Коэффициент теплопроводности блоков газосиликатных: Коэффициент теплопроводности блоков из газосиликата — CemGid.ru
Коэффициент теплопроводности блоков из газосиликата — CemGid.ru
Способность к эффективному удержанию тепла внутри помещений играет ключевую роль при выборе материалов для возведения наружных стен зданий, характеристики, отражающие ее в количественном выражении, обязательно учитываются при проведении расчета их толщины. Неизменно высокие результаты показывают газосиликатные блоки и плиты, обеспечивающие низкую термопередачу при минимальной нагрузке на основание и достаточно хорошей прочности.
Определение и влияние на другие характеристики
В количественном выражении отражает способность газосиликата проводить тепло с учетом его постоянного агрегатного состояния и условий эксплуатации. По сути является аналогом электропроводимости: чем она выше, тем активнее происходит теплообмен. Существует прямая связь между толщиной строительных конструкций, удельным весом и структурой их основы и показателем термопередачи.
Пористые и удерживающие внутри воздух блоки или плиты в сухом виде имеют неизменно низкую теплопроводность, уплотненные разновидности – наоборот.
Обратная величина этой характеристики – способность к препятствованию прохождения тепла сквозь структуру: чем она выше, тем лучше элементы подходят для утепления или постройки энергосберегающих сооружений. По этой причине для организации отвода или теплопередачи используются элементы из стали или алюминия, имеющие крайне низкое термическое сопротивление, а при необходимости поддержки определенного режима внутри – стройматериалы с ячеистой или волокнистой структурой: дерево, минвата, газосиликат или пенобетон, поризованная или пустотелая керамика, пенопласт, ППУ, эковата.
Кладочные изделия представлены марками с разной плотностью, в пределах D300-D400 они относятся к теплоизоляционным, D500 и D600 – совмещают утепляющие и конструкционные способности, свыше D700 – не обладают энергосберегающими свойствами. D400 могут использоваться при возведении нагружаемых стен, но лишь при условии их надежного армирования и поддержки каркасом, при исключении мостиков холода в дополнительной защите от потерь тепла они не нуждаются. При повышении плотности марки скорость теплообмена между наружной и внутренней средой увеличивается, что приводит к необходимости утепления фасада.
Марка плотности | D300 | D400 | D500 | D600 |
Теплопроводность г в сухом состоянии, Вт/м·°C | 0,08 | 0,096 | 0,12 | 0,14 |
Коэффициент паропроницаемости газосиликата, мг/м·ч·Па | 0,26 | 0,23 | 0,2 | 0,16 |
Это значение подтверждается производителем опытным путем, для его определения в домашних условиях можно направить на блок горелку (или поставить его на плиту) и измерять изменение температуры в 3-4 см углублении на другой стороне с интервалом в 1 мин. После прекращения нагрева отслеживается динамика охлаждения. Такой опыт позволяет проверить не только изоляционные свойства, но и огнестойкость.
Сравнения коэффициентов теплопроводности газоблоков и других материалов
Большинство современных строительных конструкций, разделяющих зоны с разными температурами, являются многослойными. Их величина термического сопротивления суммируется с учетом толщины каждой прослойки в метрах и термопроводности при стандартных условиях (нормальной влажности и температуре). Усредненные нормативные значения последней приведены в таблице ниже:
Вид | Средний диапазон плотности, кг/м3 | Коэффициент теплопроводности в сухом состоянии, Вт/м·°C |
Мелкоштучные кладочные изделия и блоки из искусственного камня | ||
Кирпич красный плотный | 1700-2100 | 0,67 |
То же, пористый | 1500 | 0,44 |
Силикат | 1000-2200 | 0,5-1,3 |
Керамический поризованный камень | 810-840 | 0,14-0,185 |
Многопустотные камни из легкого бетона | 500-1200 | 0,29-0,6 |
Дерево | ||
Дуб | 700 | 0,23 |
Клен | 620-750 | 0,19 |
Лиственница | 670 | 0,13 |
Липа | 320-650 | 0,15 |
Сосна | 500 | 0,18 |
Береза | 510-770 | 0,15 |
Блоки и плиты из ячеистых видов бетона | ||
Пенобетон | 300-1250 | 0,12-0,35 |
Автоклавные газосиликатные и газобетонные | 280-1000 | 0,07-0,21 |
Строительные плиты из пористого бетона | 500-800 | 0,22-0,29 |
Утеплители | ||
Пенополистирол | 40 | 0,038 |
Маты из минеральной ваты | 50-125 | 0,048-0,056 |
Эковата | 35-60 | 0,032-0,041 |
Несложно заметить, что из всех видов кладочных материалов автоклавные газосиликатные блоки в разы выигрывают в сопротивлении теплопередаче. На практике это означает возможность уменьшения толщины стен при равном теплообмене и отсутствии необходимости их наружного утепления. В этом плане они уступают лишь дереву, для сравнения: равную теплопроводность имеют 140 мм сухого бруса, 250 – кладки из газосиликата, 500 – керамзитобетона и 650 – монолитной стены из кирпича. У продукции, используемой при утеплении, такая же низкая эффективность теплообмена наблюдается у плиты ППУ толщиной в 25 мм, полистирола в 60, пробки в 70 и минеральной ваты в 80.
Высокая способность к удержанию тепла допускает использование как конструкционных изделий, так и в качестве изолятора. Марки D500 и D600 совмещают оба свойства, но при превышении плотности свыше 700 кг/м3 сопротивление теплопередаче снижается и возникает потребность либо в наружном утеплении, либо в увеличении толщины кладки, и как следствие – росту затрат. С целью исключения ошибок этот параметр определяет расчет, проводимый на стадии проектирования и учитывающий климатические условия региона, требуемую температуру внутри здания и точную теплопроводность.
Теплопроводность газосиликатных блоков
Содержание
- Показатели теплопроводности газосиликатных блоков
- Теплопроводность блоков в зависимости от плотности
- Вывод
Рынок современных строительных материалов регулярно пополняется усовершенствованными новинками. При возведении малоэтажных домов растет спрос на газосиликатные блоки, которые имеют более низкий коэффициент теплопроводности по сравнению с бетоном, деревом или кирпичом. Теплопроводность газосиликатных блоков обусловлена пористой структурой, которая на 80-85% состоит из воздуха. Сырьем для производства газосиликата являются: вода, цемент, кварцевый песок, известь. В качестве добавки используется алюминиевая пудра. При взаимодействии всех компонентов происходит вспенивание массы в результате выделения водорода.
Показатели теплопроводности газосиликатных блоков
В зависимости от пропорций исходных ингредиентов можно получить продукт с различными эксплуатационными характеристиками. Коэффициент теплопроводности газосиликатного блока (?) зависит от его плотности и определяется по маркировке: D300, D400, D500, D600, D700.
Каждая марка имеет оптимальные показатели в зависимости от назначения:
- Теплоизоляционный (D300, D400) — имеет минимальную прочность при максимальной пористости. Обладает самым низким показателем теплопроводности, используется только для теплоизоляции готовых стен.
- Конструкционно-теплоизоляционный (D500, D600) — имеет средние показатели плотности и прочности. Предназначен для межкомнатных перегородок и стеновых конструкций до 2-х этажей.
- Конструкционный (D700 и выше) — применяется для возведения несущих стен малоэтажных построек.
При выборе строительных блоков необходимо учесть эксплуатационную влажность, назначение, технологию изготовления материала.
Таблица теплопроводности газосиликатных блоков
Характеристики влажности | D300 | D400 | D500 | D600 | D700 |
Теплопроводность ? (Вт/(м?°C)) в сухом виде | 0,072 | 0,094 | 0,12 | 0,14 | 0,165 |
Теплопроводность ? (Вт/(м?°C)) влажность 4% | 0,088 | 0,117 | 0,141 | 0,16 | 0,192 |
При сравнении теплопроводности газосиликатного материала и кирпича, показатели последнего уступают в 4 раза.
Так, для обеспечения желаемого теплосбережения потребуется толщина стен из газосиликата 500 мм. Тогда как для соблюдения аналогичных параметров понадобилось бы возвести кирпичную кладку толщиной не менее 2000 мм.
Теплопроводность газосиликата зависит от ряда факторов:
- Габариты строительного блока. Чем большую толщину имеет стеновой блок, тем выше его теплоизолирующие свойства.
- Влажность окружающей среды. Материал, впитавший влагу, снижает способность хранить тепло.
- Структура и количество пор. Блоки, имеющие в своей структуре большое количество крупных воздушных ячеек, имеют повышенные теплоизоляционные показатели.
- Плотность бетонных перегородок. Стройматериалы повышенной плотности хуже сохраняют тепло.
Высокая степень влагонакопления газосиликата исключает его использование в помещениях повышенной влажности без обработки гидроизоляционным материалом.
Теплопроводность блоков в зависимости от плотности
Характеристика теплопроводности газосиликатных блоков пропорциональна плотности. Чем выше показатель плотности, тем больше коэффициент теплопроводности, следовательно, увеличиваются энергозатраты на обогрев помещения. Во избежании лишних расходов на отопление потребуется дополнительная теплоизоляция стен минеральной ватой, пенополистиролом или другим изолирующим материалом.
Плотность блоков влияет на:
- потребность в гидроизоляции;
- строение конструкции в один или несколько слоев;
- необходимость дополнительной теплоизоляции;
- метод укладки блоков на специальную клеевую основу.
Оптимальным вариантом для малоэтажного строительства (до 2-х этажей) является газосиликат марки D500. Объемная плотность этого материала составляет 500 кг/м3, что аналогично плотности деревянного бруса. Теплопроводность газосиликатного блока D500 в сухом состоянии равна 0,12 Вт/(м?°C), тогда как у кирпича она выше примерно в 4 раза (0,45 Вт/(м?°C)). Газосиликат D500 применяется для постройки несущих стеновых конструкций высотой до 2-х этажей, либо для возведения межкомнатных перегородок, оконных и дверных проемов, балок, ребер жесткости.
Вывод
На этапе планирования строительства необходимо точно рассчитать количество и конструкционные характеристики блоков различного назначения. От правильного выбора плотности и теплопроводности используемых материалов зависит не только сохранение температурного режима в доме, но и долговечность постройки. Гармоничное соотношение цены и качества газосиликата делают его одним из самых востребованных стройматериалов.
SCIRP Открытый доступ
Издательство научных исследований
Журналы от A до Z
Журналы по темам
- Биомедицинские и биологические науки.
- Бизнес и экономика
- Химия и материаловедение.
- Информатика. и общ.
- Науки о Земле и окружающей среде.
- Машиностроение
- Медицина и здравоохранение
- Физика и математика
- Социальные науки. и гуманитарные науки
Журналы по тематике
- Биомедицина и науки о жизни
- Бизнес и экономика
Химия и материаловедение- Информатика и связь
- Науки о Земле и окружающей среде
- Машиностроение
- Медицина и здравоохранение
- Физика и математика
- Социальные и гуманитарные науки
Публикация у нас
- Представление статьи
- Информация для авторов
- Ресурсы для экспертной оценки
- Открытые специальные выпуски
- Заявление об открытом доступе
Публикуйте у нас
- Представление статьи
- Информация для авторов
- Ресурсы для экспертной оценки
- Открытые специальные выпуски
- Заявление об открытом доступе
- Часто задаваемые вопросы
Подпишитесь на SCIRP
Свяжитесь с нами
+86 18163351462 (WhatsApp) | |
1655362766 | |
Публикация бумаги WeChat |
Недавно опубликованные статьи |
Недавно опубликованные статьи |
Подпишитесь на SCIRP
Свяжитесь с нами
клиент@scirp. org | |
+86 18163351462 (WhatsApp) | |
Публикация бумаги WeChat |
Бесплатные информационные бюллетени SCIRP
Copyright © 2006-2023 Scientific Research Publishing Inc. Все права защищены.
ВершинаТеплофизические свойства изоляционных огнеупорных материалов
%PDF-1.4 % 1 0 объект > эндообъект 6 0 объект /Заголовок /Предмет /Автор /Режиссер /Ключевые слова /CreationDate (D:20230330154026-00’00’) /ModDate (D:20210716160357+02’00’) /PXCViewerInfo (средство просмотра PDF-XChange; 2.5.310.0; 14 октября 2014 г.; 21:42:59;D:20210716160357+02’00’) >