесть его в наших расчетах. Итого, формула для расчетов будет выглядеть следующим образом:

Wp = Wa + Fa. (h0-y) = MRa

Когда производился расчет по предельным напряжениям для прямоугольного сечения, расчетное сопротивление делилось на 2, однако, если учесть максимально близкое расположение арматуры к нижней части сечения, в делении на 2 нет необходимости, так как только одна единица арматуры работает на растяжение и, учитывая относительно большое расстояние между центром сечения арматуры и центром тяжести самого сечения, все возникающие в арматуре нормальные напряжения, растягивающие арматуру, можно рассмотреть как равномерно распределяющиеся.

К примеру, используемый класс арматуры – А400 и ее расчетное сопротивление напряжению – Rр , все чаще обозначаемое как Rs= 0.36 кг/ м2. Тем не менее будем придерживаться обозначения Ra – для ясности, что относится оно к арматуре.

WрRа = М / 2

Исходя из этого:

Wa + Fa. (h0-y) = М /2Rа

Fa = М /(2Rа(h0 -y)) – Wa /(h0 – y)

Если при необходимости изменить значения исходных параметров для арматуры, сохраняя при этом основные параметры, изменится размещение центра тяжести данного сечения. По мере увеличения диаметра арматуры соответственно изменится площадь ее поперечного сечения, а центр тяжести будет смещаться ниже, в результате чего высота сжатой зоны бетона уменьшится. Увеличивая класс арматуры и тем самым смещая центр тяжести ее сечения ниже, мы увеличиваем высоту сжатой зоны бетона. И напротив, уменьшая класс арматуры, мы сместим центр тяжести сечения выше, и, соответственно, уменьшится высота сжатой зоны бетона. В случае если по каким-то конструктивным соображениям поперечное сечение арматуры гораздо больше требуемого (на 1/3 и больше), то необходимо повторно выполнить расчет для сечения. Возможно, нужно будет уменьшить класс бетона. Наоборот, уменьшая необходимую площадь сечения для арматуры, необходимым средством будет увеличение класса бетона, притом что остальные параметры останутся без изменений.

Расчет монолитной плиты перекрытия пример

Частные строители в процессе возведения своего дома часто сталкиваются с вопросом: когда необходимо произвести расчет монолитной железобетонной плиты перекрытия, лежащей на 4 несущих стенах, а значит, опертой по контуру? Так, при расчете монолитной плиты, имеющей квадратную форму, можно взять в расчет следующие данные. Кирпичные стены, возведенные из полнотелого кирпича, будут иметь толщину 510 мм. Такие стены образуют замкнутое пространство, размеры которого равны 5х5 м, на основания стен будет опираться железобетонное изделие, а вот опорные площадки по ширине будут равны 250 мм. Так, размер монолитного перекрытия будет равен 5.5х5.5 м. Расчетные пролеты l1 = l2 = 5 м.

Схема армирования монолитного перекрытия.

Кроме собственного веса, который прямо зависит от высоты плиты монолитного типа, изделие должно выдерживать еще некоторую расчетную нагрузку.

Схема монолитного перекрытия по профнастилу.

Отлично, когда данная нагрузка уже известна заранее. Например, по плите, высота которой равна 15 сантиметрам, будет производиться выравнивающая стяжка на основе цемента, толщина стяжки при этом равна 5 сантиметрам, на поверхность стяжки будет укладываться ламинат, его толщина равна 8 миллиметрам, а финишное напольное покрытие будет удерживать мебель, расставленную вдоль стен. Общий вес мебели при этом равен 2000 килограммов вместе со всем содержимым. Предполагается также, что помещение иногда будет умещать стол, вес которого равен 200 кг (вместе с закуской и выпивкой). Стол будет умещать 10 человек, общий вес которых равен 1200 кг, включая стулья. Но такое предусмотреть чрезвычайно сложно, поэтому в процессе расчетов используют статистические данные и теорию вероятности. Как правило, расчет плиты монолитного типа жилого дома производят на распределенную нагрузку по формуле qв = 400 кг/кв.м. Данная нагрузка предполагает стяжку, мебель, напольное покрытие, людей и прочее.

Эта нагрузка условно может считаться временной, т. к. после строительства могут осуществляться перепланировки, ремонты и прочее, при этом одна из частей нагрузки считается длительной, другая – кратковременной. По той причине, что соотношения кратковременной и длительной нагрузок неизвестны, для упрощения процесса расчетов можно считать всю нагрузку временной.

Добавка в бетон для гидроизоляции.
Монтаж сборно монолитного перекрытия.
Цементный раствор: пропорции. Подробнее>>

Определение параметров плиты

Схема сборной плиты перекрытия.

По причине, что высота монолитной плиты остается неизвестной, ее можно принять за h, этот показатель будет равен 15 см, в этом случае нагрузка от своего веса плиты перекрытия будет приблизительно равна 375 кг/кв.м = qп = 0.15х2500. Приблизителен этот показатель по той причине, что точный вес 1 квадратного метра плиты будет зависеть не только от диаметра и количества примененной арматуры, но и от породы и размеров мелкого и крупного наполнителей, которые входят в состав бетона. Будут иметь значение и качество уплотнения, а также другие факторы. Уровень данной нагрузки будет постоянным, изменить его смогут лишь антигравитационные технологии, но таковых на сегодняшний день нет. Таким образом можно определить суммарную распределенную нагрузку, оказываемую на плиту. Расчет: q = qп + qв = 375 +400 = 775 кг/м2.

Схема монолитной плиты перекрытия.

В процессе расчета следует взять во внимание, что для плиты перекрытия будет использован бетон, который относится к классу В20. Этот материал обладает расчетным сопротивлением сжатию Rb = 11.5 МПа или 117 кгс/см2. Будет применена и арматура, относящаяся к классу AIII. Ее расчетное сопротивление растяжению равно Rs = 355 МПа или 3600 кгс/см2.

При определении максимального уровня изгибающего момента следует учесть, что в том случае, если бы изделие в данном примере опиралось лишь на пару стен, то его можно было бы рассмотреть в качестве балки на 2-х шарнирных опорах (ширина опорных площадок на данный момент не учитывается), при всем при этом ширина балки принимается как b = 1 м, что необходимо для удобства производимых расчетов.

Расчет максимального изгибающего момента

Схема расчета монолитного перекрытия.

В вышеописанном случае изделие опирается на все стены, а это означает, что рассматривать лишь поперечное сечение балки по отношению к оси х будет недостаточно, так как можно рассматривать плиту, которую отражает пример, так же как балку по отношению к оси z. Таким образом, растягивающие и сжимающие напряжения окажутся не в единой плоскости, нормальной к х, а сразу в 2-х плоскостях. Если производить расчет балки с шарнирными опорами с пролетом l1 по отношению к оси х, тогда получится, что на балку будет действовать изгибающий момент m1 = q1l12/8. При всем при этом на балку с пролетом l2 будет действовать такой же момент m2, т. к. пролеты, которые отображает пример, равны. Однако расчетная нагрузка одна: q = q1 + q2, а если плита перекрытия имеет квадратную форму, то можно допустить, что: q1 = q2 = 0.5q, тогда m1 = m2 = q1l12/8 = ql12/16 = ql22/16. Это значит, что арматура, которая укладывается параллельно оси х, и арматура, укладываемая параллельно z, может быть рассчитана на идентичный изгибающий момент, при этом момент окажется в 2 раза меньше, чем для той плиты, которая опирается только на 2 стены.

Схема кровли профнастилом.

Так, уровень максимального расчета изгибающего момента окажется равен: Ма = 775 х 52/16 = 1219.94 кгс.м. Но такое значение может быть использовано лишь при расчете арматуры. По той причине что на поверхность бетона станет действовать сжимающие напряжения в двух взаимно перпендикулярных плоскостях, то значение изгибающего момента, применимое для бетона, следующее: Мб = (m12 + m22)0.5 = Mа√2 = 1219.94.1.4142 = 1725.25 кгс.м. Так как в процессе расчета, который предполагает данный пример, необходимо какое-то одно значение момента, можно взять во внимание среднее расчетное значение между моментом для бетона и арматуры: М = (Ма + Мб)/2 = 1.207Ма = 1472.6 кгс.м. Следует брать во внимание, что при отрицании такого предположения можно рассчитать арматуру по моменту, который действует на бетон.

Сечение арматуры

Схема перекрытия по профлисту.

Данный пример расчета монолитной плиты предполагает определение сечения арматуры в продольном и в поперечном направлениях. В момент использования какой бы то ни было методики следует помнить о высоте расположения арматуры, которая может быть разной. Так, для арматуры, которая располагается параллельно оси х, предварительно можно принять h01 = 13 см, а вот арматура, располагаемая параллельно оси z, предполагает принятие h02 = 11 см. Такой вариант верен, так как диаметр арматуры пока неизвестен. Расчет по старой методике проиллюстрирован в ИЗОБРАЖЕНИИ 2. А вот используя вспомогательную таблицу, которую вы увидите на ИЗОБРАЖЕНИИ 3, можно найти в процессе расчета: η1 = 0.961 и ξ1 = 0.077. η2 = 0.945 и ξ2 = 0.11.

Схема примера несъемной опалубки.

В таблице указаны данные, необходимые в ходе расчета изгибаемого элемента прямоугольного сечения. Элементы при этом армированы одиночной арматурой. А как производится расчет требуемой площади сечения арматуры, можно увидеть на ИЗОБРАЖЕНИИ 4. Если для унификации принять продольную, а также поперечную арматуру, диаметр которой будет равен 10 мм, пересчитав показатель сечения поперечной арматуры, приняв во внимание h02 = 12 см, мы получим то, что вы сможете увидеть, взглянув на ИЗОБРАЖЕНИЕ 5. Таким образом, для армирования одного погонного метра можно применить 5 стержней поперечной арматуры и столько же продольной. В конечном итоге получится сетка, которая имеет ячейки 200х200 мм. Арматура для одного погонного метра будет иметь площадь сечения, равную 3.93х2 = 7.86 см2. Это один пример подбора сечения арматуры, а вот расчет удобно будет производить, используя ИЗОБРАЖЕНИЕ 6.

Все изделие предполагает использование 50 стержней, длина которых может варьироваться в пределах от 5.2 до 5.4 метра. Учитывая то, что в верхней части сечение арматуры имеет хороший запас, можно уменьшить число стержней до 4, которые расположены в нижнем слое, площадь сечения арматуры в этом случае окажется равна 3.14 см2 либо 15.7 см2 по длине плиты.

Основные параметры

Схема расчета бетона на фундамент.

Вышеприведенный расчет был простым, но, чтобы уменьшить количество арматуры, его следует усложнить, т. к максимальный изгибающий момент будет действовать лишь в центральной части плиты. Момент в местах приближения к опорам-стенам стремится к нулю, следовательно, остальные метры, исключая центральные, можно армировать, используя арматуру, которая имеет меньший диаметр. А вот размер ячеек для арматуры, которая имеет диаметр, равный 10 мм, увеличивать не следует, так как распределенная нагрузка на плиту перекрытия считается условной.

Следует помнить, что существующие способы расчета монолитной плиты перекрытия, которая опирается по контуру, в условиях панельных построек предполагают применение дополнительного коэффициента, который будет учитывать пространственную работу изделия, ведь воздействие нагрузки заставит плиту прогибаться, что предполагает концентрированное применение арматуры в центральной части плиты. Использование подобного коэффициента позволяет максимум на 10 процентов уменьшить сечение арматуры. Но для железобетонных плит, которые изготавливаются не в стенах завода, а в условиях стройплощадки, применение дополнительного коэффициента не обязательно. Прежде всего это обусловлено необходимостью дополнительных расчетов на раскрытие возможных трещин, на прогиб, на уровень минимального армирования. Более того, чем большее количество арматуры имеет плита, тем меньше окажется прогиб в центре и тем проще его можно устранить либо замаскировать в процессе финишной отделки.

Так, если использовать рекомендации, которые предполагают расчет сборной сплошной плиты перекрытия общественных и жилых зданий, тогда площадь сечения арматуры, которая принадлежит к нижнему слою, по длине плиты окажется равна примерно А01 = 9.5 см2 , что примерно в 1.6 раза меньше полученного в данном расчете результата, но в этом случае необходимо помнить, что максимальная концентрация арматуры должна оказаться посредине пролета, поэтому разделить полученную цифру на 5 м длины не допустимо. Однако это значение площади сечения позволяет приблизительно оценить, какое количество арматуры можно сэкономить после проведения расчетов.

Расчет прямоугольной плиты

Схема монолитного перекрытия своими руками.

Данный пример для упрощения расчетов предполагает использование всех параметров, кроме ширины и длины помещения, таких же как в первом примере. Бесспорно, моменты, которые действуют относительно оси х и z в прямоугольных плитах перекрытия, не равны. И чем больше окажется разница между шириной и длиной помещения, тем больше плита перекрытия станет напоминать балку, размещенную на шарнирных опорах, а в момент достижения определенного значения уровень влияния поперечной арматуры будет почти неизменным.

Существующие экспериментальные данные и опыт, полученный при проектировании, показывают, что при соотношении λ = l2 / l1 > 3 показатель поперечного момента окажется в 5 раз меньше продольного. А в случае когда λ ≤ 3, определить соотношение моментов допустимо, используя эмпирический график, который проиллюстрирован на ИЗОБРАЖЕНИИ 7, где можно проследить зависимость моментов от λ. Под единицей подразумеваются плиты монолитного типа с контурным шарнирным опиранием, двойка предполагает плиты с трехсторонним шарнирным опиранием. График изображает пунктир, который показывает допустимые нижние пределы в процессе подбора арматуры, а в скобках указаны значения λ, что применимо для плит с трехсторонним опиранием. При этом λ < 0,5 m = λ, нижние пределы m = λ/2. Но в этом случае интерес представляет лишь кривая №1, которая отображает теоретические значения. На ней можно видеть подтверждение предположения, что уровень соотношения моментов равен 1 для плиты квадратной формы, по ней можно определить уровень моментов для остальных соотношений ширины и длины.

Формулы и коэффициенты

Схема монтажа перекрытия.

Так, для расчета плиты перекрытия монолитного типа используется помещение, которое имеет длину, равную 8 м, и ширину, равную 5 м. Следовательно, расчетные пролеты окажутся равны l2 = 8 м и l1 = 5 м. При этом λ = 8/5 = 1.6, уровень соотношения моментов равен m2/m1 = 0.49, а вот m2 = 0.49m1. По причине, что общий момент равняется M = m1 + m2, то M = m1 +0.49m1 или m1 = M/1.49, общий момент следует определять по короткой стороне, что обусловлено разумностью решения: Ма = ql12/8 = 775 х 52 / 8 = 2421.875 кгс.м. Дальнейший расчет приведен на ИЗОБРАЖЕНИИ 8.

Так, для армирования одного погонного метра плиты перекрытия следует применить 5 стержней арматуры, диаметр арматуры в этом случае будет равен 10 мм, при этом длина может варьироваться до 5.4 м, а начальный предел может быть равен 5.2 м. Показатель площади сечения продольной арматуры для одного погонного метра равняется 3.93 см2. Поперечное армирование допускает использование 4 стержней. Диаметр арматуры плиты при этом равен 8 мм, максимальная длина равна 8.4 м, при начальном значении в 8.2 м. Сечение поперечной арматуры имеет площадь, равную 2.01 см2, что необходимо для одного погонного метра.

Стоит помнить, что приведенный расчет плиты перекрытия можно считать упрощенным вариантом. При желании, уменьшив сечение используемой арматуры и изменив класс бетона либо и вовсе высоту плиты, можно уменьшить нагрузку, рассмотрев разные варианты загрузки плиты. Вычисления позволят понять, даст ли это какой-то эффект.

Схема строительства дома.

Так, для простоты расчета плиты перекрытия в примере не было учтено влияние площадок, выступающих в качестве опор, а вот если на данные участки сверху станут опираться стены, приближая таким образом плиту к защемлению, тогда при более значительной массе стен данная нагрузка должна быть учтена, это применимо в случае, когда ширина данных опорных участков окажется больше 1/2 ширины стены. В случае когда показатель ширины опорных участков окажется меньше или будет равен 1/2 ширине стены, тогда будет необходим дополнительный расчет стены на прочность. Но даже в этом случае вероятность, что на опорные участки не станет передаваться нагрузка от массы стены, окажется велика.

Пример варианта при конкретной ширине плиты

Возьмем за основу ширину опорных областей плиты, равную 370 мм, что применимо для кирпичных стен, имеющих ширину в 510 мм. Этот вариант расчета предполагает высокую вероятность передачи на опорную область плиты нагрузки от стены. Так, если плита будет удерживать стены, ширина которых равна 510 мм, а высота – 2.8 м, а на стены станет опираться плита следующего этажа, сосредоточенная постоянная нагрузка окажется равна.

Более правильным в этом случае было бы брать во внимание в процессе расчета плиту перекрытия в качестве шарнирно опертого ригеля с консолями, а уровень сосредоточенной нагрузки – в качестве неравномерно распределенной нагрузки на консоли. Кроме того, чем ближе к краю, тем нагрузка была бы больше, но для упрощения можно предположить, что данная нагрузка равномерно распределяется на консолях, составляя 3199.6/0.37 = 8647, 56 кг/м. Уровень момента на шарнирных опорах от подобной нагрузки будет равен 591.926 кгс.м.

Это значит, что:

  • в пролете m1 максимальный момент будет уменьшен и окажется равен m1 = 1717.74 – 591.926 = 1126 кгс.м. Сечение арматуры плиты перекрытия допустимо уменьшить либо и вовсе изменить остальные параметры плиты;
  • изгибающий опорный момент вызовет в верхней части плиты растягивающие напряжения, бетон на это в области растяжения не рассчитан, значит, необходимо дополнительно армировать в верхней части плиты перекрытия монолитного типа или уменьшить значение ширины опорного участка, что позволит уменьшить нагрузку на опорные участки. На случай если верхняя часть изделия не будет дополнительно армирована, плита перекрытия станет образовывать трещины, превратившись в плиту шарнирно-опертого типа без консолей.

Данный вариант расчета загружения следует рассматривать вместе с вариантом, который предполагает, что плита перекрытия уже имеется, а стены – нет, что исключает временную нагрузку на плиту.

пример, чертежи, правила и частые ошибки

Содержание статьи

Использование технологий армирования для монолитных плит перекрытий в малоэтажном жилищном строительстве – обязательное условие. Бетон и металл в монолитных конструкциях взаимно дополняют друг друга. Бетон защищает арматурные стержни и обеспечивает прочную поверхность перекрытия. Арматура принимает конструктивные нагрузки и защищает бетонный слой от разрушения.

В итоге строение получает прочное и долговечное перекрытие. Для усиления его прочности и устойчивости, помимо опорной арматуры в конструкции предусмотрен венец, соединяющий устраиваемый каркас с концами арматуры стен, колонн, балок, пилонов.

В армировании применяются металлические пруты диаметром 6-25 мм из гладкой (АI) или ребристой (АIII) стали. Конкретные параметры указываются в чертежах, схемах и спецификациях армирования.

Принцип работы арматуры в перекрытии

Монолитные конструкции наиболее часто применяются в устройстве различного рода балок. Перекрытие – это та же балка, но более широкая и тонкая. Расчёт такой конструкции осуществляется в сечении по заданному пролёту. Верхняя часть плиты в пролёте сжимается. Нижняя часть растягивается. Воспринимающий нагрузку нижний армирующий стержень не позволяет плите разрушиться. Над опорами всё работает наоборот. Если опирание плиты на опоры не защемляется, то растяжение над ней незначительное.

Задача проектировщиков и исполнителей армирования плиты перекрытия: вовлечение в работу большей части конструкции для обеспечения  противодействия малейшей деформации. Это общий упрощённый принцип работы армокаркаса в монолитном перекрытии. Иногда простого понимания этого принципа достаточно для качественного изготовления каркаса перекрытия в небольшом частном доме.

Пошаговая инструкция

Подготовка

Начальный этап – осмотр арматуры перед приобретением. Обычно она уложена в пачки с товарными бирками. На них указывается марка, вес и диаметр, номер партии, плавка и другие данные. В случае, когда материал приобретается без наличия проекта, нужное количество металла приобретается по весу из расчёта 80-100 кг на кубический метр монолитного перекрытия.

В процессе работы обязательно будут отходы, останутся обрезки, поэтому материал приобретается с запасом примерно в 10%. Если по каким-то соображениям планируется использовать арматуры больше указанной нормы, то это предполагает избыточность, нерациональность армирования плиты.

Стержни должны быть ровными, без явных изломов и замятий, без выраженных проявлений ржавчины в виде «хлопьев», небольшой налет ржавчины допустим.

В состав каркаса входят продольные и поперечные стержни, изделия специального назначения. Наиболее эффективно арматура работает при оптимальном расположении верхней и нижней сетки каркаса, — они должны находиться в толще бетона максимально близко соответственно к верху и низу конструкции. Иначе: армокаркас должен плотно обжиматься бетоном, имея достаточный внешний защитный бетонный слой. Контроль толщины защиты снизу и сбоку бетонного слоя обеспечивается монтажом типовых пластиковых фиксаторов.

Они изготавливаются в различных вариантах по назначению, например, для установки на основание из песка и щебня или для фиксации бетонного слоя по боковым поверхностям опалубки. Не стоит подкладывать под арматуру различные кирпичики или камешки, если имеется возможность применить недорогие изделия для фиксации.

Нужное расстояние между сетками обеспечивается установкой «лягушек», – самодельных изделий из  10 мм периодического профиля.

Укладка армокаркаса

К месту ведения работ подаётся уже нарезанная по размерам арматура. Установка армокаркаса в перекрытии производится примерно по следующей схеме:

  1. Раскладываются по кратчайшему расстоянию от одной опорной стены к другой все поперечные стержни. На них укладываются продольные стержни с шагом примерно 3 м, связываются все точки пересечения. Получается как бы эскиз нижнего слоя.
  2. Далее устанавливаются все продольные стержни нижнего ряда с нужным либо проектным шагом. Фиксация проволокой выполняется через каждые два пересечения. Необходимости связки в каждом узле нет, так как проволока не выполняет никаких иных функций в работе каркаса, кроме фиксации арматуры в заданном положении. Сварка не применяется по нескольким причинам: высокая температура ослабляет стержни и может повредить опалубку, а сам процесс трудоёмкий и длительный.
  3. Связывание прутов выполняется с помощью специальных крючков. Это простейшее приспособление используют не только самодеятельные строители, но и профессиональные монолитчики. Автоматические пистолеты для вязания используются только при больших объёмах работ. Кстати, применение различного рода приспособлений для шуруповёрта при связывании арматуры говорит не о продвинутости исполнителя работ, а, скорее, о его непрофессионализме.
  4. При недостаточной длине, стержни между собой соединяются с перехлёстом, длина которого должна быть в диапазоне от 30 до 40 диаметров стержня, выполняется не менее трёх узлов вязки. Перехлесты в соседних рядах разносятся на разные стороны.
  5. После полного устройства нижней сетки устанавливаются «лягушки». Шаг монтажа рассчитывается под человека весом примерно 90 кг, — он должен передвигаться по сетке без её прогибов. Для работы без проекта применяется стандартное решение: шаг 80х80 см, при арматуре 12 мм и ячейке 20 см. Лягушки выставляются по единой линии.

    «Лягушка»

  6. Направляющий стержень прокладывается по «лягушкам» как можно точнее над нижним арматурным стержнем.
  7. Между уложенными направляющими укладываются арматурные стержни без фиксации в количестве, равном числу соответствующих нижних стержней.
  8. Далее на нижнюю сетку укладываются дополнительные изделия в соответствии с проектом. Это могут быть выпуска, П-образки, арматура усиления проёмов, каналы коммуникаций, гильзы и другие элементы.
  9. На направляющие укладывают с фиксацией на всех пересечениях арматуру верхней сетки, — лучше, если пруты будут расположены точно над нижней арматурой.
  10. Затем крючками поднимаются уложенные без фиксации стержни, — и подвязываются к верхней арматуре через каждые два пересечения.
  11. На последнем этапе собранный каркас приподнимается с помощью монтажных ломиков, под него устанавливаются фиксаторы.

Технические сложности у исполнителей часто возникают при поднимании стержней, положенных без связки на нижнюю сетку. Для этой операции требуются определённые навыки. Затем из конструкции вычищается мусор, проводится контрольный замер защитных слоёв и других параметров. После чего каркас готов к приёму бетона.

Пример армирования плиты перекрытия дома 6 х 6 м

Толщина перекрытия из монолитного бетона рассчитывается из соотношения 1 к 30 по отношению к длине пролёта. Если величина пролёта превышает 6 м – расчёт нагрузок должны производить специалисты. Поэтому можно рассмотреть устройство армирования для дома с перекрытием 6 х 6 м, — для таких параметров можно воспользоваться стандартными решениями:

  • Арматуру используем с периодическим профилем марок A-III, А400 или А500.
  • Под пролётом понимается расстояние между стенами, на которые опирается перекрытие. Если она прямоугольная, то пролёт рассчитывается по короткой стороне.
  • Укладываем нижний ряд арматуры вдоль пролёта, диаметр стержней 12 мм. Так как параметры дома 6 х 6 указываются по осям, — длина стержней составит 6 м каждый для кирпичного (каменного, монолитного) дома. Если стены выполнены из пористых блоков, то нахлёст армосетки на стены должен быть не менее 20 см. Рассчитываем по кирпичным стенам. Расстояние между параллельной арматурой для всех слоёв сетки – 20 см.
  • Подкладываем под него фиксаторы-сухарики высотой 30 мм, обеспечивая нижний защитный бетонный слой.
  • Следующий ряд – нижний поперечный, диаметр тот же.
  • Связываем проволокой диаметром 0,8 — 1,4 мм по всем пересечениям.
  • На нижнюю сетку устанавливаются разделители сеток. Их можно сделать самостоятельно из аналогичной арматуры. Шаг подставок также произвольный, — верхняя сетка не должна провисать при воздействии на неё веса человека. После окончательного монтажа каркаса можно будет добавить подставки при необходимости.
  • На разделители укладывается верхняя поперечная арматура и связывается с ними.
  • Далее — верхний слой арматуры вдоль пролёта. Диаметр стержней – 8 мм. Связывается на всех пересечениях.
  • В торцах каркаса по каждому ряду устанавливаются П-образные изделия из арматуры, связывающие в единую конструкцию верх и низ каркаса.

Таким образом, на устройство армирования монолитного перекрытия понадобится:

  • арматура диаметром 12 мм – 372 м;
  • на верхнюю сетку – арматура 8 мм – 372 м;
  • на изготовление разделителей сетки и П-образных элементов потребность арматуры 8 мм составляет примерно 10 % от общей длины всех стержней – 75 м.

Изготовить дополняющие элементы каркаса можно самостоятельно с помощью простейшего трубогиба, либо купить как готовые изделия. Пересчитать длину на вес можно по таблицам, а также при приобретении арматуры, она реализуется на вес. Усиление основной сетки для монолитной плиты 6 х 6 м , как правило, не требуется.

Примеры чертежей

Типичные ошибки армирования плиты перекрытия

Наиболее распространённая причина ошибок в армировании монолитных перекрытий – самонадеянность и некомпетентность индивидуальных застройщиков. Самостоятельное выполнение данного вида строительных работ без профессиональных знаний вполне возможно, но определённый багаж знаний исполнителю всё же необходим. Недостаточно качественное армирование встречается и в работе подрядчиков. Причины аналогичны: некомпетентность, невнимательность, работа «по старинке», без учёта конкретных условий строительства.

Проект армирования плиты перекрытия

Задача инженерного расчёта арматурного каркаса: обеспечение работоспособности создаваемого перекрытия и предоставление исчерпывающей информации по его изготовлению. Форма общего проекта железобетонной конструкции нормируется, состоит из ряда обязательных составных частей:

  • Спецификация. Представляет собой полный список металлических деталей, необходимых для устройства армирования. В документе указываются характеристики, марки, классы, геометрические и иные параметры арматурных стержней, а также их требуемое количество.
  • Чертежи с достаточной и понятной детализацией для определения предназначенного каждому стержню места в арматурном каркасе.
  • Указания по размещению армокаркаса в плане создания защитного слоя для защиты металла от коррозии.
  • Данные по размещению закладных деталей и расчёты для их изготовления.

Разумеется, проект главная и необходимая часть для выполнения качественного армирования плиты, но сам процесс требует профессионализма исполнителей и грамотного контроля со стороны заказчика или производителя работ.

Брак при изготовлении

Прежде чем приступить к раскладке арматуры в опалубке, исполнитель изучает проект либо составляет собственную схему устройства каркаса, исходя из собственных навыков и опыта. Несколько вариантов типичных ошибок:

  • Самодеятельные строители чаще ошибаются, стремясь максимально «усилить» конструкцию, это приводит не только к ненужным затратам, но и снижает её качество. Например, при слишком «густой» сетке невозможно максимально уплотнить бетонную смесь.
  • Недостаточно прочный каркас под воздействием бетонной смеси может сместиться при укладке.
  • Характеристики железобетона снижаются при неточном размещении рабочих арматурных стержней или произвольным изменением марки арматуры.
  • Частая ошибка – неправильно подобранная величина защитного слоя арматуры.

Перечисленные ошибки и большой ряд иных возможных дефектов могут стать причиной:

  • дополнительных расходов по усилению конструкции;
  • ограничений по эксплуатации перекрытия с изменением допустимых нагрузок;
  • демонтажа конструкции.

Методы контроля

Достаточно часто при строительстве небольших частных домов проект армирования отсутствует. Застройщик всецело полагается на опыт и знания привлеченных строителей, либо полностью уверен в своих строительных способностях.

Но ошибки случаются, в том числе и у профессионалов, — именно поэтому при возведении значимых объектов составляется документ по «приёмке скрытых работ». К «скрытым» относится и армирование, потому что каркас впоследствии заливается бетонным слоем. Но сам с собой такой акт застройщик не составляет, а нанятые для устройства перекрытия разовые исполнители подобные обязывающие документы не подписывают.

Допустим, что перекрытие получилось достаточно прочным, но сомнения в качестве этой ответственной конструкции имеются. В этом случае применяются методы неразрушающего контроля, которыми можно проверить:

  • марку прочности монолитного перекрытия;
  • точное место размещения арматурных стержней и прутов с их параметрами;
  • уровень поражения арматуры коррозией;
  • однородность бетонного слоя с наличием или отсутствием в нём технологических дефектов.

Методы проверки эффективны, но затратны, поэтому важно выполнить работы по армированию правильно и ответственно.

Практические рекомендации

На рынке строительных материалов представлено много вариантов готовой сетки для армирования. На первый взгляд – оптимальное решение для быстрого создания армокаркасов перекрытий. Но применение готовых сеток неизбежно приводит к увеличению стыков арматурных полотен, что, в свою очередь, приводит к снижению общей прочности конструкции.

Кроме того, стыковка сеток производится внахлёст, — а это приводит к перерасходу материала и увеличению стоимости перекрытия. Сварка сетки, выполненная в заводских условиях точечным методом, приводит к незначительному, но всё же снижению прочности каркаса.

Реализация арматуры производится на вес, поэтому застройщику нужно научиться пересчитывать материал из мер длины в меры веса. При составлении схемы раскладки арматуры следует учитывать, что максимальная длина выпускаемых промышленностью стержней составляет 11,75 м.

Металл – достаточно дорогой материал. В стремлении удешевить строительство, некоторые застройщики стали использовать композитную арматуру для перекрытий.

Но не стоит забывать, что перекрытия относятся к ответственным конструкциям, а использование композитных изделий пока не достаточно проверено в практическом строительстве. Кроме того, экономия материала при замене металла композитом незначительна: композитные стержни всегда больше диаметром заложенных в проекты стержней из металлической арматуры.

Совет! Если вам нужны строители для возведения фундамента, есть очень удобный сервис по подбору спецов от PROFI.RU. Просто заполните детали заказа, мастера сами откликнутся и вы сможете выбрать с кем сотрудничать. У каждого специалиста в системе есть рейтинг, отзывы и примеры работ, что поможет с выбором. Похоже на мини тендер. Размещение заявки БЕСПЛАТНО и ни к чему не обязывает. Работает почти во всех городах России.

Если вы являетесь мастером, то перейдите по этой ссылке, зарегистрируйтесь в системе и сможете принимать заказы.

Хорошая реклама

Читайте также

по двум сторонам и по контуру

Армирование перекрытия производится в зависимости от условий его опоры. Плита может опираться на стены, балки или колонны. Плита, поддерживаемая непосредственно колоннами, называется безбалочным перекрытием.

Плита с опорой по двум сторонам прогибается преимущественно только в одном направлении, и называется однонаправленная плита. С другой стороны, когда перекрытие опирается на все четыре стороны — прогиб происходит в двух направлениях. Такое перекрытие называют перекрытием опертым по контуру.

Плиты, соотношение длины которых к их меньшей длине (Ly/Lx) больше 2, называются однонаправленными перекрытиями, в противном случае — двунаправленными перекрытиями. В одном случае основная арматура перекрытия параллельна более короткому направлению, а арматура, параллельная более длинному направлению, называется конструктивной арматурой. В двухстороннем перекрытие основная арматура плиты укладывается в обоих направлениях.

Плиты могут быть шарнирными, защемленными или консольными. В двухстороннем случае углы перекрытия могут защемляться или подниматься вверх. Дополнительное армирование на кручение требуется на углах, когда оно защемлено, как показано на рис.1.

Рис.1 Армирование плиты перекрытия

Толщина перекрытия определяется исходя из соотношения пролета к толщине. Минимальная арматура составляет 0,12% для арматуры класса А400 или А500. Диаметр стержней обычно используемых в плитах: 6 мм, 8 мм, 10 мм, 12 мм и 16 мм.

Максимальный диаметр стержня, используемого в перекрытии, не должен превышать 1/8 от общей толщины перекрытия. Максимальное расстояние между основными стержнями ограничено до 3-х раз эффективной глубины (без учета защитного слоя) или 300 мм, в зависимости от того, что меньше. Для распределительной арматуры (конструктивной) максимальное расстояние между ними указывается в 5 раз больше эффективной глубины или в 450 мм, в зависимости от того, что меньше.

Минимальное защитное покрытие для арматуры в плите зависит от критериев долговечности и пожарной безопасности. Как правило, для рабочей арматуры предусмотрено покрытие 15-20 мм. Альтернативные конструктивные арматурные стержни могут быть загнуты в сторону опоры или могут быть загнуты под углом 180 градусов по краю (П-образная арматура), а затем установлены сверху внутри плиты, как показано на рис.1. Загибы арматуры показаны на рис. 2.

Рис.2 Армирование против кручения

Армирование против кручения должно быть обеспечено на каждом углу, где плита опирается на примыкающие стены с защемлением, и не должно изгибаться, если только последствия трещин не будут незначительными. Она должна состоять из верхней и нижней арматуры, каждая со слоем арматурных стержней, размещенных параллельно боковым сторонам плиты и выступающих от краев минимально на одну пятую часть от более короткого пролета.

Площадь армирования на единицу ширины в каждом из этих четырех слоев должна составлять три четверти площади, необходимой для максимального среднего пролета на единицу ширины плиты.

Армирование кручением, равное половине описанного выше, должно производиться в углу, ограниченном краями, над которыми перекрытие является сплошным. Арматура кручения, которая должна быть установлена, показана на рис. 3 ниже.

Рис. 3а. Армирование угла опирания Рис. 3б. Армирование торцевого опирания плиты перекрытия

На чертеже плана перекрытия показывают типовые детали арматурного каркаса,  как по направлению, так и по сечению. Типовые детали перекрытия показаны на рис. 4 и 5.

Рис.4 План плиты перекрытия с опорой по 2-м сторонам

План однонаправленной плиты перекрытия

Рис.5 План плиты перекрытия с опорой по 4-м сторонам

План двунаправленной плиты перекрытия

Как определить расчетный пролет балки (плиты, перемычки)

При расчете любого изгибаемого элемента, будь то плита, балка или перемычка, прежде всего, следует определить расчетный пролет. При переводе объемных конструкций в плоскую расчетную схему очень важно задаться правильными размерами элементов. Ведь в расчетной схеме все просто: балка – это стержень, а опора – точка. На самом же деле опора имеет свой размер – глубину опирания, и балка не зависает на краях стены (от точки до точки), часть ее работает в пролете, но часть – «отдыхает» на опорах.

Создавая расчетную схему, мы сталкиваемся с двумя величинами: реальной длиной балки и расстоянием в свету между опорами. Какую из этих величин следует принять за расчетную? Если брать полную длину балки, это будет неверно, т.к. все-таки та ее часть, которая лежит на опоре, не подвержена таким напряжениям, как в пролете. Но брать за расчетную длину расстояние между опорами можно только в отдельных случаях, ниже мы рассмотрим, что да как.

Далеко не всегда расчетная длина балки совпадает с пролетом в свету между опорами.

Есть два варианта размера расчетного пролета.

1)  Если опирание жесткое, т.е. балка защемлена на опоре (либо является частью монолитной конструкции), то расчетный пролет L0 равен расстоянию в свету между опорами.

2) Если же опирание шарнирное, то расчетный пролет всегда больше этого расстояния.

Рассмотрим глубже определение расчетного пролета при шарнирном опирании элемента. Во-первых, следует четко определиться с требованиями глубины опирания шарнирных элементов (поможет статья «В чем разница между шарнирным опиранием и жестким защемлением»). Если вы делаете расчет шарнирно опираемой железобетонной балки (плиты и т.п.), глубина ее опирания должна быть не более высоты сечения – иначе, это будет уже защемление или переходное состояние между шарниром и защемлением, а там и расчет другой, и длина расчетного пролета – согласно пункту 1. Т.е. если вы плиту толщиной 200 мм опираете на 450 мм с каждой стороны, то пользоваться нижеприведенным расчетом не следует.

Для ленивых во многих учебниках есть правило: L0 = 1.05L, т.е. берем расстояние между опорами в свету и умножаем на 1,05.

Но сейчас мы постараемся понять, в чем же суть увеличения расчетного пролета, и как поточнее его определить.

При расчете балки мы привыкли получать реакции на опоре в виде сосредоточенных сил.

Но если рассмотреть точнее, нагрузка от балки на опору передается в виде распределенной нагрузки, причем даже не равномерно распределенной: максимальная ее величина расположена у края опоры, а к концу балки она сходит на нет.

По общепринятым правилам перевода распределенной нагрузки в сосредоточенную, положение сосредоточенной нагрузки будет в центре тяжести треугольника, т.е. на расстоянии 1/3 от края опоры. В этом же месте будет расположена искомая реакция. А расстояние между этими реакциями будет равно расчетному пролету.

Таким образом, если глубина опирания балки с одной стороны равна А, а с другой стороны В, то расчетный пролет мы найдем по формуле:

L0 = L + A/3 + B/3.

Если же глубина опирания с двух сторон одинаковая и равна А, то

L0 = L + 2A/3.

Такое увеличение расчетного пролета по отношению к реальному (в районе 5%) дает определенный запас прочности и приближает нас к реальному положению вещей – ведь длина балки может быть разной, а глубина опирания обычно одинаковая. И пять процентов при трехметровом пролете значительно отличается от пяти процентов при восьмиметровом.

Надеюсь, статья оказалась вам полезной.

class=»eliadunit»> Добавить комментарий

16 Различные типы плит в строительстве

Что такое плита?

Плиты предназначены для создания плоских поверхностей, обычно горизонтальных в полах зданий, крышах, мостах и ​​других типах конструкций. Плита может поддерживаться стенами или железобетонными балками, обычно монолитными с плитой, или конструкционными стальными балками, колоннами или землей. Плиты делятся на 16 типов.

Различные типы бетонных плит в строительстве: —

В строительстве имеется 16 различных типов плит .Некоторые из них устарели, и многие из них часто используются повсеместно. В этой статье я подробно объясню каждую плиту и где использовать ту или иную плиту. Ниже представлены типы бетонных плит.

Так как это длинная статья, мы создали оглавление ниже для облегчения навигации.

Плоская плита: —

Плоская плита представляет собой железобетонную плиту, поддерживаемую непосредственно бетонными колоннами или крышками. Плоская плита не имеет балок, поэтому ее также называют безбалочной плитой .Они поддерживаются на самих колоннах. Нагрузки передаются напрямую на колонны. В этом типе конструкции получается однотонный потолок, что придает привлекательный внешний вид с архитектурной точки зрения. Плоский потолок лучше рассеивает свет и считается менее уязвимым в случае пожара, чем традиционная конструкция из балочных перекрытий. Плоское перекрытие легче построить и требует меньше опалубки. Это одна из разновидностей бетонных плит.

Толщина плоской плиты составляет минимум 8 ″ или 0.2м.

Плоские перекрытия используются по адресу:
  1. Для обеспечения ровной поверхности потолка, обеспечивающей лучшее рассеивание света
  2. Простая конструкция с экономией в опалубке
  3. Большая высота потолка или меньшая высота этажа и приятный внешний вид.
  4. Плиты такого типа используются на парковках.
  5. Плоские плиты обычно используются на палубах парковок, коммерческих зданиях, гостиницах или местах, где выступы лучей нежелательны.

Преимущества плоских перекрытий:
  1. Минимизирует высоту от пола до пола, когда нет необходимости в глубоком подвесном потолке. Высота здания может быть уменьшена
  2. Автоматический спринклер становится проще.
  3. Меньше времени на строительство.
  4. Увеличивает прочность плиты на сдвиг.
  5. Уменьшите момент в плите за счет уменьшения свободного или полезного пролета.

Недостатки плоской плиты:
  1. В системе плоских плит невозможно иметь большой пролет.
  2. Не подходит для поддержки хрупких (кирпичных) перегородок.
  3. Более высокая толщина плиты.

Существует четыре различных типа бетонных плоских перекрытий: —
  1. Плита без перепада и колонна без головки колонны (капитель).
  2. Плита с каплей и колонной без головки колонны.
  3. Плита без перепада и колонна с головкой колонны.
  4. Плита с каплей и колонна с головкой колонны.

Обычная плита: —

Плита, которая опирается на балки и колонны, называется обычной плитой.В этом случае толщина плиты мала, тогда как глубина балки велика, и нагрузка передается на балки, а затем на колонны. По сравнению с плоской плитой требуется больше опалубки. В плитах обычного типа нет необходимости в крышках колонн. Толщина обычной плиты составляет 4 дюйма или 10 см. Рекомендуется от 5 до 6 дюймов, если бетон будет время от времени подвергаться тяжелым нагрузкам, например, от домов на колесах или мусоровозов.

Обычные бетонные плиты имеют квадратную форму и длину 4 м.Армирование предоставляется в обычных плитах, а стержни, расположенные по горизонтали, называются основными стержнями армирования, а стержни, расположенные по вертикали, называются стержнями распределения.

По длине и ширине обычная плита подразделяется на два типа:

  1. Односторонняя плита
  2. Двусторонняя плита

1. Односторонняя плита:

Односторонняя плита поддерживается балками на две противоположные стороны, чтобы нести груз в одном направлении. Отношение более длинного пролета (l) к более короткому пролету (b) равно или больше 2, что считается односторонней плитой.В этом типе плита изгибается в одном направлении, то есть в направлении своего более короткого пролета. Однако минимальная арматура, известная как распределительная сталь, предоставляется вдоль более длинного пролета над основной арматурой, чтобы равномерно распределять нагрузку и противостоять температурным и усадочным напряжениям.

Как правило, длина плиты составляет 4 метра. Но в одном варианте плиты длина одной стороны составляет 4 м, а длина другой стороны — более 4 м. Таким образом, он удовлетворяет приведенному выше уравнению. Основное усиление предусмотрено в более коротком пролете, а распределительное усиление — в более длинном.Основные стержни изогнуты, чтобы противостоять образованию напряжений.

Пример: Обычно все консольные перекрытия представляют собой односторонние перекрытия. Хаджи и веранды — практический пример использования односторонних плит.

2. Двусторонняя плита:

Двусторонняя плита поддерживается балками со всех четырех сторон, и нагрузки переносятся опорами в обоих направлениях, это известно как двухсторонняя плита. В двухсторонней плите отношение более длинного пролета (l) к более короткому пролету (b) меньше 2. Плиты, вероятно, будут изгибаться в обоих направлениях к четырем опорным краям, и, следовательно, распределительное армирование обеспечивается в обоих направлениях.

В этом виде плиты длина и ширина плиты более 4 метров. Для предотвращения образования напряжений на обоих концах двухсторонней плиты предусмотрены распределительные стержни.

Эти типы плит используются при устройстве перекрытий многоэтажных домов.

Пустотные ребристые плиты или пустотные плиты: —

Пустотные ребристые плиты получили свое название от пустот или сердцевин, которые проходят через блоки. Ядра могут функционировать как служебные каналы и значительно уменьшать собственный вес плит, повышая эффективность конструкции.Ядра также имеют преимущество с точки зрения устойчивости за счет уменьшения объема используемого бетона. Блоки обычно доступны со стандартной шириной 1200 мм и глубиной от 110 мм до 400 мм. Полная свобода в длине юнитов. Этот тип плит является сборным и используется там, где требуется быстрое строительство.

Пустотные оребренные плиты имеют от четырех до шести продольных стержней, проходящих через них, основная цель которых заключается в уменьшении веса и материала внутри пола, при этом сохраняя максимальную прочность.Для дальнейшего повышения прочности плиты армируются продольно продольно стальной прядью диаметром 12 мм. Это одна из разновидностей бетонных плит.

Установка пустотных плит: —

С помощью башенных кранов Пустотные плиты вставляются между балками. Промежутки между плитами заполняются стяжкой.

Стяжка — это бетонный материал, как правило, мы используем 20-миллиметровый заполнитель в бетоне, тогда как в стяжке мы используем детскую стружку (мелкие битые камни) в качестве заполнителя.

Ребристые плиты с пустотелым сердечником имеют отличные пролетные характеристики, достигая предельной прочности 2,5 кН / м 2 на 16-метровом пролете. Возможность большого пролета идеально подходит для офисов, магазинов или автостоянок. Агрегаты устанавливаются со структурной стяжкой или без нее, в зависимости от требований. Плиты прибывают на место с гладким готовым перекрытием. На автостоянках и других открытых конструкциях готовые перекрытия предлагают решение, не требующее обслуживания.

Пустотные плиты Преимущества:
  1. Пустотные ребристые плиты не только сокращают затраты на строительство, но и уменьшают общий вес конструкции.
  2. Превосходная огнестойкость и звукоизоляция — другие атрибуты пустотных плит из-за ее толщины.
  3. Устраняет необходимость сверлить плиты для электрических и сантехнических узлов.
  4. Проста в установке и требует меньше труда.
  5. Быстрое строительство
  6. Для усиления кирпичной кладки из пустотелых блоков не требуется дополнительной опалубки или специальной строительной техники.

Пустотная плита Недостатки:
  1. При неправильном обращении блоки оребренной плиты с пустотным сердечником могут быть повреждены во время транспортировки.
  2. Становится трудным обеспечить удовлетворительное соединение между сборными элементами.
  3. Необходимо установить специальное оборудование для подъема и перемещения сборных железобетонных изделий.
  4. Неэкономично для малых пролетов.
  5. Сложно отремонтировать и укрепить

Hardy Slab: —

Hardy slab обычно встречается в Дубае и Китае. Крепкая плита построена из выносливых кирпичей. Выносливые кирпичи — это пустотелые кирпичи, состоящие из бетонных пустотелых блоков.Эти блоки используются для заполнения части плиты. Прочные плиты позволяют сэкономить количество бетона и, следовательно, уменьшить собственный вес плиты. Такая плита имеет большую толщину 0,27 м по сравнению с традиционной. Метод установки Hardy slab отличается от обычного и четко поясняется ниже:

Размеры Hardy-кирпича 40см x 20см x 20см

Процесс изготовления выносливых блоков следующий:

Шаг 1: Устанавливается опалубка, а затем на опалубку устанавливаются ставни.
Шаг 2: Блоки Hardy размещаются на ставне с одним зазором для кирпича на всей ставне.
Шаг 3: Промежутки между кирпичами называются ребром . Армирование осуществляется в виде балки в зазоре.
Шаг 4: После размещения ребра простая стальная сетка размещается на всей площади плиты, опираясь на ребра.
Шаг 5: Заливка бетона производится на плиту.

Где использовать Hardy Slab?

Hardy slab используется в местах с очень высокими температурами.Чтобы противостоять температуре сверху толщина плиты увеличивается. Тепло, исходящее от стен, противодействует использованию специальных кирпичей с термопластом. Thermacol — лучший изолятор солнечного света.

Преимущества Hardy Slab:
  1. Снижение веса плиты за счет уменьшения количества бетона ниже нейтральной оси.
  2. Простота конструкции, особенно когда все балки скрытые балки.
  3. Экономично для пролетов> 5 м с умеренной перегрузкой: больницы, офисные и жилые здания.
  4. Улучшенная звуко- и теплоизоляция.

Недостатки Hardy Slab:
  1. При неправильном обращении блоки из пустотелого ребристого кирпича могут быть повреждены во время транспортировки.
  2. Неэкономично для малых пролетов.
  3. Сложно отремонтировать и укрепить

Плиты Hardy подразделяются на два типа:
  1. Односторонняя плита Hardy
  2. Двусторонняя плита Hardy

Вафельная плита: —

Вафельная плита является армированной бетонная крыша или пол, содержащий квадратные решетки с глубокими сторонами, также называемые решетчатыми плитами.Этот вид плит в основном используется при входе в отели, торговые центры, рестораны для хорошего обзора и для установки искусственного освещения. Это тип плиты, в которой при снятии опалубки обнаруживается полое отверстие в плите. Сначала на опалубку устанавливаются поддоны (контейнеры) из ПВХ, затем между стойками устанавливается арматура и стальная сетка наверху опалубки, а затем заливается бетон. После схватывания бетона опалубка снимается, а гильзы ПВХ не снимаются. Это образует в нем полое отверстие, в котором отверстие закрыто с одного конца.Бетонные вафельные плиты часто используются для промышленных и коммерческих зданий, в то время как деревянные и металлические вафельные плиты используются на многих других строительных площадках. Это одна из разновидностей бетонных плит.

Где использовать вафельную плиту и детали вафельной плиты:

Вафельная плита имеет отверстия внизу, что создает вид вафель. Обычно он используется там, где требуются большие пролеты (например, в аудиториях, кинозалах), чтобы не было большого количества колонн, мешающих пространству.Следовательно, необходимы толстые плиты, проложенные между широкими балками (чтобы балки не выступали снизу по эстетическим причинам). Основная цель использования этой технологии заключается в ее прочных фундаментных характеристиках — стойкости к растрескиванию и провисанию. Вафельная плита также выдерживает большую нагрузку по сравнению с обычными бетонными плитами.

Типы вафельных плит:

По форме капсул (лотков из ПВХ) вафельные плиты подразделяются на следующие типы:

  1. Треугольная система вафель
  2. Квадратная система вафель

Преимущества вафли плиты:
  1. Вафельные плиты могут выдерживать более тяжелые нагрузки и преодолевать большие расстояния, чем плоские плиты, так как эти системы имеют малый вес.
  2. Вафельную плиту можно использовать как перекрытие, так и перекрытие.
  3. Подходит для пролетов от 7 м до 16 м; при последующем натяжении возможны более длинные пролеты.
  4. Эти системы имеют малый вес и, следовательно, обеспечивается значительная экономия каркаса, поскольку требуется легкий каркас.

Недостатки вафельных плит:
  1. Вафельные плиты не используются в типичных строительных проектах.
  2. Литейные формы или формы, необходимые для сборных железобетонных изделий, очень дороги и, следовательно, экономичны только тогда, когда желательно крупномасштабное производство аналогичных изделий.
  3. Строительство требует строгого надзора и квалифицированной рабочей силы.

Купольная плита: —

Этот вид плиты обычно сооружается в храмах, мечетях, дворцах и т. Д. А Купольная плита строится на обычной плите. Толщина купольной плиты 0,15 м. Купола имеют форму полукруга, а опалубка выполняется на обычной плите в форме купола, а бетон заполняется в опалубке, образуя форму купола. Это одна из разновидностей бетонных плит.

Скатная кровля:

Скатная кровля представляет собой наклонную плиту, обычно сооружаемую на курортах для придания естественного вида.По сравнению с традиционными кровельными материалами, черепичные листы, используемые для скатной кровли, чрезвычайно легкие. Эта экономия веса снижает требования к конструкции из дерева или стали, что приводит к значительной экономии затрат. Плиточные листы изготавливаются индивидуально для каждого проекта, предлагая экономию затрат на рабочую силу и сокращение потерь на стройплощадке. И толщина плиты зависит от плитки, которую мы используем, может быть, от 2 до 8 дюймов. Это одна из разновидностей бетонных плит.

Преимущества скатной кровли из перекрытия:
  1. Скатная крыша лучше отводит дождевую воду.
  2. Эта плита дает вам внутреннее хранилище или пространство.
  3. Уменьшается вероятность утечки.
  4. Кровельные покрытия дешевле.
  5. Если это стандартный уклон, то строительные материалы более рентабельны.

Недостатки скатной кровли:
  1. Этот тип плит не рекомендуется для длинных пролетов.
  2. Ремонт плит, например, ремонт сантехники или электропроводки на плитах, затруднен.

Плита с арками:

Это тип плит, который обычно используется при строительстве мостов.Мосты подвергаются двум нагрузкам: от транспортных средств и ветровой нагрузке. Плиты с арками или (арочные плиты) принимаются в месте, где есть потребность в перенаправлении ветровой нагрузки, и если есть длинная кривая в направлении плиты, эти плиты принимаются. Он выдерживает падение моста из-за сильной ветровой нагрузки.

Первоначально они были построены из камня или кирпича, но в последнее время они построены из железобетона или стали. Внедрение этих новых материалов позволяет удлинить арочные мосты с меньшими пролетами.

Плита после натяжения:

Плита, которая растягивается после создания плиты, называется Плита после натяжения . Предусмотрено усиление, чтобы противостоять сжатию. В плите для натяжения столба арматура заменяется тросами / стальными стержнями.

Пост-натяжение позволяет преодолеть естественную слабость бетона при растяжении и лучше использовать его прочность при сжатии. Принцип легко соблюдается, если несколько книг скрепить вместе, прижав их в стороны.

В бетонных конструкциях это достигается размещением стальных стальных арматур / тросов из высокопрочной стали в элементе перед заливкой. Когда бетон достигает желаемой прочности, арматура вытягивается специальными гидравлическими домкратами и удерживается в напряжении с помощью специально разработанных анкеров, закрепленных на каждом конце арматуры. Это обеспечивает сжатие на краю элемента конструкции, что увеличивает прочность бетона по сопротивлению растягивающим напряжениям. Если связки должным образом изогнуты до определенного профиля, они будут оказывать в дополнение к сжатию по периметру полезный набор восходящих сил (силы уравновешивания нагрузки), которые будут противодействовать приложенным нагрузкам, освобождая конструкцию от части гравитационных воздействий.Это одна из разновидностей бетонных плит.

В этом типе плиты тросы связываются вместо арматуры. В стальной арматуре расстояние между стержнями составляет от 4 до 6 дюймов, в то время как в плите с натяжением Post расстояние составляет более 2 м.

Преимущества натяжной плиты Post:
  1. Это позволяет плитам и другим конструктивным элементам быть тоньше.
  2. Позволяет строить плиты на обширных или мягких грунтах.
  3. Трещины, которые образуются, плотно прилегают друг к другу.
  4. Плиты после натяжения — отличный способ построить более прочную конструкцию по доступной цене.
  5. Он уменьшает или устраняет растрескивание при усадке, поэтому стыки не требуются или требуется меньшее количество стыков.
  6. Позволяет проектировать более длинные пролеты в приподнятых элементах, таких как перекрытия или балки.

Недостатки натяжной плиты Post:
  1. Изготовить натяжную плиту Post могут только опытные профессионалы.
  2. Основная проблема с использованием натяжной плиты P ost заключается в том, что, если при ее изготовлении не проявить осторожность, это может привести к неудачам в будущем.Часто невежественные рабочие не заполняют промежутки в жилах и проводке. Эти зазоры вызывают коррозию проводов, которая может преждевременно сломаться, что приведет к неожиданным выходам из строя.

Плита предварительного натяжения:

Плита, которая натягивается перед размещением плиты, называется плитой предварительного натяжения . Плита имеет те же характеристики, что и плиты после натяжения.

Подвесная плита для кабелей:

Если пролет плиты очень длинный, мы выбираем подвесную плиту для кабелей, которая поддерживается на кабелях, таких как Лондонский мост, мост Ховрах и т. Д.Как правило, при строительстве домов на каждые 4 м мы предоставляем колонну, тогда как в плите для подвешивания кабеля на каждые 500 м мы предоставляем колонну. Такая плита предусмотрена там, где длина пролета больше и затруднена установка колонн. Плиты связываются тросами, и эти тросы соединяются с колоннами.

Низкая плита крыши:

Плита, предназначенная для хранения над дверью, называется Низкая плита крыши . Этот тип плиты закрыт со всех концов и открыт с одного конца.Эта плита находится ниже фактической плиты и выше уровня дверного порога. Эти типы бетонных плит используются в домах.

Спроектированная плита:

Плита, одна сторона которой закреплена, а другая свободна, называется проектируемой плитой или консольной плитой . Плиты такого типа обычно сооружают в гостиницах, университетах, функциональных залах и т. Д., Чтобы использовать эту зону для зоны сброса или подъема, а также для зоны погрузки и разгрузки. Это одна из разновидностей бетонных плит.

Grads Slab / Slab на уровне:

Плита, отлитая на поверхность земли, называется фундаментной плитой. Этот тип плиты используется на цокольном этаже.

Существует два типа плит Grade:
  1. Обычно после заливки балок цоколя. Насыпают песок на высоте 0,15 м и затем утрамбовывают уровень песка. Затем PCC заливается песком до высоты балок плинтуса. Это экономичный способ строительства фундаментной плиты, который в основном используется в Индии.
  2. В многоэтажных зданиях после сооружения балки цоколя борьба с термитами выполняется между балками, затем укладывается полиэтиленовый лист, чтобы избежать появления термитов внутри плиты, затем закладывается стальная сетка и заливается бетон. Это стоит дороже по сравнению с предыдущим и требует больше бетона, чем первый.

Затонувшая плита:

Плита, которая предусмотрена под туалетными комнатами, чтобы скрыть канализационные трубы или канализационные трубы, называется Затонувшая плита .В этом типе трубы, по которым течет вода, скрыты под полом. Следует проявлять особую осторожность, чтобы избежать проблем с утечкой. После заливки канализационных труб в плиту плиту заполняют углем или битыми кусками кирпича. Есть два типа утопленных плит.

Плита, которая располагается ниже нормального уровня пола на глубине от 200 мм до 300 мм и заполнена осколками кирпичей, называется Затонувшая плита.

или

Плита, которая устанавливается выше нормального уровня пола на высоте от 200 мм до 300 мм и заполняется углем или осколками кирпича, называется Затонувшая плита .

Разное Плиты:

Комната Чайджа или Лофт:

Этот вид Чайжи (Плиты) предоставляется в гостиных и на кухне для хранения материалов Дома. Обычная разница между низкой крышей и комнатой chajja заключается в том, что низкая плита крыши скрывает материал дома, а Room Chajja или Loft не скрывает материал дома, они открыты и расположены над дверью. Это одна из разновидностей бетонных плит.

Кухонная плита:

Плита предусмотрена на кухне в качестве платформы.Для размещения плиты и другой кухни используется материал Kitchen Slab . Он имеет ширину 0,5 м, длину стенки и толщину 2 дюйма.

Перемычки:

  • Перемычки предусмотрены внутри здания над дверями и окнами для перенаправления верхней нагрузки. Есть два типа перемычек.
  • Сборные перемычки : Перемычки, производимые на фабриках, называются сборными перемычками .
  • Литой на месте: Перемычки, отливаемые на месте, называются литыми перемычками на месте.
    Длина перемычки больше длины двери и равна ширине стены, толщина перемычки 0,1 м.

Плита солнцезащитного козырька:

  • Солнцезащитный козырек устанавливается снаружи здания над дверями и окнами. называются плит козырька от солнца. Плита предотвращает попадание дождя внутрь здания и попадания прямых солнечных лучей. Это одна из разновидностей бетонных плит.

Также читайте:

Для мгновенных обновлений Присоединяйтесь к нашей трансляции WhatsApp.Сохраните наш контакт в Whatsapp +9700078271 и отправьте нам сообщение «ПРИСОЕДИНЯЙТЕСЬ»

Никогда не пропустите обновление Нажмите на красный колокольчик уведомлений и разрешите уведомление. Ждите продолжения! Скоро будут обновлены другие !!.
Civil Read желает вам ВСЕГО НАИЛУЧШЕГО

Конструкция бетонного пола:

Это руководство по проектированию предназначено для обеспечения безопасного проектирования и экономичного проектирования. строительство подвесных бетонных плит перекрытия.Это руководство по дизайну и соответствующие расчеты основаны на требованиях ACI 318 и методе расчета прочности где несущая способность балки рассчитана на поддержку учтенных нагрузок. Плиты — это конструктивные элементы, длина и ширина которых велики по сравнению с их толщины. В отличие от балок, сдвиг обычно переносится бетоном. без помощи сдвиговой арматуры. Применяется продольная арматура. противостоять изгибающим моментам.Толщина плиты обычно определяется прогибом критерии или требования к классу огнестойкости.

Конструкция двусторонних перекрытий:
Плиты определяются как двухсторонние плиты, когда соотношение длинных и коротких сторон меньше. чем 2. Есть четыре типа двусторонних плит.(а) Плоская пластина, которая является двухсторонняя плита, опирающаяся на решетку колонн без использования балок. (б) Плоская плита что то же самое, что и плоская пластина, за исключением того, что области вокруг колонн увеличились толщины, называемые откидными панелями, для увеличения прочности на сдвиг в колоннах. (c) Вафельная пластина, похожая на плоскую, за исключением того, что здесь остаются пустоты. в местах, удаленных от колонн, напоминающих вафли. (d) Обычная плита конструкция аналогична односторонней плите с балками, поддерживающими пол и опорными поверх столбцов.
Метод прямого проектирования, DDM: можно использовать DDM при соблюдении следующих условий: (a) Имеется минимум 3 пролета. (б) Панели прямоугольные с соотношением длинной стороны к короткой (от центра к центру опор) не более 2. (c) Последовательные длины пролета не отличаются более чем на одну треть. самого длинного пролета. (d) Столбцы не смещены более чем на 10% диапазона в направление смещения.(e) Нагрузка состоит из равномерно распределенной силы тяжести. нагрузки. (f) Эксплуатационная временная нагрузка не превышает двухкратную статическую нагрузку. (g) Если балки присутствуют, относительная жесткость в 2-х перпендикулярных направлениях не менее 0,2 и не более 5,0.
1. Разделите систему пола в каждом направлении на широкие балки, как показано ниже:
2.2/8. Этот момент — это максимальный момент в простой балке с пролетом ln, несущей полную нагрузка (wul2). В уравнении пролет l2 относится к ширине широкой балки. рассматривается. ln измеряется лицом к лицу колонн или других опор. Однако ln> = 0,65 l1. Для расчета минимальной толщины в двухстороннем перекрытий, ln принимается как межфланцевое расстояние опор в перекрытиях без балок и лицом к лицу балок или других опор в других случаях.
3. Разделите общий момент Мо в каждом отрезке на положительные и отрицательные моменты. Для внутренних пролетов отрицательный факторный момент рассчитывается как 0,65Mo, а положительный факторный момент составляет 0,35 Мо. Суммарный момент в конечных (внешних) пролётах распределяется согласно коэффициентам в таблице ниже:
Распределение моментов во внешних пролетах
(доля Мо)

Плиты без

балки между

Внутренние опоры

Внешний край

безудержный

Плита с балками

между

все поддерживает

Без

край

балка

С

Edge

балка

Внешний край

полностью ограничен

Интерьерный негатив

факторный момент

.075

0,70

0,70

0,70

0,65

Положительный фактор

момент

0.63

0,57

0,52

0,50

0,35

Внешний негатив

Факторный момент

0

0.16

0,26

0,30

0,65

4. Разделите ширину широкой балки на области с полосами колонн и средними полосами. Полоса колонны — это дизайнерская полоса шириной с каждой стороны от средней линии колонны. равно 0,25l2 или 0,25l1, в зависимости от того, что меньше. Средняя полоса — это дизайн полоса ограничена 2 полосами столбца.
5. Разработайте полосу колонны для долей момента в каждой секции в соответствии с к следующей таблице:
Распределение моментов в полосах колонн
(доля Mo)
(a — относительная жесткость, Bt — относительная крутильная жесткость)

(а) Интерьер отрицательный момент

л2 / л

0.5

1,0

2,0

а1 l2 / l1 = 0

(без балок)

0.75

0,75

0,75

а1 l2 / l1> = 1

0.90

0,75

0,40

(б) Внешний вид отрицательный момент

л2 / л

0.5

1,0

2,0

а1 l2 / l1 = 0

Bt = 0

1.00

1,00

1,00

а1 l2 / l1 = 0

Bt> = 2,5

0.75

0,75

0,75

а1 l2 / l1> = 1

Bt = 0

1.00

1,00

1,00

а1 l2 / l1> = 1

Bt> = 2.5

0,90

0,75

0,45

(c) Положительно факторный момент

л2 / л

0.5

1,0

2,0

а1 l2 / l1 = 0

(без балок)

0.60

0,60

0,60

а1 l2 / l1> = 1

0.90

0,75

0,45

Распределение моментов в двусторонних плитах зависит от относительной жесткости балки a по отношению к плите без балок.Относительная жесткость, a, — отношение жесткости на изгиб плиты шириной, равной широкая балка (т. е. ширина плиты, ограниченной сбоку осевыми линиями соседних панели).
а = EcbIb / (EcsIs)
где:
Ecb = момент упругости бетонной балки
Ib = момент инерции бетонной балки
Ecs = момент упругости бетонной плиты
Is = момент инерции бетонной плиты
Распределение отрицательного момента по ширине плиты снаружи кромка зависит не только от относительной жесткости балки и отношения l2 / l1, но и по жесткости на кручение краевых балок.3y / 3) Суммирование ведется по всем отдельным прямоугольники, составляющие краевую балку. Разделение на отдельные прямоугольники что приводит к наибольшему значению C.
6. Разработайте среднюю полосу для долей момента на каждом участке, не назначенном. к полосе столбца.

Прогибы в двухсторонних плитах:

Чтобы избежать расчета прогибов в двусторонних плитах, плиты должны быть рассчитаны на следующие минимальные значения толщины:
Минимальная толщина перекрытий без внутренних балок
(самый длинный чистый промежуток, разделенный на заданное значение)

без откидных панелей

с откидными панелями

Внешние панели

(дюйм)

Интерьер

панели

(дюйм)

Внешние панели

(дюйм)

Интерьер

панели

(дюйм)

доход

сила

(фунт / кв. Дюйм)

без

край

балки

с

край

балки

без

край

балки

с

край

балки

40 000

33

36

36

36

40

40

60 000

30

33

33

33

36

36

75 000

28

31

31

31

34

34

Для плит без балок или у которых балки размещаются только между внешними колоннами. (я.е., плиты без балок между внутренними опорами), указана минимальная толщина как наибольший пролет в свету (расстояние между опорами), деленный на указанные значения в таблице выше. чтобы значения в таблице были полезны, перетащите панели должен выступать под плиту не менее чем на 1/4 толщины плиты за перепад и должен выходить в каждом направлении не менее чем на 1/6 длины соответствующего пролета. Толщина плиты без откидных панелей не может быть менее 5 дюймов.Плиты с откидными панелями не может быть менее 4 дюймов в толщину.
Для расчета минимальной толщины перекрытий с балками между внутренними поддерживает, есть три возможности. При am <= 0,2 минимальная толщина вычисляется без учета балок. Для 0,2 h = ln (0,8 + fy / 200,000) / (36 + 5B (am — 0,2))> = 5 из
для am> 2,0 минимальная толщина составляет
h = ln (0,8 + fy / 200,000) / (36 + 9B)> = 3,5 дюйма
Когда коэффициент жесткости a краевой балки меньше 0,8, минимальная толщина в краевой панели должно быть как минимум на 10% больше, чем значение, полученное в уравнениях над.

Мосты — первоначальный проект — SteelConstruction.info

Выбор формы моста обычно делается на ранней стадии, и для более детальной оценки выбираются одна или несколько начальных конфигураций с основными размерами. В этой статье обсуждаются факторы, влияющие на выбор формы, и даются рекомендации по предварительному подбору размеров элементов конструкции. Основное внимание уделяется типовым композитным автомобильным мостам среднего пролета.

 

[наверх] Определяющие факторы

Чтобы разработать жизнеспособную концепцию мостового перехода и выбрать предварительную конфигурацию и размеры, проектировщик должен учесть ряд взаимосвязанных факторов:

  • Ограничения места перехода: e.грамм. автомагистрали, железнодорожные пути, реки, каналы или другие водотоки; глубокие или крутые долины; экологически чувствительные участки, требующие минимального вмешательства. Условия грунта также могут быть препятствием не только для фундамента моста, но и для подходных насыпей.
  • Срок службы. Мост обычно рассчитан на срок службы 120 лет, но такие элементы, как система защиты стальных конструкций от коррозии, соединения настила и опоры, необходимо будет обслуживать или заменять в течение срока службы конструкции.Бетон в элементах основания и плитах настила также потребует технического обслуживания.
  • Затраты на материалы и комплектующие. Металлоконструкции изготавливаются в заводских условиях, но затраты на это зависят от используемых компонентов (например, прокатных профилей или листов), сложности конструкции и размеров элементов. Бетонные плиты могут быть отлиты на месте или частично сформированы из сборных элементов.
  • Как можно собрать и завершить мост на месте. Это новый участок ?; возможно ли строительство только в ограниченных владениях ?; какое растение можно завести на участок?
  • Соображения, касающиеся здоровья и безопасности, в частности, правила CDM [1]
  • Внешний вид, а именно стремления клиента.

[вверх] Конструкционная форма

 

Для автомобильных мостов со средними пролетами, построенных в Великобритании в последние годы, наиболее распространенной формой был мост палубного типа из стали и бетона из композитных материалов. В случае мостов этого типа система стальных конструкций обычно состоит из сборных пластинчатых балок с двутавровым сечением, которые поддерживают бетонную плиту настила на уровне верхнего фланца. Обсуждение соображений на этапе концептуального проектирования относится в основном к этому типу моста, а также к другим формам конструкции стальных мостов.

Формы конструкции, описанные ниже, таким образом, в основном представляют собой многобалочные настилы и лестничные настилы, хотя общие рекомендации будут в равной степени применимы к мостам палубного типа, использующим коробчатые балки (открытые и закрытые верхние ящики вместо двутавровых балок) и половину -проходные мосты.

[вверху] Длина пролета

Проектировщик должен определить длину пролета и количество пролетов для моста с учетом трассы, топографии площадки, физических размеров препятствия (или препятствий, включая услуги, которые могут быть слишком дорогими для перемещения), чтобы быть пересечения, требуемые габариты зазоров, доступные места для опор моста и промежуточных опор (если пролетов больше одного), внешний вид и любые особые требования, которые может наложить заказчик.В то время как прямые мосты, пересекающие квадрат, являются идеальным вариантом, схемы мостов могут быть наклонены и / или изогнуты. Для автомобильных мостов см. CD 127 [2] , где указаны поперечные сечения и высота потолка.

Любая опора в пределах 4,5 м от края проезжей части проезжей части должна быть рассчитана на ударные нагрузки (как указано в Национальном приложении к BS EN 1991-1-7 [3] ), но упоры обычно не учитываются. .

В настоящее время для однопролетных мостов, за исключением самых коротких пролетов, стальные композитные настилы конкурируют с настилами из предварительно напряженного бетона с Y-образными балками и, как правило, будут более экономичными в верхнем конце диапазона пролетов Y-образных балок.Для двух или более пролетов сплошные настилы являются нормой, и стальные композитные настилы, из-за их превосходной способности сборки, должны преобладать над палубами с Y-образными балками. При оптимизации длины пролета в многопролетных мостах более короткие пролеты (обычно от 25 до 30 м) будут более экономичными. Однако там, где опоры дороги (например, когда требуются очень высокие опоры или фундаменты с глубокими сваями) или экологическая уязвимость площадки требует минимального вмешательства, более длинные пролеты с меньшим количеством фундаментов, вероятно, будут более экономичными.

Для мостов с тремя и более пролетами оптимальная длина концевого пролета обычно составляет от 0,7 до 0,85 длины прилегающего внутреннего пролета. При очень коротких концевых пролетах на абатментах может возникнуть приподнятие. Если более одного расположения пролетов может обеспечить жизнеспособное пересечение, стоимость, возможность строительства и внешний вид альтернативных вариантов оцениваются для получения предпочтительного решения. Эта оценка будет включать в себя расходы на фундамент и фундамент.

[вверх] Пример вариантов моста через дорогу с двусторонним движением

 

Варианты пересечения проезжей части с двусторонним движением

Схемы A, B, C и D, показанные справа, представляют собой все возможные схемы пересечения проезжей части с двусторонним движением.Компоновка А может считаться лучшей для нового участка, поскольку она обеспечивает самые короткие пролеты и самую короткую общую длину настила. Абатмент с высокой стенкой может быть дороже, чем дополнительный боковой пролет (B) или более длинный пролет (C), особенно при цельной конструкции. Если глубина застройки слишком велика, B предпочтительнее C. При пересечении существующей автомагистрали или проезжей части с двусторонним движением часто бывает трудно построить пирс между проезжими частями, потому что работы должны выполняться в режиме управления движением, поэтому расположение D будет предпочтительнее.

[вверх] Интегральная конструкция

Для автомобильных мостов необходимо учитывать интегральную конструкцию, и проектировщики должны следовать рекомендациям, данным в PD 6694-1 [4] . В настоящее время органы технического одобрения ожидают, что настилы моста длиной до 60 м и с перекосом (на опорах), не превышающим 30 °, будут составлять единое целое с опорами, если нет веских причин, таких как возможное проседание при горных работах, для которых это не так. Обратите внимание, что 60 м не является пределом максимальной длины для неразъемных мостов, автомагистрали в Англии приняли составные мосты длиной более 100 м.

Цельный мост обязательно должен быть непрерывным над промежуточными опорами (в этих местах не должно быть деформационных швов), но он не обязательно должен быть одним целым с колоннами или опорами под ними. Балки могут просто сидеть на обычных подшипниках. Исключение подшипников путем заливки в главные балки или стальные балки крейцкопфа не приносит значительных преимуществ и действительно увеличивает сложность конструкции; тенденция привлекать момент может также вызвать проблемы с утомляемостью.

Непрерывные пролеты всегда будут более экономичными по весу стали, чем просто поддерживаемые пролеты той же длины. С нецелочисленным предоставлением строительства упорной галереи является дорогостоящим и может повлиять на программах строительства. Следовательно, цельные мосты почти всегда будут более экономичными, чем несборные, особенно если принять во внимание стоимость всего срока службы, поскольку затраты пользователя на задержку, связанные с обслуживанием / заменой стыка палубы, высоки.

[вверху] Металлоконструкции и плита настила

Самыми популярными системами металлоконструкций, которые сегодня используются для строительства автомобильных мостов, являются многобалочные настилы и лестничные настилы.Какая система является более рентабельной с точки зрения заводского изготовления и монтажа для конкретного объекта, будет зависеть от определяющих факторов, определяющих конкретный объект, поэтому нет никаких жестких правил, помогающих выбрать.

Какой бы ни была система, стальные конструкции обычно изготавливаются из листовых балок I-образного сечения. Однако ящики могут использоваться по причинам внешнего вида (часто необходимо обеспечить замену похожей на оригинальную конструкцию, которая представляла собой предварительно напряженный бетонный ящик) или там, где настил сильно изогнут в плане.

Поскольку мосты с лестничным настилом имеют только две основные балки, вопрос о структурной избыточности может быть поднят при выборе конфигурации лестничного настила — если какое-то случайное событие повредит одну балку настолько серьезно, что она больше не сможет нести даже собственные нагрузки, мост рухнет. Нет данных о вероятности случайных событий, которые могли бы вызвать такое повреждение, ни для лестничных, ни для многобалочных настилов, и поэтому невозможно дать количественную оценку надежности для любого типа.Секции балок мостов с лестничным настилом, как правило, больше, чем у многобалочных настилов, и они также удерживаются на близком расстоянии поперечными балками; поэтому проектировщики считают эту конфигурацию достаточно надежной.

Толщина композитной бетонной плиты настила на мостах палубного типа обычно составляет 250 мм. Монтируемая плита такой толщины, отлитая либо на деревянной опалубке, либо на несъемной опалубке, будет иметь ширину около 3,5 м, следовательно, расстояние между балками (основные балки в многобалочных настилах, поперечные балки в системах лестничных настилов) обычно составляет 3.Расстояние между центрами 5 м или немного больше, если перекрытие проходит между выступами фланца. Как правило, подрядчики предпочитают использовать несъемную опалубку (доски Omnia являются лидером на рынке), а не обычную деревянную опалубку. В настоящее время широко распространено использование запатентованных систем консольной опалубки парапетов для консолей перекрытий настила. Длина консоли обычно составляет не более половины расстояния между балками на многобалочных настилах, обычно 1,5 м. Проектировщику необходимо продумать, как система металлоконструкций и плита настила расположены геометрически для обеспечения перекрестного уклона и виража, а также следует ли разделять настилы под мостом с двумя проезжими частями посередине.CD 377 [5] предъявляет особые требования к проектированию разделенной конструкции с продольным зазором между двумя настилами моста.

При определении формы несущей конструкции, в частности, типа пирса, следует иметь в виду, что предпочтительно, чтобы поместить подшипники непосредственно под главной балкой. Вершины опор и колонн должны обеспечивать достаточное пространство для установки домкратов для замены подшипников, а в соответствующих местах рядом с основными элементами жесткости подшипников должны быть предусмотрены дополнительные домкраты.Системы стальных конструкций лестничного настила и многобалочные системы со встроенными траверсами сокращают количество промежуточных опорных колонн и подшипников. Однако изготовление интегральных крейцкопфов является дорогостоящим и усложняет монтаж, поэтому их следует избегать, если нет особых ограничений из-за ограниченного пространства или внешнего вида. При использовании необходимо серьезно подумать о том, как детализировать стальные конструкции, чтобы учесть поперечный уклон и продольный уклон проезжей части.

[вверх] Расстояние между балками и расположение

 

Мост через реку Сирхови — Форма выбрана на этапе тендера, чтобы избежать ложных работ на высоте над рекой.
(Изображение любезно предоставлено Робом Уоткинсом)

Расстояние между балками регулируется шириной перекрытия бетонной плиты перекрытия. Для плиты настила 250 мм это дает максимальный пролет плиты около 4 м. Это расстояние соответствует максимальному пролету несъемной опалубки, обычно около 3,8 м. Консоли плиты настила на краю настила будут управлять положением внешних главных балок. Консоль длиной 1,5 м является обычным явлением и может экономично работать с плитой настила 250 мм.После определения этих основных размерных ограничений основная стальная сетка может быть определена в соответствии с конкретной геометрией и размерами моста.

Для многобалочного моста следует выбрать четное количество основных балок, чтобы соблюдались ограничения по длине консоли и расстоянию между балками. Более длинные консоли] могут быть достигнуты осторожно и могут быть предпочтительнее с точки зрения эстетики: краевая консоль в идеале должен быть аналогичен глубине внешней балки.

Для лестничных настилов расстояние между главной балкой определяется выбранной длиной консоли с максимальным расстоянием около 18 м.Поперечные балки обычно располагаются на расстоянии от 3,5 м до 3,8 м, но расстояние необходимо отрегулировать на концах и промежуточных опорах перекосных мостов. Стальные консоли могут быть добавлены для поддержки более длинных консолей на лестничных площадках, если это необходимо, а также могут использоваться для предотвращения ложных работ консолей. Однако они влекут за собой финансовые последствия.

 

[вверху] Первоначальная оценка размеров главных балок

Предыдущий опыт часто является первым руководством по выбору размеров полок и стенок для основных и поперечных балок.Выбор можно уточнить, используя простые «эмпирические правила» или используя схемы проектирования и программное обеспечение.

Практически во всех случаях сталь марки S355 (согласно BS EN 10025 [6] ) предлагает наиболее экономичные решения, а подрядчики по строительству мостовых стальных конструкций обладают обширным опытом производства стальных конструкций этой марки.

 

[вверх] Простые правила подбора балок

Основные балки можно подобрать в соответствии со следующими эмпирическими правилами, которые основаны на типичном двухпролетном автомобильном мосту с двумя или более пролетами, по которому одна проезжая часть проходит над двухполосным шоссе с двумя или тремя полосами движения.Размеры больших мостов должны быть увеличены пропорционально, например широкие лестничные площадки потребуют пропорционально более широких и толстых фланцев.

Рекомендуемые пропорции балок
Элемент Дозирование Комментарии
Глубина балки от диапазона / 20 до диапазона / 30 Для широких лестничных настилов и пролётов с простой опорой соотношение должно быть равным 20.

Более высокое соотношение, вероятно, приведет к более тяжелому весу стали.
Приведенные ниже пропорции полки и стенки соответствуют этим основным размерам балки.
На широких, но короткопролетных мостах с лестничным настилом глубина главной балки может регулироваться глубиной поперечных балок.

Ширина верхней полки Минимальная ширина 350 мм Минимальная ширина для облегчения срезания шпилек, стыков и сборной опалубки.

Минимальную ширину можно применять для большинства мостов с одинарной проезжей частью с пролетами до 30 м.
Использование верхних фланцев переменной ширины не рекомендуется.
Для больших пролетов и широких лестничных площадок могут потребоваться более широкие верхние фланцы.

Толщина верхней полки В зонах провисания: 21 мм для минимальной ширины фланца 350 мм.

В зонах заготовки толщина значительно увеличивается.
Для балок большой глубины можно ожидать увидеть от 40 до 50 мм верхнего фланца в зонах забивания.

Это основано на соотношении долговечности 8: 1 согласно EN1993-1-1 [7] , таблица 5.2 для стали марки 355 для сечения 2 класса.

Предварительный анализ, позволяющий определить толщину верхней полки в зонах забивания.

Ширина нижнего фланца Обычно прибл. половина глубины балки.
Толщина нижнего фланца Проседание или заедание опор в середине пролета.

Лестничный настил: типично от 55 до 60 мм.
Многобалочный настил: максимум от 40 до 50 мм.
Может уменьшаться почти до минимальной толщины в точках обратного прогиба.

Это самый сложный параметр для оценки без анализа.

Толщина полки должна изменяться по длине балки для оптимизации конструкции.
См. Информацию о продукте для получения указаний по доступной длине листа, чтобы выбрать точки изменения толщины фланца. 17-метровые листы одной толщины — хорошая отправная точка.
Минимальная толщина фланца вдали от участков с высоким напряжением может быть основана на EN 1993-1-1 [7] передаточное отношение прочности, равное 8.1 для секций класса 2 на сжатие.
Будьте внимательны при выборе правильной марки стали для толстых листов.

полотна Минимальная стенка = 15 мм в зонах среднего пролета, увеличиваясь до 20 мм или 25 мм на опорах.

Многобалочные настилы, вероятно, будут работать с 20-миллиметровыми перемычками на опорах. Лестничные настилы, вероятно, потребуют перегородки толщиной 25 мм.

Это практический минимум прочности во время строительства.

Для повышения эффективности следует предполагать, что перемычки работают с близкими к максимально допустимым нагрузкам: ребра жесткости перегородки позволят.

Стенка к сварным швам фланца Меньшие балки: 6 мм в середине пролета. На опорах до 8 или 10 мм.

Большие пролеты, лестничные площадки: 8 мм в середине пролета; до 10 мм на опорах.

Размеры сварного шва выражаются как длина опоры или длина горловины; одна серия сварного шва уложила каждую сторону стенки.

6 мм (длина ножки) — это практический минимальный размер сварного шва.
Изготовители иногда предлагают в качестве альтернативы угловые швы с частичным проплавлением, которые обеспечивают такое же сечение.

Срезные шпильки Используйте шпильки диаметром 19 мм и высотой 150 мм.

Обычно ряды из 3-х с центрами 300 мм в середине пролета увеличиваются до 3-х или 4-х рядов с центрами 150 мм у опор.

Расстояние необходимо согласовать с детализацией поперечной арматуры.


Толщина листа может быть выбрана с точностью до миллиметра (или, возможно, округлена до ближайших 5 мм на данном этапе, оставляя более точный выбор на этапе детального проектирования).Ширину листов обычно уменьшают до ближайших 50 мм.

[вверх] Графики проектирования и программное обеспечение

Предварительная оценка размеров стальных секций автодорожного моста из композитных материалов со средним пролетом может быть сделана с помощью предварительных проектных схем стального моста.

Таблицы проектирования охватывают конструкции как лестничных настилов, так и многобалочных конструкций, а также учитывают различия между внутренними и внешними балками в многобалочных мостах. Они также охватывают как упругую, так и пластичную конструкцию секций.Графики полностью соответствуют нагрузке Еврокода, как это реализовано Национальным Приложением к BS EN 1991-2 [8] , и расчетным сопротивлениям, указанным в соответствии с соответствующими частями Еврокода 3 и Еврокода 4.

Также предоставляется руководство пользователя, в котором излагаются предположения, лежащие в основе проектных диаграмм, и объясняется, как их использовать. Графики дизайна можно использовать вручную, или, в качестве альтернативы, можно использовать сопутствующий инструмент для работы с электронными таблицами, который автоматизирует процесс и выполняет интерполяцию между диаграммами.

[вверху] Поперечные балки пропорции

Поперечные балки можно пропорционально подобрать, используя следующие практические правила.

Рекомендуемые пропорции поперечных балок
Элемент Дозирование Комментарии
Глубина балки от диапазона / 12 до диапазона / 20 Приведенные ниже пропорции полки и стенки соответствуют этим основным размерам балки.
Ширина верхней полки Минимальная ширина 300 мм может применяться для типичных мостов с одинарной проезжей частью.

Для мостов с двумя проезжими частями потребуются более широкие верхние фланцы.

Минимальная ширина для облегчения срезания шпилек, стыков и сборной опалубки.

Использование верхних фланцев переменной ширины не рекомендуется.

Толщина верхней полки Обычно минимум 18 мм Передаточное отношение 8,1 согласно EN 1993-1-1 [7] таблица 5.2 для стали марки S355 и поперечных сечений класса 2.

Толщина полки обычно постоянна по всей длине поперечной балки.

Ширина нижнего фланца Обычно прибл. половина глубины фермы или меньше
Толщина нижнего фланца Провисание в средней части пролета. Это самый сложный параметр для оценки без анализа.

Толщина полки обычно постоянна по всей длине поперечной балки.

полотна Обычно от 15 до 20 мм по длине поперечной балки. Уточните детали до миллиметра за счет детального проектирования.

Толщина обычно постоянная по всей длине поперечной балки.

Стенка к сварным швам фланца Обычно: 6 мм в середине пролета. До 8 или 10 мм на опорах Размеры сварного шва выражаются как длина опоры или длина горловины; одна серия сварного шва уложила каждую сторону стенки.

6 мм (длина ножки) — это практический минимальный размер сварного шва.
Подрядчики по производству металлоконструкций иногда предлагают в качестве альтернативы угловые швы с частичным проплавлением, которые обеспечивают такое же сечение.

Срезные шпильки Используйте шпильки диаметром 19 мм и высотой 150 мм.

Для диаметра 19 мм, как правило, рядов по 2 с шагом 300 мм в середине пролета, увеличиваясь до 150 мм по центру на опорах.

 

Поперечные балки во время монтажа
Обход порта, мост Реола

Одним из важных аспектов поведения конструкции поперечных балок является изгибающий момент на концах, где они соединяются с главной балкой.Хотя для передачи поперечной силы может потребоваться прочное соединение, момент, создаваемый на концах поперечных балок, создается только жесткостью на кручение главной балки. Поскольку это обычно двутавровые балки, жесткость на кручение и, следовательно, торцевые моменты поперечной балки в большинстве случаев невелики.

[вверху] Распорка

Ниже приведены основные правила обеспечения раскосов на этапе эскизного проектирования.

[вверх] Общий

Для главных балок потребуются распорки для стабилизации балок от поперечного продольного изгиба как на этапе бетонирования конструкции, так и для стабилизации нижней полки во время обслуживания рядом с опорами.

На опорах стальные конструкции должны передавать любые горизонтальные воздействия на настил моста на опоры. Такие нагрузки значительны и, следовательно, требуют более прочной фиксации против бокового раскачивания.

[вверх] Многобалочный настил

В многобалочных настилах связь между парами балок часто обеспечивается с помощью системы жесткости на кручение. Это может быть либо поперечная распорка, сделанная из углов, либо секции каналов. Каналы часто должны иметь глубину от 300 до 430 мм.Более крупные секции и секции из атмосферостойкой стали могут быть экономично изготовлены из листового металла.

Связи часто устанавливаются на расстоянии от 5 м до 1 м по центру, с минимум 3 или 4 связями по длине пролета фермы.


Распорка верхних фланцев — очень эффективный способ управления продольным изгибом при кручении: особенно полезен для одиночных пролетов с простой опорой. Однако это не всегда предпочтительный метод крепления стальных конструкций для подрядчика, поскольку могут возникнуть проблемы с доступом для окончательной окраски и столкновения с опалубкой, если соединения не будут тщательно детализированы.В примере, проиллюстрированном ниже, план распорки был детализирован так, чтобы не касаться конструкции палубы, и был спроектирован таким образом, чтобы его можно было удалить после строительства, чтобы избежать технического обслуживания в будущем.

 

Плоское крепление к верхним фланцам
A41 Обход Aston Clinton

[вверху] Лестничные настилы

На этапе бетонирования поперечные балки лестничных настилов обеспечивают сдерживание скручивания на полках основных балок.

На этапе эксплуатации обеспечивается фиксация нижних полок возле опор (где они находятся в сжатом состоянии) либо за счет действия U-образной рамы (плита настила плюс ребра жесткости стенки), либо путем добавления «коленных распорок» от поперечных балок вниз в нижнюю часть сети. Выбор будет зависеть от относительной глубины основных и поперечных балок, но следует отметить, что изготовление коленных распорок относительно дорого.

  • Поперечные балки, обеспечивающие скручивание
    Платный мост M6 443

  • Коленный бандаж на опорах (до монтажа)
    Платный мост M6 334

  • Торсионное крепление настила узкой лестницы
    Платный мост M6 450


Для широких лестничных площадок с длинными поперечными балками будет более экономично закрепить поперечные балки, чем увеличивать толщину полки.Это может быть достигнуто путем соединения поперечных балок с канальной распоркой в ​​середине пролета.

[вверх] Ребра жесткости

Ниже приведены некоторые основные правила обеспечения ребер жесткости на стадии предварительного проектирования.

[вверх] Положение

 

Ребра жесткости поперечной стенки
Обход порта, мост Реола

Ребра жесткости необходимы вдоль основных балок для следующего:

  • Для ограничения размера панели полотна для контроля изгиба полотна
  • На опорных позициях
  • В местах расположения поперечных балок или распорок для образования соединений.


Для лестничных настилов положение для третьего требования, приведенного выше, обычно адекватно соответствует положениям для первого, так что после устранения связей и поперечных балок результирующая жесткость стенки обычно является адекватной.

Для тонких перемычек на многобалочных настилах могут потребоваться дополнительные ребра жесткости между позициями распорок. Однако британские производители обычно рекомендуют делать полотно толще, чем добавлять дополнительные элементы жесткости, если положения третьего требования не обеспечивают достаточный контроль для удовлетворения первого.

В Великобритании используются поперечные (вертикальные) ребра жесткости стенки. В континентальной Европе часто используются более обширные элементы жесткости, включая продольные (горизонтальные) элементы жесткости. Обычно продольные (горизонтальные) ребра жесткости не считаются экономичными при строительстве обычных автомобильных мостов. (Они могут стать подходящими для мостов с большим пролетом, таких как мосты с вантовыми опорами, чтобы помочь контролировать продольное изгибание полотна при сжатии.)

Поперечные ребра жесткости стенки должны быть предусмотрены в месте расположения каждой поперечной балки или распорки.

Поперечные ребра жесткости стенки на опорах обычно называют ребрами жесткости подшипников. В местах поддомкрачивания при замене подшипников должны быть предусмотрены дополнительные ребра жесткости.

 
Поперечные ребра жесткости стенки
M6 Toll Bridge 450, настил лестницы с коленными распорками

[вверх] Пропорции

Промежуточные ребра жесткости стенки обычно имеют пропорции в виде плоских пластин толщиной 250 мм на 25 мм или 200 мм на 20 мм: обычно пропорционально соотношению ширины к толщине 10: 1.Это удобно для размера верхнего фланца и для детализации стыковых соединений на болтах.

Если ребра жесткости являются частью U-образной рамы, обеспечивающей опору для нижнего фланца от изгиба, то может потребоваться, чтобы они были большего размера.

Ребра жесткости подшипника обычно толще, чем ребра жесткости промежуточной стенки, поскольку они должны противостоять дополнительным боковым силам, передаваемым на опоры. Ребра жесткости подшипника обычно имеют толщину от 30 до 50 мм.

[вверху] Плита перекрытия

Самый распространенный способ возведения плиты перекрытия — использование несъемной опалубки из сборного железобетона.Другая опалубка включает армированный стекловолокном пластик (GRP) и традиционную деревянную фанеру, последняя обычно используется для неровных поверхностей, таких как углы косых мостов и консолей.

  • Несъемная опалубка из сборного железобетона
    Плата M6, мост 295

  • Фанерная опалубка и традиционная система опалубки для краевых консольных конструкций
    Обход порта, мост Реола


Иногда может быть предпочтительна консольная система из сборного железобетона, чтобы избежать ложных работ ниже уровня настила моста.

  • Кромочная балка и консоль из сборного железобетона
  • A650 Рельефная дорога Бингли, Виадук Коттингли

  • A650 Рельефная дорога Бингли, Виадук Коттингли

 

Гидроизоляция и детализация настила моста вокруг компенсатора
Платный мост M6 501


Типичными характеристиками настила моста этого типа являются:

  • Общая толщина 250 мм, (включая несъемную опалубку из сборного железобетона).
  • Бетон марки C40 / 50 (согласно BS EN 206 [9] ).
  • Марка армирования 500B (согласно BS EN 10080 [10] и BS 4449 [11] ), обычно 250 кг / м³.


Есть много аспектов плиты настила, которые влияют на долговечность моста: (марка бетона, покрытие, детали для отвода воды из критических участков). Прочность и возможность сборки следует учитывать на предварительном этапе — см. Отчет CIRIA 155 [12] и отчет C543 [13] .Комбинация марки бетона и покрытия имеет важное значение, и требуется тщательная детализация арматуры, чтобы обеспечить сохранение правильных покрытий. На верхнюю часть настила моста нанесена гидроизоляционная мембрана.

[вверху] Шарнирное соединение

Шарнирное сочленение — это способ приспособления моста к движениям, возникающим в результате действий на мосту, возникающих в результате:

  • Температура
  • Ветер
  • Транспортная нагрузка (автомобили, поезда, люди)
  • Собственный вес


Подшипники обычно используются для соединения между мостом и опорами, чтобы приспособиться к вращениям и движениям, возникающим в результате этих эффектов, если не предусмотрена встроенная опора.

потребности артикуляции будет рассматриваться на стадии предварительного проектирования для того, чтобы определить, где будут обеспечены удерживающие силы, таким образом влияя на проектирование систем поддержки бодрящей и подструктуры.

[вверх] Способ строительства

Проектировщик стального моста должен определить метод строительства, так как он должен быть учтен при проектировании стальных конструкций. Также проектировщик обязан указать в контрактной документации (обычно на чертежах) последовательность строительства, предполагаемую в проекте, как для возведения стальных конструкций, так и для бетонирования плиты перекрытия.Основные варианты возведения моста:


Самый распространенный метод возведения мостовых балок — это прямой монтаж с помощью мобильного крана, поднимающего балки (называемые монтажными элементами) с земли на опорную конструкцию моста. Как правило, фермы для однопролетных мостов размещаются либо поодиночке, либо в парах скоб, охватывающих всю длину между концевыми опорами. Для нескольких пролетов фермы возводятся (снова либо поодиночке, либо парами скоб) в последовательности пролетов и консолей с использованием монтажных элементов, которые консольно выступают над опорами до точки обратного прогиба в следующем пролете, как показано ниже.

 

Существуют физические ограничения на длину элементов балки, которые могут быть изготовлены и транспортированы на площадку. В нормальных условиях в Великобритании максимальная длина автомобильной перевозки составляет 30 м без приказа о перемещении, но подрядчики по изготовлению металлоконструкций хорошо знакомы с этой процедурой, и балки длиной до 50 м перевозятся автомобильным транспортом.

При определении наиболее подходящей конструкции конструкции и соответствующего метода возведения проектировщик проведет оценку опасностей и определит меры по смягчению последствий в соответствии с требованиями CDM [1] .Руководство по обязанностям проектировщика и типичным опасностям при строительстве мостов дано в публикации CIRIA C604 [14] . Руководство также доступно в BCSA 38/05.

[вверх] Список литературы

  1. 1.0 1.1 Строительные (проектирование и управление) Правила (CDM) 2015
  2. ↑ CD 127, Поперечные сечения и высота, Руководство по проектированию дорог и мостов, The Stationary Office
  3. ↑ NA + A1: 2014 к BS EN 1991-1-7: 2006 + A1: 2014.Национальное приложение Великобритании к Еврокоду 1. Воздействие на конструкции. Случайные действия. BSI
  4. ↑ PD 6694-1: 2011 + A1: 2020, Рекомендации по проектированию конструкций, подверженных транспортной нагрузке, согласно BS EN 1997-1: 2004 + A1: 2013. BSI
  5. ↑ CD 377, Требования к дорожным удерживающим системам, Руководство по проектированию дорог и мостов, Стационарный офис
  6. ↑ BS EN 10025: 2019 Горячекатаный прокат из конструкционных сталей (в 6 частях). BSI
  7. 7,0 7,1 7.2 BS EN 1993-1-1: 2005 + A1: 2014, Еврокод 3: Проектирование стальных конструкций. Общие правила и правила для зданий, BSI
  8. ↑ NA к BS EN 1991-2: 2003, Национальное приложение Великобритании к Еврокоду 1. Воздействие на конструкции. Транспортные нагрузки на мостах. BSI
  9. ↑ BS EN 206: 2013 + A1: 2016 Бетон. Спецификация, характеристики, производство и соответствие. BSI
  10. ↑ BS EN 10080: 2005 Сталь для армирования бетона. Свариваемая арматурная сталь. Общий. BSI
  11. ↑ BS 4449: 2005 + A3: 2016 Сталь для армирования бетона.Свариваемая арматурная сталь. Пруток, рулон и размотанный продукт. Спецификация. BSI
  12. ↑ Ray, S.S; Barr, J .; Кларк, Л. (1996) Руководство по детализации мостов. (Отчет R155). CIRIA
  13. ↑ Souby, M. (2001) Мосты — конструкция для повышенной прочности. (Отчет C543). CIRIA
  14. ↑ CDM Rules — руководство для проектировщиков в рабочем секторе. (Отчет C604, второе издание) 2004 г. CIRIA

[вверх] Ресурсы

Все три из которых можно найти на веб-сайте BCSA

[вверху] См. Также

[вверх] Внешние ссылки

Решено: Для плоского пола в Примере 13.3 найдите следующее …

Для плоского пола в Примере 13.3 найдите следующие компоненты прогиба в центре панели C: (a) немедленный прогиб из-за полной статической нагрузки; (b) дополнительное отклонение от статической нагрузки после длительного периода времени из-за общей статической нагрузки; (c) немедленное отклонение из-за полной временной нагрузки на три четверти. Момент инерции поперечных сечений Ig можно использовать для всех расчетов. Можно предположить, что максимальный прогиб будет получен при той же схеме нагружения, которая создаст максимальный положительный момент в панели.Проверьте прогнозируемый прогиб на соответствие ограничениям ACI, предполагая, что неструктурные присоединенные элементы будут повреждены из-за чрезмерных прогибов.

ПРИМЕР 13.3

Проектирование плоского пола методом эквивалентного каркаса. Офисное здание спроектировано с использованием плоской системы перекрытий с колонной, как показано на рисунке. Использование балок, откидных панелей или капителей колонн не допускается. Указанная временная нагрузка составляет 100 фунтов на квадратный фут, а статическая нагрузка будет включать вес плиты плюс припуск 20 фунтов на квадратный фут для чистового пола плюс подвешенные нагрузки.Колонны будут иметь квадрат 18 дюймов, а высота конструкции от пола до пола — 12 футов. Спроектируйте внутреннюю панель C, используя прочность материала fy = 60 000 фунтов на квадратный дюйм и f’c = 4000 фунтов на квадратный дюйм. Будет использоваться прямолинейная арматура.

Решение. Минимальная толщина h для плоской плиты в соответствии с Кодексом ACI может быть найдена в Таблице 13.5. † Для данного примера минимальная толщина h для внешней панели составляет

РИСУНОК

Двусторонний плоский пол.

Это будет округлено в большую сторону по практическим соображениям, с расчетами, основанными на пробной толщине 8.5 дюймов для всех панелей. Таким образом, статическая нагрузка плиты составляет 150 × 8,5 / 12 = 106 фунтов на квадратный фут, к которой необходимо добавить наложенную статическую нагрузку в 20 фунтов на квадратный фут. Факторные расчетные нагрузки равны

Конструкция идентична в каждом направлении, что позволяет использовать расчет для одного направления для обоих (в расчетах будет использоваться средняя эффективная глубина до растяжения стали). Несмотря на то, что ограничения раздела 13.6 соблюдены, и метод анализа прямого проектирования допустим, для демонстрации его характеристик будет принят метод эквивалентной рамы.Моменты будут найдены методом распределения моментов.

Для плоских пластинчатых конструкций обычно приемлемо рассчитывать жесткость, как если бы все элементы были призматическими, пренебрегая увеличением жесткости в области соединения, поскольку это обычно незначительно влияет на расчетные моменты и сдвиги. Тогда для пролетов плиты

и жесткости колонн

Расчет эквивалентной жесткости колонны требует учета крутильной деформации поперечной полосы плиты, которая функционирует как опорная балка.Применение критериев Кодекса ACI устанавливает, что эффективный торсионный элемент имеет ширину 18 дюймов и глубину 8,5 дюйма. Для этого раздела постоянная кручения C из уравнения. (13,5) равно

, а жесткость на кручение по формуле. (13.10), равно

Из уравнения. (13.9) с учетом двух колонн и двух крутильных элементов в каждом соединении,

, из которых Kec = 151Ec. Затем рассчитываются коэффициенты распределения на каждом стыке обычным способом.

Для настоящего примера отношение рабочей нагрузки к статической нагрузке составляет 100/126 = 0.79, и поскольку это превышает 0,75, в соответствии с Кодексом ACI 13.7.6 максимальные положительные и отрицательные моменты должны быть найдены на основе нагрузок модели, с полной факторизованной статической нагрузкой на месте и факторной нагрузкой в ​​три четверти, расположенной так, чтобы вызвать максимальный эффект. Кроме того, расчетные моменты не должны быть меньше моментов, создаваемых полностью учтенными временными и статическими нагрузками на все панели. Таким образом, необходимо учитывать три варианта нагружения: (a) полная факторизация статической и временной нагрузки 311 фунтов на квадратный фут на всех панелях; (b) факторная статическая нагрузка 151 фунт / фут на всех пролетах плюс факторная временная нагрузка в три четверти, 120 фунтов на квадратный фут, на панели C; и (c) полная приведенная статическая нагрузка на все пролеты и три четверти временной нагрузки на первом и втором пролетах.Неподвижные конечные моменты и конечные моменты, полученные из распределения моментов, сведены в Таблицу 13.7. Полученные результаты указывают на тот случай, загрузить управляет конструкции плиты в опорной области, в то время как средства управления нагрузкой случай б в середине пролета панели С. Момент диаграмм для двух контрольных случаев приведены в figurea. В соответствии с Кодексом ACI критическое сечение на внутренних опорах может быть взято на поверхности опор, но не более 0,175l1 от средней линии колонны. Здесь используется первый критерий, а отрицательный дизайн

ТАБЛИЦА 13.7

Моменты в плоском плиточном полу, фут-кипы

Панель

B

C

B

43 1

43 1

905 902

902

2

3

3

4

(a) 311 фунт / кв.

–276

+276

–276

+276

–276

000 –276 9138–276

0005

905

905

+295

–295

+323

–125

Момент разрыва в C

119

(b) Панели B 151 psf и панель C 271 psf

Моменты с фиксированным концом

+134

5

+240

–240

+134

–134

Конечные моменты

000–50

000 –50

–50

–224

+200

–50

Момент размаха в C

137

панели слева C и панель B 151 psf (правая)

Неподвижный момент

+240

–240

+240

905 43

–240

+134

–134

Конечные моменты

+107

–290

–290

–290

+191

–52

Момент пролета в C

120

РИСУНОК

Расчетные моменты и сдвиги для внутренней панели пола с плоской пластиной ; (б) ножницы.

ТАБЛИЦА 13.8

Расчет плоской арматуры

55

(1)

(2)

Расположение

(3)

Mu,

3 (
футов) 4)

b, дюйм

(5)

d, дюйм

(6)

Mu × 12 / b, фут-тысячи фунтов / фут

(7)

ρ

(8)

As, in2

(9)

Количество No.4 (№ 13) Стержни

Стойка колонны

Отрицательная

196

132

7

179

16 № 6 (№ 19)

Положительный

82

132

7

7.45

0,0029

2,68

9 № 5 (№ 16)

Две полусредние полосы

Отрицательная

43

43

7

6,00

0,0023

2,13

8 № 5 (№ 16) a

43

43 55
32 Положительный 9 132

7

5.00

0,0020

1,85

8 № 5 (№ 16) a

a Количество стержней, регулируемое требованиями максимального интервала.

Момент

рассчитывается путем вычитания площади под диаграммой сдвига между осевой линией и лицевой стороной опоры для случая нагружения a из отрицательного момента на центральной линии опоры. Диаграмма сдвига для случая нагружения a приведена на рисунке b, а скорректированные расчетные моменты показаны на рисунке a.

Поскольку эффективная глубина для всех панелей будет одинаковой, и поскольку отрицательная сталь для панели C будет проходить через область поддержки, чтобы стать отрицательной сталью для панелей B, больший отрицательный момент, обнаруженный для панелей B, будет иметь значение. Соответственно, расчетный отрицательный момент составляет 262 фут-тысячи фунтов, а расчетный положительный момент — 137 фут-кип. †

Моменты будут распределены в поперечном направлении по ширине плиты в соответствии с таблицей 13.4, которая показывает, что 75 процентов отрицательного момента будет , назначенный полосе колонны, и 60 процентов положительного момента, назначенного полосе колонны.Расчет арматуры плиты представлен в Таблице 13.8.

Другими важными аспектами конструкции плоских пластин являются конструкция для продавливания сдвига в колоннах, что может потребовать дополнительной поперечной арматуры, и передачи несбалансированных моментов на колонны, что может потребовать дополнительных изгибных стержней в области отрицательного изгиба колонны. полосы или регулировка шага отрицательной стали. Эти соображения особенно важны для внешних колонн и угловых колонн, как показано на рисунке.Передача сдвига и момента в колоннах будет обсуждаться в разделах 13.10 и 13.11, соответственно.

эл. Анализ эквивалентного кадра с помощью компьютера

Очевидно, что метод эквивалентного кадра, описанный в коде ACI и комментарии к коду ACI, ориентирован на анализ с использованием метода распределения моментов. В настоящее время в большинстве офисов используются компьютеры, и анализ каркаса выполняется с помощью универсальных программ, основанных на методе прямой жесткости. Программы анализа плоского каркаса могут использоваться для анализа перекрытия на основе концепций метода эквивалентного каркаса, но каркас должен быть специально смоделирован.Переменные моменты инерции вдоль оси плиты балок и колонн требует узловых точек (сплошные суставы) между секциями, где я должен считать постоянной (то есть, в плите на стыке плиты и панели капли, панели капли и капитала, и в столбцах внизу заглавных букв). Кроме того, необходимо вычислить Kec для каждого столбца, а затем вычислить эквивалентное значение момента инерции для столбца.

В качестве альтернативы может использоваться трехмерный анализ каркаса, в который непосредственно могут быть включены крутильные свойства поперечных опорных балок.Третий вариант — использовать специально написанные компьютерные программы, наиболее широко используемой из которых является pcaSlab, разработанная Portland Cement Association (Скоки, Иллинойс).

ВИДЫ ПЛИТ — Гражданская Шастра

Железобетонная плита — это плоский структурный элемент, который используется для обеспечения ровной поверхности (полов / потолков) в зданиях. На основе предоставленного армирования, опоры балки и соотношения пролетов плиты обычно делятся на односторонние и двухсторонние.Односторонняя плита поддерживается с двух сторон, и отношение длинного пролета к короткому больше двух, тогда как двусторонняя плита поддерживается с четырех сторон, а отношение длинного пролета к короткому меньше двух.

Различные условия нагрузки и критерии поддержки требуют выбора подходящей и рентабельной бетонной плиты с учетом типа здания, архитектурной планировки, эстетических особенностей и пролета. Следовательно, бетонные плиты бывают разных типов, как указано в этом посте.

ПЛИТА ОДНОСТОРОННЯЯ

Односторонняя плита поддерживается балками с двух противоположных сторон, чтобы нести нагрузку в одном направлении. Отношение более длинного пролета к более короткому составляет> = 2. такие плиты изгибаются в направлении своего более короткого пролета. Основное усиление предусмотрено в более коротком пролете, а распределительное усиление — в более длинном. Распределительные стержни изогнуты, чтобы противостоять образованию напряжений.

ПЛИТА СУКА (РЕБРА)

Он состоит из плиты перекрытия, обычно толщиной от 50 до 100 мм, поддерживаемой железобетонными ребрами (балками).Ребра обычно имеют коническую форму и равномерно разнесены на расстоянии, не превышающем 750 мм. Ребра опираются на балки, опирающиеся на колонны. Бетонная плита с односторонней балкой подходит для пролетов 6-9 м и временных нагрузок 4-6 кН / м2. Из-за глубоких ребер количество бетона и стали относительно невелико, но необходима дорогая опалубка.

ДВУХСТОРОННИЕ ПЛИТЫ

Двусторонние плиты поддерживаются со всех сторон. Плиты на балках подходят для пролетов от 6 до 9 м и временных нагрузок 3-6 кН / м2.Армирование в обоих направлениях увеличивает жесткость плит, обеспечивая относительно низкий прогиб. Требуется дополнительная опалубка для основных и второстепенных балок.

ПЛИТЫ

Армированные плиты этого типа поддерживаются непосредственно колоннами или крышками без использования балок. Этот тип перекрытия, как правило, прост в изготовлении и требует небольшого количества опалубки. Нагрузки передаются непосредственно на колонны.

Плоские плиты лучше всего подходят для пролетов 6-9 м и временных нагрузок 4-8 кН / м 2 .

ПЛОСКИЕ ПЛАСТИНЫ

Плоские плиты могут быть сконструированы как односторонние или двухсторонние плиты и поддерживаются непосредственно колоннами или стенами.
Просты в сборке и требуют простой опалубки.
Плоские плиты наиболее подходят для пролетов 6-8 м и временных нагрузок 3-5 кН / м2. Диапазон пролетов для предварительно напряженных плоских плит составляет от 8 до 12 м, и они также могут быть сконструированы как плиты после напряжения.
Преимущества использования плоских плит — это недорогая опалубка, открытые плоские потолки и более быстрое строительство.
Плоские пластины имеют низкую стойкость к сдвигу и относительно низкую жесткость, что может вызвать заметный прогиб.

ВАФЕЛЬНЫЕ ПЛИТЫ

Плиты этого типа содержат квадратные решетки с глубокими сторонами. Процесс строительства вафельной плиты включает в себя крепление форм, размещение коробов на опалубке, установку арматуры между опалубками, установку стальной сетки поверх опалубки и заливку бетона.

Сетчатые плиты подходят для пролетов 9-15 м и временных нагрузок 4-7 кН / м2.

ПЛИТА С ПОЛЫМ СЕРДЕЧНИКОМ

Это тип сборных плит, через которые вставляются сердечники. Значительно снижается собственный вес плиты и повышается конструктивная эффективность, сердечники также действуют как служебные каналы.
Подходит для случаев, когда требуется быстрое строительство.
Нет ограничений на пролет блоков пустотных плит, их стандартная ширина составляет 120 мм, а глубина колеблется от 110 мм до 400 мм.
Подходит для офисов, магазинов или парковок.

ПЛИТА HARDY

Она построена из гордовых кирпичей, которые значительно уменьшают количество бетона и, следовательно, собственный вес плиты. Толщина плиты обычно больше, чем у обычной плиты, и составляет около 270 мм.
Экономичен для пролетов длиной до 5 м, снижает количество бетона ниже нейтральной оси и требует умеренных временных нагрузок. Он построен в местах с очень высокими температурами. Применение этого типа плит можно увидеть в Дубае и Китае.

ПЛАСТИНА ПУЗЫРЬЯ

Эти плиты изготавливаются путем размещения пластиковых пузырей, затем между пластиковыми пузырями и поверх них помещается стальная арматура и заливается свежий бетон.
Плиты Bubble Deck уменьшают вес, увеличивают прочность, могут быть обеспечены большие пролеты, требуется меньше колонн, не требуются балки или ребра под потолком. Это снижает общую стоимость строительства, а также является экологически чистым, поскольку уменьшает количество бетона.

КОМПОЗИТНЫЕ ПЛИТЫ

Эти плиты изготовлены из железобетона, залитого поверх профилированного стального настила.Настил действует как опалубка и рабочая зона на этапе строительства, а также как внешнее армирование в течение всего срока службы плиты.
Для стального настила толщиной 50-60 мм пролёт плиты может достигать 3 м. Однако, если толщину стального настила увеличить до 80 мм, можно построить плиты с пролетом 4,5 м.

ПРЕДВАРИТЕЛЬНЫЕ ПЛИТЫ

Сборные железобетонные плиты отливаются и выдерживаются на производственных предприятиях, а затем доставляются на строительную площадку для возведения.Самым выдающимся преимуществом подготовки плит на производственных предприятиях является повышение эффективности и более высокий контроль качества, чего нельзя достичь на месте. Чаще всего используются сборные плиты швеллерного и двутаврового типа.

Концептуальное моделирование и построение сетки

RAM [FAQ] — RAM | STAAD Wiki — RAM | STAAD

Продукт (ы): RAM Concept
Версия (и): Все
Окружающая среда: НЕТ
Площадь: Моделирование, анализ

Почему необходимо иметь приоритеты?

Без системы приоритетов для моделирования полов потребовался бы один из двух методов:

  1. Объекты для плит разной толщины, балок, проемов и т. Д.не могли перекрываться — это было бы очень утомительно для всех полов, кроме очень простых, или
  2. Глубины должны быть добавлены. Например, вам придется вычесть глубину перекрытия из глубины балки. Если бы вам пришлось изменить глубину перекрытия, то для балки потребовалось бы изменение, если только ее глубина не изменилась на ту же величину.

Как я могу скопировать колонны или стены внизу на те же самые вверху?

  1. Выберите все колонны или стены, которые вы хотите скопировать.
  2. Выберите «Правка»> «Копировать» (или щелкните правой кнопкой мыши и выберите «Копировать» во всплывающем меню).Затем дважды щелкните край, чтобы ничего не выделять.
  3. Выберите «Правка»> «Вставить» (или щелкните правой кнопкой мыши и выберите «Вставить» во всплывающем меню). Вставленные объекты — это текущий выбор.
  4. Выберите «Правка»> «Свойства выделения» или щелкните правой кнопкой мыши и выберите «Свойства выделения».
  5. Измените набор опор снизу на верхний и нажмите «ОК».

Примечание. Важно не прекращать процесс после вставки. В противном случае у вас будут две опоры ниже в разных местах, что приведет к ошибкам в расчетах.

Как моделировать изогнутые края или стены?

Используйте серию коротких прямых линий для моделирования любой кривой на плане. Не делайте отрезки слишком короткими, иначе сетка в этой области станет очень мелкой. Это приближение должно иметь незначительный эффект. Это также относится к круглым буквицам, которые необходимо моделировать с помощью многостороннего многоугольника.

Можно ли смоделировать прилегающие области перекрытий с вертикальным зазором между ними?

Непрерывные в плане плиты перекрытия будут иметь непрерывное структурное поведение в модели, независимо от отметок / толщины плиты (плит).Эта непрерывность возникает, даже если плиты находятся на разных отметках и фактически разъединены. На изображении ниже показано поведение, предполагаемое в RAM Concept.


Можно смоделировать прерывистые плиты в одной и той же модели, но для этого требуется физический «зазор» в плане. Мы рекомендуем моделировать любой такой зазор шириной не менее 3 дюймов, так как меньшие расстояния могут быть устранены во время построения сетки. Другой вариант — использовать две отдельные модели RAM Concept для анализа каждого этажа.

Как просмотреть перекрытие без сетки?

Выберите «Слои»> «Элемент»> «Сводный план перекрытия» или перейдите в диалоговое окно «Видимые объекты» и установите флажок «Только контур» под элементами перекрытия.

В чем разница между элементами балки и перекрытия?

Нет никакой разницы, если вы не измените их поведение. Обратитесь к Руководству по концепции RAM, глава 18 «Определение структуры» для получения дополнительной информации. Основное различие между балкой и перекрытиями заключается в том, как они моделируются: балка моделируется щелчком по двум конечным точкам вдоль ее центральной линии и всегда имеет два параллельных ребра, смещенных от центральной линии, в то время как область перекрытия представляет собой замкнутый многоугольник и может иметь любую форму в плане. .

Сколько узлов или элементов разрешено?

Нет никаких ограничений, кроме ограничений вашего компьютера. Если вы обнаружите, что производительность программы слишком низкая, рассмотрите возможность использования любого из следующих пунктов:

  1. увеличить размер ячейки для уменьшения количества элементов
  2. удалить импортированный файл чертежа, который больше не нужен
  3. уменьшить количество загружений и / или сочетаний нагрузок
  4. уменьшить количество проектных полос или увеличить шаг поперечных сечений проектных полос.

Сколько элементов мне следует использовать на пролёт или панель?

На этот вопрос нельзя ответить напрямую, так как это зависит от конструкции и нагрузок. Максимальный размер — 32,8 фута (10 метров). Чтобы ускорить анализ, полезно выбрать грубую сетку для предварительного проектирования и мелкую сетку для окончательного проектирования.

  • Крупная сетка может иметь размер элемента, равный длине пролета / 6.
  • Мелкая сетка может иметь размер элемента равной длине пролета / 12.

В случае сомнений следует изучить влияние различных размеров элементов сетки.

Удерживают ли колонны плиту?

В зависимости от установленной фиксации колонны могут обеспечивать ограничение вращения и поперечное ограничение. Если дальний конец колонны определен как «роликовая» опора (или оба конца колонны закреплены штифтами), тогда колонна не обеспечивает какого-либо бокового ограничения для плиты. Колонны над плитой не поддерживают плиту вертикально, они могут только удерживать плиту вращательно и в поперечном направлении.

Почему там прогиб в лицо опорной колонны или стены?

Колонны в Ram Concept соединяются с сеткой конечных элементов перекрытия в единственном узле, расположенном в центре тяжести колонны.Они не являются твердыми объектами и не обеспечивают вертикальную опору для нескольких узлов. Это становится очевидным при просмотре «Элементы — Стандартный план».

Таким образом, прогиб плиты начинается от этого узла и увеличивается по направлению к поверхности колонны. Для небольших столбцов это может не иметь большого значения, но для столбцов большой площади это важно.

Чтобы имитировать поведение жесткой опоры колонны, мы предлагаем смоделировать толстую и жесткую плиту, которая перекрывает объем колонны как мини-заглушка.Обязательно назначьте этому участку бетона более высокий приоритет. Рекомендуется смоделировать этот участок с приподнятым верхом бетонного фасада, чтобы центр тяжести плиты совпадал со средней глубиной участка, чтобы избежать эксцентриситета на этом стыке.

Такой же подход можно применить и для толстых стен, поддерживающих плиту. Здесь можно использовать балочный или плитный объект.

Обратите внимание, что в версии 8.02 была добавлена ​​функция для автоматизации этого процесса. См. Раздел «Зоны жесткой опоры в концепции ОЗУ».

Где вы должны определить конечные точки балки, на лицевой стороне колонны, проходящей через колонну, или на центральной линии?

Обычно предпочтение отдается моделированию балок через колонну до края плиты, так как это лучше всего соответствует условиям конструкции и способу формирования предметов. Остановка балки на средней линии колонны приводит к несколько более гибкой системе.

Стены ограничивают перекрытие в поперечном направлении?

Да, если вы выбираете Shear Wall в качестве свойства.Если флажок «Стена сдвига» не установлен, плита может свободно скользить по верхней части стены. Поворотная жесткость стенок не зависит от настройки Shear Wall; используйте настройки фиксации, чтобы контролировать жесткость стены относительно ее продольной оси.

Что дает указание стен выше?

Стеновые элементы могут использоваться для моделирования жесткости и перекрываемости стен, соединенных с плитой. Стены наверху ведут себя так же, как балки, в том смысле, что они делают пол жестче.Можно было бы вместо этого смоделировать стены над плитой в виде балок, но обычно это не рекомендуется.

Использование балок или перекрытий имеет некоторые преимущества перед использованием стеновых элементов («стеновых балок»):

  • Поперечные сечения полос в концептуальном дизайне автоматически интегрируют силы, действующие на элементы перекрытия; Однако элементы стеновой балки в этих интеграциях игнорируются.
  • Кроме того, Concept предоставляет множество средств управления отображением результатов для элементов перекрытия; элементы стеновых балок (например, элементы стен) могут только отображать их реакции на плиту.
  • Однако стандартные элементы перекрытий Concept имеют жесткость на кручение, пропорциональную их глубине в кубе. Это может вызвать завышенную оценку жесткости на кручение для очень толстого элемента плиты, если он примыкает к относительно тонким элементам. У элементов «стенка-балка» этой проблемы нет. Таким образом, стены выше, которые моделируются как перевернутые балки, должны использовать свойство балки «без кручения».

При моделировании стеновых балок над плитой Concept интерпретирует некоторые параметры стеновых элементов иначе, чем для стен ниже.

  • Если стеновая балка не прикреплена к плите с возможностью вращения, то стеновая балка будет иметь нулевую жесткость на кручение.
  • Если стеновая балка не является стеной, работающей на сдвиг, то она будет иметь нулевую осевую жесткость. Параметры вертикального сжатия и вращения на дальнем конце игнорируются.

Элементы стеновой балки имеют одно преимущество перед элементами перекрытия.

  • Элементы перекрытий резко различающейся толщины в одной и той же структуре могут привести к тому, что элементы управления автоматическим построением графиков будут показывать (правильно) огромные изменения силы в элементах толстых перекрытий и рядом с ними и почти без изменений в областях элементов тонких перекрытий.Обычно этого не происходит, если расположенные выше стены моделируются как стенные балки.

Обеспечивают ли стены над плитой ограничение вращения?

В дальнем конце стены наверху нет ограждения. (Даже если установлен флажок «Фиксированное вращение на дальнем конце», он игнорируется).

Зоны жестких опор в RAM Concept

Требуются ли пропилы для моей плиты? Часть 2 — Жилые плиты на земле

В первой части мы обсудили разделы управляющих кодов и справочные руководства, которые относятся к усадочным швам при распиловке в коммерческих бетонных плитах на земле.Вторая часть будет посвящена жилым бетонным плитам на земле.

Трещины в бетонных плитах перекрытия на земле для новых проектов жилищного строительства могут привести к искам о дефектах проектирования и / или конструкции к специалисту по проектированию и / или подрядчику, соответственно. Требования к усадочным швам (CJ) в бетонных плитах прямо не указаны в основных нормах жилищного строительства и, таким образом, могут быть проигнорированы специалистами по проектированию. Тем не менее, нормы проектирования жилых домов отсылают специалистов по проектированию к руководствам ACI по требованиям к стыкам в бетонных плитах.Специалист по дизайну может указать относительно большой процент стальной арматуры в плите, чтобы исключить необходимость использования CJ, или указать CJ для контроля количества, размера и местоположения трещин высыхания и усадки. Поскольку количество стальной арматуры, необходимое для устранения CJ, обычно дороже, чем использование CJ, CJ обычно являются предпочтительной альтернативой. Один из методов создания CJ — это использование пропилов для создания ослабленного поперечного сечения, чтобы контролировать, где плита будет трескаться.Критические параметры при указании пропилов включают расстояние между пропилами, тип пропила, передачу нагрузки по пропилу, глубину пропила и время пропила.

Трещина в плите при распиловке

В этом блоге представлены разделы управляющих кодов и руководства со ссылками на коды, относящиеся к распилу CJ в типичных жилых бетонных плитах на одном уровне. Термин типичные бетонные плиты для этого блога относится к бетонным плитам перекрытия на земле, которые не передают вертикальные нагрузки или поперечные силы от других частей конструкции к почве.Этот технический блог ссылается на Международный жилищный кодекс 2015 года (IRC) как на базовые нормы проектирования для жилищного строительства. Следует отметить, что Жилищный кодекс Флориды 2017 года внес поправки в требования штата в отношении контрольных швов и не соответствует требованиям IRC.

Жилые бетонные плиты на земле

Управляющие разделы IRC и упомянутого документа ACI следующие:

IRC Глава 5 — Этажей

IRC R506 — Бетонные полы (наземные)

«Бетонная плита на первом этаже должна быть спроектирована и сооружена в соответствии с положениями настоящего раздела или ACI 332…»

Другие применимые разделы IRC:

IRC R402.2- Бетон

IRC R506.2.4 — Опора усиления

При установке в плитах на земле, арматура должна поддерживаться, чтобы оставаться на месте от центра до верхней трети плиты на время укладки бетона. ”[выделено мной]

IRC делает вывод, что существуют ситуации, когда бетонная плита на земле может быть спроектирована или не иметь армирования, но не предоставляет ограничений или деталей для каждого варианта конструкции.Ограничения и подробности для каждого варианта проекта можно найти в упомянутых требованиях жилищного кодекса ACI 332-14 для конструкционного бетона и комментарии (ACI 332), как указано в IRC R506. Соответствующие разделы ACI 332 следующие:

Расстояние между сужающимися суставами

ACI 332, включает Таблицу 10.5.3 с указанием рекомендуемых расстояний CJ для неармированных бетонных плит на земле следующим образом:

Таблица интервалов CJ из ACI 332 Таблица 10.5.3

Обратите внимание, что расстояние между CJ в 4-дюймовой плите без стальной арматуры должно составлять от 8 до 13 футов. Указания по расстоянию CJ для жилых перекрытий аналогичны рекомендациям по размещению CJ для коммерческих перекрытий. Обратите внимание, что Жилой кодекс Флориды 2017 года, раздел R506.2.4, внес поправки в требования штата для управляющих швов.

Виды пропилов

В ACI 332 обсуждаются два типа распиловки: традиционный мокрый процесс и процесс сухой резки с ранним началом.При обычном мокром процессе для пропила используется бетонная пила и лезвие, предназначенные для резки затвердевшего бетона. Вода добавляется в пропил, чтобы минимизировать количество пыли и охладить лезвие во время пропила. Глубина лезвия (или оправки) обычно может превышать 1 дюйм.

Обычный мокрый процесс пропила

Для начального процесса «сухой резки» пропилы выполняются с использованием специального типа пилы, имеющего вращающееся вверх лезвие, которое оставляет свежие стыки чистыми и удерживает пилу на месте. Лезвие предназначено для резки бетона до его затвердевания без добавления воды во время пропила.Пилы раннего входа обычно ограничиваются пропилом глубиной 1 дюйм. Пилы для раннего входа используются, когда бетон становится достаточно твердым, чтобы заполнитель не рассыпался, но до его затвердевания.

Бетонная пила для раннего ввода в действие сухой резки

Укрепление перекрытий в стыках Sawcut CJ Деталь из ACI 360 Рис. 6.8

В ACI 332, Раздел 10.6.2 — Минимальная стальная арматура на основе расстояния между стыками , термин «без стальной арматуры» в Таблице 10.5.2 относится как к обычному бетону, так и к бетону, армированному только для контроля трещин. Процент армирования, который применяется только для борьбы с трещинами, меньше или равен 0,5% от общей площади поперечного сечения плиты. Обычно указанная сварная проволочная сетка (WWF) 6 × 6 W1,4xW1,4 в 4-дюймовом жилом бетонном перекрытии на земле составляет примерно 0,06% от общего сечения. WWF 6 × 6 W1,4 × 1,4 в 4-дюймовой жилой бетонной плите на земле будет считаться «без стальной арматуры» для целей таблицы 10.5.2. Обратите внимание, что согласно поправкам Флориды в IRC R506.2.4, использование 6 × 6 W1,4xW1,4 в 4-дюймовом жилом перекрытии может быть указано для устранения CJ.

Механизм передачи нагрузки, описанный в коммерческом кодексе, не упоминается напрямую в жилищном кодексе или ACI 332. Расчетные временные нагрузки для жилых полов и нагрузки на колеса для жилых гаражей обычно меньше, чем тяжелые расчетные нагрузки на колеса, указанные для коммерческих складов. Как указано в IRC R506.2.4 Опора усиления и в ACI 332 10.6 — Арматура , бетонные плиты на земле могут быть из простого бетона или армированными для контроля трещин только с швами, расположенными в соответствии с таблицей 10.5.2. Согласно ACI 332.10.6, проектировщик может превысить расстояние CJ в таблице 10.5.2, только если стальная арматура составляет более 0,5% площади поперечного сечения плиты. Для 4-дюймовой бетонной плиты на земле это было бы эквивалентно арматурному стержню № 4, расположенному на расстоянии 10 дюймов в каждую сторону. Стоимость стальной арматуры, равной 0,5% площади поперечного сечения плиты, обычно превышает стоимость распиловки плиты.

Сроки распиловки

ACI 332, Раздел 10.2.2 2 — Стягивающие суставы — Комментарий, гласит следующее:

Опыт показал, что использование пилы по бетону с ранним входом сразу после окончательной схватывания или обычной пилы имеет тенденцию ограничивать развитие трещин на распиленном шве. Обратитесь к ACI 302.1R для получения дополнительной информации об ограничении растрескивания плиты на земле ».

ACI 302.1R, раздел 8.3.12 Соединения распилом , утверждает следующее:

Обычно стыки, полученные с использованием обычных процессов, выполняются в течение 4–12 часов после обработки плиты на участке — от 4 часов в жаркую погоду до 12 часов в холодную погоду.Для пил для сухой резки с ранним входом период ожидания обычно варьируется от 1 часа в жаркую погоду до 4 часов в холодную погоду после завершения чистовой обработки плиты в этом месте стыка.

Указания по времени для распиловки бытовых плит такие же, как и указания по срокам для коммерческих распилов плит.

Глубина пропила

ACI 332, раздел 10.5.2 — Стягивающие суставы , утверждает следующее:

(d) Глубина стыка должна составлять не менее толщины плиты для формованных или обработанных швов или пропиленных сухим способом стыков в затвердевшем бетоне. (E) Глубина стыка должна быть не менее 1 дюйма.для плит глубиной до 9 дюймов для распиленных швов с ранним входом.

Рекомендации по глубине пропила в жилых помещениях такие же, как и рекомендации по глубине для коммерческих распилов.

Требования к проектированию жилых бетонных перекрытий на земле

Профессионал-проектировщик для проекта, который включает типичные жилые бетонные плиты на земле, должен либо указать достаточное количество стальной арматуры для устранения CJ (больше 0.

LEAVE A REPLY

Ваш адрес email не будет опубликован. Обязательные поля помечены *