Класс прочности на сжатие: Прочность бетона на сжатие, Мпа – Таблица соответствия класса и марки бетона
Прочность бетона на сжатие, класс, таблица в мпа
Прочность бетона на сжатие традиционно считается одним из основных показателей, характеризующих свойства бетона. Данный параметр выражается в двух понятиях – классе и марке бетона, которые учитываются при выборе смеси для реализации тех или иных работ, выступают главными из технических характеристик, чрезвычайно важны для гарантии способности застывшего монолита выдерживать определенные нагрузки, что сказывается на прочности, надежности, долговечности.
Определенный класс бетона по прочности на сжатие маркируется буквой В и определенной цифрой, демонстрирует так называемую кубиковую прочность (когда образец в форме куба сжимают под прессом и фиксируют отметку, на которой он разрушается). Считается давление в МПа, предполагает вероятность разрушения при указанном показателе максимум 5 единиц из 100 испытуемых. Регламентируется СНиП 2.03.01-84.
Прочность бетона (МПа) может быть разной – классы дифференцируются в пределах 3.
Марка бетона обозначается буквой М и цифровым индексом в диапазоне 50-1000. Регламентируется ГОСТом 26633-91, соответствует определенным классам, допустимым считается отклонение прочности максимум на 13.5%. Для марки бетона основными требованиями являются объем/качество цемента в составе. В свою очередь, марка обозначается в кгс/см2, определение марки возможно после полного застывания и затвердевания смеси (то есть, минимум через 28 суток после заливки).
Чем выше цифра в индексах класса и марки, тем более прочным будет бетон и тем выше его стоимость (как при покупке уже готового раствора, так и при самостоятельном замесе за счет большего объема цемента и более высокой его марки).
С учетом вышеизложенных фактов основная задача мастера – определить идеальные характеристики для раствора с учетом сферы использования и предполагаемых нагрузок. Ведь приготовление слишком прочного бетона приведет к неоправданным расходам, недостаточно прочного – к разрушению конструкции. Обычно средняя прочность бетона для тех или иных работ, конструкций указывается в ГОСТах, СНиПах – эти значения и берут за ориентир.
Виды материала по прочности на сжатие:
- Теплоизоляционные смеси – от В0.5 до В2.
- Конструкционно-теплоизоляционный раствор – от В2.5 до В10.
- Смеси конструкционные – от В12.5 до В40.
- Особые бетоны для усиленных конструкций – выше В45.
Содержание
- 1 Методы и испытания бетона на прочность
- 2 Контроль прочности бетона
- 2.
1 Прочность бетона: таблица
- 2.2 Прочность бетона на 7 и 28 сутки: ГОСТ, таблица
- 2.3 Таблица в МПа
- 2.
Методы и испытания бетона на прочность
Для определения марки и класса бетона используют разнообразные методы – все они относятся к категориям разрушающих и неразрушающих. Первая группа предполагает проведение испытаний в условиях лаборатории посредством механического воздействия на образцы, которые были залиты из контрольной смеси и полностью выстояны в указанные сроки.
Для проведения исследований используют специальный пресс, который сжимает опытные образцы и демонстрирует предел прочности при сжатии. Разрушение – наиболее верный и точный метод исследования бетона на прочность таких видов, как сжатие, изгиб, растяжение и т.д.
Основные неразрушающие методы исследований:
- Воздействие ударом.
- Разрушение частичное.
- Исследование с использованием ультразвука.
Ударное воздействие может быть разным – самым примитивным считается ударный импульс, который фиксирует динамическое воздействие в энергетическом эквиваленте. Упругий отскок определяет параметры твердости монолита в момент отскока бойка ударной установки.
Также используется метод пластической деформации, который предполагает обработку исследуемого участка особой аппаратурой, которая оставляет на монолите отпечатки определенной глубины (по ним и определяют степень прочности).
Частичное разрушение также может быть разным – скол, отрыв и комбинация данных способов. Если для испытаний используется метод скола, то ребро изделия подвергают особому скользящему воздействию для откалывания части и определения прочности. Отрыв предполагает использование специального клеящего состава, которым на поверхности крепят металлический диск и потом отрывают. При комбинировании данных способов анкерное устройство крепят на монолит, а потом отрывают.
Когда используется ультразвуковое исследование, применяют специальный прибор, способный измерить скорость прохождения ультразвуковых волн, проникающих в монолит. Основное преимущество данной технологии – она позволяет изучать не только поверхность, но и внутреннюю структуру бетона. Правда, в процессе исследований велика вероятность погрешности.
Контроль прочности бетона
Для того, чтобы бетонный раствор точно соответствовал указанным параметрам и выдерживал нагрузки, за его качеством следят еще на этапе приготовления. Прежде, чем готовить смесь, обязательно изучают рецепт, требования к компонентам и их пропорциям.
Основные критерии для контроля и проверки бетона:
- Соответствие используемого цемента указанным в рецепте маркам – так, для приготовления бетона М300 точно не подойдет цемент М100, даже при условии его большого объема. Чем выше число рядом с буквой М в маркировке цемента, тем более прочным получится раствор.
- Объем жидкости в растворе – чем больше воды в смеси, тем активнее влага испаряется в процессе высыхания и может провоцировать появление пустот, когда идет затвердевание.
- Качество и фракция наполнителей – шероховатые частицы неправильной формы обеспечивают наиболее крепкое сцепление ингредиентов в составе бетона, что в процессе твердения дает требуемый результат в виде высокой прочности.
- Тщательность смешивания компонентов на всех стадиях приготовления раствора – по технологии раствор замешивается в исправной бетономешалке или на производстве в течение длительного времени.
- Квалификация работников – также играет важную роль, так как даже при условии применения качественной смеси В20, к примеру, прочность может быть снижена из-за неправильной укладки, отсутствия уплотнения (вибрация обеспечивает повышение прочности бетона на 30%).
- Условия застывания и эксплуатации – лучше всего, когда бетон застывает и приобретает твердость при температуре воздуха +15-25 градусов и высокой влажности. В таком случае можно говорить о точном соответствии монолита его марке – если был залит бетон В15, то и демонстрировать будет его технические характеристики.
Прочность бетона: таблица
Бетон по прочности на растяжение, при изгибе, воздействии других нагрузок демонстрирует определенные значения.
Виды прочности бетона (на сжатие, изгиб, растяжение и т.д.):
Проектная
– та, что указывается в документах и предполагает значения при полной нагрузке на бетонную конструкцию. Считается в затвердевшем монолите, по истечении 28 дней после заливки.Нормированная
– значение, которое определяется по техническим условиям или ГОСТу (идеальное).Фактическая
– это среднее значение, полученное в результате выполненных испытаний.Требуемая
– минимально подходящий показатель для эксплуатации, который устанавливается в лаборатории производств и предприятий.Отпускная
– когда изделие уже можно отгружать потребителю.Распалубочная
– наблюдается в момент, когда бетонное изделие можно доставать из форм.
Виды прочности, касающиеся марки бетона и его качества: на сжатие и изгиб, осевое растяжение, а также передаточная прочность. Бетон напоминает камень – прочность на сжатие бетона обычно намного выше, чем на растяжение. Поэтому основной критерий прочности монолита – его способность выдерживать определенную нагрузку при сжатии. Это самый значимый и важный показатель.
Так, к примеру, показатели бетона В25 (класс прочности) и марки М350: средняя стойкость к сжатию до 350 кгс/м2 или до 25 МПа. Реальные значения обычно чуть ниже, так как на прочность оказывают влияние множество факторов. У бетона В30 будут соответствующие показатели и т.д.
Чтобы определить данные показатели, создают специальные кубы-образцы, дают им застыть, а затем отправляют под лабораторный пресс специальной конструкции. Давление постепенно увеличивают и фиксируют в момент, когда образец треснул или рассыпался.
Определяющее условие для присвоения марки и класса бетону – расчетная прочность на сжатие, которая определяется после полного схватывания и застывания монолита (28 суток занимает процесс).
Именно по прошествии 28 суток бетон достигает показателя расчетной/проектной прочности по марке. Прочность на сжатие – самый точный показатель механических свойств монолита, его стойкости к нагрузкам. Это своеобразная граница уже затвердевшего бетона к воздействующему на него механическому усилию в кгс/м2. Самая большая прочность у бетона М800/М900, самая низкая – у М15.
Прочность на изгиб повышается при увеличении индекса марки. Обычно показатели изгиба/растяжения ниже, чем нагрузочная способность. Молодой бетон демонстрирует значение в районе 1/20, старый – 1/8. Данный параметр учитывается на проектном этапе строительства. Способ определения: из бетона заливают брус 120х15х15 сантиметров, дают затвердеть, потом устанавливают на подпорки (расстояние между ними 1 метр), в центре помещают нагрузку, увеличивая ее постепенно, пока образец на разрушится.
Прочность высчитывается по формуле Rизг = 0,1PL/bh3, тут:
- L – расстояние между подпорками;
- Р – маса нагрузки и образца;
- Н, b, h – ширина/высота сечения бруса.
Прочность считается в Btb и обозначается цифрой в диапазоне 0.4-8.
Осевое растяжение в процессе проектирования учитывают редко. Этот параметр важен для определения способности монолита не покрываться трещинами при ощутимых перепадах влажности воздуха, температуры. Растяжение представляет собой некоторую составляющую, взятую от прочности на изгиб. Определяется сложно, часто образцы балок растягивают на специальном оборудовании. Актуально значение для бетона, который используется в сферах, исключающих возможность появления трещин.
Передаточная прочность – это нормируемое значение прочности бетонного монолита напряженных элементов при передаче на него силы натяжения армирующих элементов. Данный показатель предусматривается нормативными документами, ТУ для разных видов изделий. Обычно назначают минимум 70% проектной марки, многое зависит от свойств арматуры.
Прочность бетона на 7 и 28 сутки: ГОСТ, таблица
Бетоны бывают разными. Как правило, все виды по маркам и классам делят на легкие, обычные и тяжелые (часто последние две группы объединяют, так как все обычные бетоны считаются тяжелыми).
Основные группы бетонов по прочности:
Легкие
– марки от М5 до М35 подходят для заливки ненесущих конструкций, от М50 до М75 идут на подготовительные работы до заливки, М100 и М150 актуальны для перемычек, конструктива, малоэтажного строительства.Обычные бетоны
– самые распространенные и часто применяемые в ремонтно-строительных работах: М200/М300 используют для выполнения фундаментов, отмосток, полов, стяжек, бордюров, подпорок, лестниц и т.д. М250 В20 демонстрирует прочность 262 кгс/м2 и давление 20 МПа. М350 и М400 применяют для монолитных, несущих конструкций многоэтажных зданий, чаш бассейнов.М450 и выше
– тяжелые бетоны, обладающие высокой прочностью и плотностью, используют для особых конструкций, разного типа военных объектов.
Таблица в МПа
Прочность бетона – самый важный показатель, который напрямую влияет на все остальные технические характеристики материала, сферу применения, способность выдерживать предполагаемые нагрузки. Поэтому в процессе выбора марки и класса стоит учитывать СНиП и ГОСТы, а при проверке материала на соответствие уделять внимание результатам исследования и соответствующим документам.
Классы бетона — Betoonimeister
Betoonimeister / Бетон / Классы бетона
По прочности на сжатие бетон разделяется на классы (которые обозначаются отметкой C класса по прочности на сжатие). Наряду с классами по прочности на сжатие свойства бетона характеризуют также классы экспозиции, классы консистенции, или обрабатываемости, и водоцементный фактор (водоцементное отношение).
Классы бетона по прочности на сжатие
По прочности на сжатие бетоны разделяются на классы. При обозначении класса прочности на сжатие “С” число перед линией дроби показывает цилиндрическую прочность на сжатие, а число после линии дроби – кубическую прочность на сжатие. В Эстонии в основном применяется кубиковая прочность бетона на сжатие, определяемая с помощью образцов-кубов (на основании 28-дневной нормальной прочности на сжатие кубов с длиной грани 150 мм).
Классы по прочности на сжатие обычного бетона
Класс по прочности на сжатие (обозначение C) | Мин. нормальная прочность кубов (Н/мм²) |
---|---|
C 8/10 | 10 |
C 12/15 | 15 |
C 16/20 | 20 |
C 20/25 | 25 |
C 25/30 | 30 |
C 30/37 | 37 |
C 32/40 | 40 |
C 35/45 | 45 |
C 40/50 | 50 |
Классы экспозиции бетона
Выбор класса экспозиции зависит от окружающей среды в месте использования. Выбор класса экспозиции может комбинироваться особыми условиями, действующими в месте использования, и применением защитных мер (устойчивые к коррозии металлы, защитные замазки). На бетон могут оказывать одновременное влияние различные факторы окружающей среды. В этом случае используется комбинация классов экспозиции бетона.
Чтобы скачать:распечатать таблицу классов экспозиции в формате pdf, нажмите сюда Скачать
Пояснения к классам экспозиции
Обозначение класса | Описание окружающей среды | Примеры применения классов окружающей среды |
---|---|---|
1 Коррозионной или иной опасности нет | ||
X0 | Если бетон не содержит арматуры или закладных деталей: все условия, кроме тех, при которых наблюдается замерзание/оттаивание, износ или воздействие химических факторов. Если бетон содержит арматуру или закладные детали: очень сухой | Бетон в помещениях с очень сухим воздухом |
2 Коррозия, обусловленная карбонизацией | ||
Если бетон, содержащий арматуру или закладные детали, подвергается воздействию воздуха и влаги, условия окружающей среды классифицируются следующим образом: | ||
XC1 | Сухая или постоянно мокрая | Бетон в помещениях с низкой влажностью воздуха.![]() Бетон, постоянно находящийся под водой |
XC2 | Мокрая, редко сухая | Поверхности бетона имеют длительный контакт с водой. Многие фундаменты |
XC3 | Умеренно влажная | Бетон в помещениях с умеренной или высокой влажностью воздуха. Находящийся вне помещения, защищенный от осадков бетон. |
XC4 | Попеременно мокрая и сухая | Соприкасающиеся с водой поверхности, не относящиеся к классу XC2 |
3 Обусловленная хлоридами (за исключением хлоридов морской воды) коррозия | ||
Если бетон, содержащий арматуру или закладные детали, соприкасается с хлоридом, в том числе с содержащей антиобледенители водой, не полученной из морской воды, то классы окружающей среды следующие: | ||
XD1 | Умеренно влажная | Бетонные поверхности, на которые падают содержащие хлориды брызги |
XD2 | Мокрая, редко сухая | Плавательные бассейны.![]() Бетон, соприкасающийся с производственной водой, содержащей хлориды |
XD3 | Попеременно мокрая и сухая | Части конструкции, на которые падают содержащие хлориды брызги. Мостовые, панели автомобильных парковок |
4 Коррозия, обусловленная хлоридами морской воды | ||
Если бетон, содержащий арматуру или закладные детали, соприкасается с морской водой или содержащим соли морским воздухом, то классы окружающей среды следующие: | ||
XS1 | Воздух, содержащий соли, но нет непосредственного соприкосновения с морской водой | Конструкции, расположенные на берегу или вблизи него |
XS2 | Под водой | Части морских сооружений |
XS3 | Зоны приливов, попадания брызг и капель тумана | Части морских сооружений |
5 Влияние замерзания/оттаивания с антиобледенителями или без них | ||
Если мокрый бетон подвергается воздействию значительного количества циклов замерзания/оттаивания, то классы окружающей среды следующие: | ||
XF1 | Умеренно насыщенная водой, без антиобледенителя | Вертикальные бетонные поверхности, не защищенные от дождя и холода |
XF2 | Умеренно насыщенная водой, с антиобледенителем | Отвесные элементы дорожных конструкций бетонные поверхности, не защищенные от замерзания и капель тумана, содержащих антиобледенители |
XF3 | Сильно насыщенная водой, без антиобледенителя | Горизонтальные бетонные поверхности, не защищенные от дождя и холода |
XF4 | Сильно насыщенная водой, антиобледенителем или морской водой | Дорожные и мостовые покрытия, открытые для воздействия антиобледенителей.![]() Бетонные поверхности, открытые для воздействия содержащих антиобледенители брызг и холода. Морские сооружения, открытые для воздействия холода и находящиеся в зоне брызг |
6 Химические факторы | ||
Если на бетон воздействуют химические факторы, находящиеся в природном грунте и грунтовых водах, которые указаны в таблице 2, то классы окружающей среды соответствуют приведенным ниже: | ||
XA1 | Среда с низкой химической агрессивностью | Бетон, открытый для соприкосновения с естественным грунтом и поверхностными водами согласно таблице 2 |
XA2 | Среда с умеренной химической агрессивностью | Бетон, открытый для соприкосновения с естественным грунтом и поверхностными водами согласно таблице 2 |
XA3 | Среда с высокой химической агрессивностью | Бетон, открытый для соприкосновения с естественным грунтом и поверхностными водами согласно таблице 2 |
NB! При слишком интенсивной обработке полов (например, при затирке шлифмашиной со стальными лопастями) или при покрытии сыпучим материалом (например, отвердителем поверхности) у бетонов класса XF/KK может произойти отслоение тонкого поверхностного слоя (0,5–6 мм). При таких методах обработки рекомендуется бетонная смесь с содержанием воздуха не более 3%, однако при этом изготовитель бетона не может гарантировать требуемого класса морозостойкости.
Консистенция, или обрабатываемость бетонной смеси
Консистенция бетонной смеси измеряется осадкой конуса и обозначается классом осадки от S1 до S5. Консистенцию бетонной смеси необходимо определить во время использования бетонной смеси. Консистенцию бетонной смеси определяют по стандартному конусу и измеряют в миллиметрах.
Класс | S1 | S2 | S3 | S4 | S5 |
---|---|---|---|---|---|
Осадка конуса, мм | от 10 до 40 мм | от 50 до 90 мм | от 100 до 150 мм | от 160 до 210 мм | 220 мм |
Водоцементный фактор (водоцементное отношение)
Прочность бетона зависит от соотношения содержащихся в нем воды и цемента. Соотношение массы используемых при изготовлении бетона воды и цемента называется водоцементным фактором. Водоцементный фактор является одним из важнейших факторов, влияющим на конечные свойства бетона. У бетонов с высоким водоцементныим фактором больше опасность возникновения усадочных трещин. Величина водоцементного фактора различных бетонных смесей обычно колеблется в пределах 0,65 … 0,45.
Office of International Programs – Policy
Canada
Ontario требует, чтобы подрядчик отвечал за расчет бетонной смеси. Требуется минимальная прочность бетона на сжатие 4350 фунтов на квадратный дюйм (30 МПа). Крупный заполнитель имеет комбинированную градацию номинального максимального размера заполнителей 1,5 дюйма (37,5 мм) и 0,75 дюйма (19 мм). Содержание воздуха указано как 6,0 процента плюс-минус 1,5 процента. Требуется портландцемент, но его часть можно заменить дополнительным вяжущим материалом. Дополнительным вяжущим материалом может быть измельченный гранулированный доменный шлак (до 25 процентов) или зола-унос (до 10 процентов) или комбинация двух материалов (смесь шлака и золы-уноса до 25 процентов, за исключением того, что количество летучей золы не должно превышать 10 процентов по массе от общего количества вяжущих материалов).
Québec разрешает использование трехкомпонентных смесей (портландцемент, доменный шлак и летучая зола) в смесях для CRCP, но не для JPCP. Допускается использование смешанных цементов. Как для CRCP, так и для JPCP требуется прочность на сжатие 5100 фунтов на квадратный дюйм (35 МПа).
Германия
Германия приняла европейский стандарт бетона EN 206-1 в 2000 году. Этот стандарт вместе с немецким стандартом DIN 1045-2 теперь составляет новый немецкий стандарт бетона. В некоторых областях европейский стандарт содержит только рамочные определения, что делает возможным и даже необходимым дополнение национальными стандартами, поскольку EN 206 еще не имеет юридического статуса гармонизированного стандарта в Европейском Союзе. (42) Одной из особенностей нового стандарта является повышенное внимание к долговечности за счет использования классов воздействия. Дороги и настилы мостов относятся к самому экстремальному классу воздействия, XF4, характеризующемуся высокой степенью водонасыщения и воздействия замораживающих и противогололедных реагентов. Немецкий стандарт бетона устанавливает максимальное водоцементное отношение (0,50), минимальный класс прочности (C30/37*), минимальное содержание цемента (20 фунтов/фут 3 (320 кг/м 3 )) и минимальное количество воздуха. содержание (4,0 процента) для бетона, используемого в дорожном строительстве. Помимо требований этого стандарта, немецкая директива ZTV Beton-StB 2001, Дополнительное руководство по устройству бетонных покрытий устанавливает верхний предел водоцементного отношения 0,45 и минимальное содержание цемента 22 фунта/фут 3 (350 кг/м 3 ) для бетонного покрытия, как а также минимальное содержание цемента 26 фунтов/фут 3 (420 кг/м 3 ) для бетона, используемого в открытом слое заполнителя.
Европейский стандарт на цемент EN 197 был принят примерно в то же время, что и европейский стандарт на бетон. Он определяет 27 видов цемента. Типы цемента, используемые для различных бетонных конструкций, определены в немецком стандарте DIN 1045-2. Среди европейских стандартов на цемент, заполнители, добавки, воду для затворения и т. д. пока только стандарт на цемент EN 19.7 был принят в качестве гармонизированного стандарта.
Заполнители должны соответствовать требованиям европейского стандарта EN 12620. К заполнителям для дорожного строительства применяются более высокие стандарты, чем к заполнителям, используемым в зданиях и других сооружениях. К ним относятся ограничения на потерю массы при испытаниях на морозостойкость, ограничения на содержание легких органических загрязнителей, требования к индексу формы и лещадности, требования к ценности полированного камня (50 для обычного дорожного покрытия, 53 для покрытия с открытым заполнителем) и руководящие принципы. для смягчения щелочно-кремнеземной реакции.
Портландцемент марки CEM I 32.5 R (эквивалент ASTM Type I), который также должен удовлетворять дополнительным требованиям, используется для бетонных покрытий в Германии. (22,43) По согласованию с заказчиком шлакопортландцемент ЦЕМ II /А-2 или ЦЕМ II /Б-С, портландцемент обожженный сланцевый ЦЕМ II /А-Т или Б-Т, портландцемент известняковый ЦЕМ II /А-ЛЛ, или пескоструйный можно также использовать печной цемент ЦЕМ II/А (не ниже класса прочности 42,5).
Цемент не должен быть слишком мелкого помола (максимальная крупность 3500 квадратных сантиметров на грамм (см 2 /g)), и не должен затвердевать в течение как минимум 2 часов после укладки. В 1980-х годах растрескивание, похожее на растрескивание, вызванное реакцией щелочи и заполнителя, наблюдалось в нескольких покрытиях возрастом от 5 до 10 лет, все они были построены с использованием цемента с содержанием щелочи (эквивалент Na 2 O) от 1,0 до 1,4 процента. С тех пор для строительства дорог использовались только цементы с содержанием щелочи менее 1,0%, и в этих покрытиях не наблюдалось растрескивания, наблюдаемого в покрытиях, построенных ранее. Действующий немецкий стандарт ограничивает содержание щелочи в цементе CEM I до 0,80% Na 9.0039 2 Эквивалент O по массе.
В Германии 25 групп и заводов по производству цемента и 10 подрядчиков по укладке бетонных покрытий. Подрядчики несут ответственность за разработку смесей в Германии, и, как правило, смеси не являются собственностью. (Цементные продукты, однако, являются запатентованными.) Летучая зола или наполнители могут быть добавлены в бетон, но летучая зола и микрокремнезем не могут использоваться вместе. Дополнительные вяжущие материалы не учитываются при расчете содержания вяжущего или водоцементного отношения.
В двухслойном строительстве в нижнем слое могут использоваться переработанные материалы или недорогой гравий, а для верхнего и нижнего слоев существуют разные требования к прочности. Не менее 35 процентов всех заполнителей должны быть измельчены. Также требуется высокая морозостойкость и высокая устойчивость к полировке. Германия импортирует некоторые заполнители из Норвегии для удовлетворения своих потребностей в строительстве бетонных покрытий.
Бетон класса прочности C30/37, требуемый для дорожного строительства, должен иметь прочность на сжатие 4350 фунтов на квадратный дюйм (30 МПа) в ядрах диаметром 6 дюймов (диаметром 150 мм) через 60 дней и прочность на сжатие 5400 фунтов на квадратный дюйм. (37 МПа) в кубах размером 6 дюймов (150 мм) через 28 дней. Прочность на растяжение при изгибе проверяется только в квалификационных испытаниях перед началом укладки. Оно должно быть не менее 650 фунтов на кв. дюйм (4,5 МПа) через 28 дней при четырехточечном испытании в соответствии с EN 12 39.0-5 (что почти идентично требуемой прочности на изгиб 800 фунтов на квадратный дюйм (5,5 МПа), испытанной в соответствии с прежним DIN 1048 при трехточечной нагрузке и различных условиях испытаний).
Австрия
Австрийские технические условия на цемент и бетон для бетонных покрытий (RVS 8S.06) требуют цемента европейского стандарта типа CEM II с начальным временем схватывания не менее 2 часов при 68°F (20°C), Тонина по Блейну не более 3500 см 2 /г и прочность в кубе через 28 дней не менее 1000 фунтов на квадратный дюйм (7 МПа).
Австрийские технические условия на бетонное покрытие (RVS 8S.06.32) требуют, чтобы бетонная смесь, используемая в нижнем слое двухэтажной конструкции, имела прочность на изгиб в течение 28 дней не менее 800 фунтов на кв. дюйм (5,5 МПа) и прочность на сжатие в течение 28 дней. прочность не менее 5000 фунтов на квадратный дюйм (35 МПа). Материал, используемый в верхнем слое, должен иметь прочность на изгиб через 28 дней не менее 1000 фунтов на квадратный дюйм (7 МПа) и прочность на сжатие через 28 дней не менее 5800 фунтов на квадратный дюйм (40 МПа).
Составление бетонной смеси является обязанностью подрядчика, и лаборатория, которую нанимает подрядчик, может использовать любой метод для разработки смеси. Смесь подрядчика не считается патентованным продуктом.
Заполнители, используемые в поверхностном слое бетона с открытым заполнителем, должны иметь, среди прочего, коэффициент полированного камня не менее 50. Заполнитель, используемый в нижнем слое бетона, может быть переработан из старого бетонного покрытия, а также из старого асфальтового покрытия, хотя содержание переработанного асфальтового покрытия ограничено не более чем 10 процентами от общего количества заполнителя. Когда старое бетонное покрытие перерабатывается, 100 процентов старого покрытия восстанавливается, измельчается, сортируется и повторно используется на месте в новом бетонном покрытии и цементно-обработанном основании, если таковое имеется.
Портландцемент с содержанием шлака от 20 до 25 процентов используется в Австрии. Минимальное содержание цемента для бетона в нижнем слое составляет 20 фунтов/фут 3 (320 кг/м 3 ) для мощения фиксированной формы и 22 фунта/фут 3 (350 кг/м 3 ) для мощение скользящими формами. Минимальное содержание цемента в бетоне в верхнем слое составляет 23 фунта/фут 3 (370 кг/м 3 ) для мощения фиксированной формы, 25 фунтов/фут 3 (400 кг/м 3 ) для скользящей опалубки и 28 фунтов/фут 3 (450 кг/м 3 ) для открытого слоя заполнителя. Содержание воздуха должно составлять от 3,5 до 5,5 процентов для укладки с фиксированной формой и от 4,0 до 6,0 процентов для укладки со скользящими формами.
Бельгия
В Бельгии для бетонных покрытий используются три типа бетонных смесей. В качестве цемента используются портландцемент (ЦЕМ I) или доменный шлаковый цемент (ЦЕМ III/А) класса прочности 42,5 с ограниченным содержанием щелочи для предотвращения щелочно-агрегатной реакции. Высокое содержание цемента, низкое водоцементное отношение и использование воздухововлекающих добавок позволяют получить очень прочный и высокопрочный бетон.
В Бельгии не было проблем с реакцией щелочи с местными заполнителями, поэтому разрешены цементы с содержанием щелочи до 0,9 процента. Воздухововлекающие вещества не использовались в бетонных покрытиях в Бельгии примерно 10 лет назад.
На рис. 40 показаны кривые градации заполнителей, используемых в смесях для бетонных покрытий в Бельгии, для максимальных размеров заполнителей 20 мм и 32 мм.
Рис. 40: Совокупные градации бетонных смесей для дорожного покрытия в Бельгии.
Нидерланды
Хотя это и не указано в качестве требования, использование портландцемента с летучей золой (CEM II /B-V 32.5 R, с содержанием золы уноса от 30 до 35 процентов) или портландцемента является предпочтительным для строительства бетонных покрытий в Нидерландах. . Также используются смешанные цементы, содержащие до 60 процентов шлака.
Бетон класса прочности 35/45 используется для бетонных покрытий в Нидерландах. Воздухововлекающая бетонная смесь с минимальным содержанием цемента 20 фунтов/фут 3 (320 кг/м 3 ) и используется водоцементное отношение не более 0,55. В Нидерландах не было проблем с щелочно-кремнеземной реакцией с местными агрегатами.
<< Предыдущий | Содержимое | Далее >> |
Классы прочности цемента и их значение
В статье прошлого месяца «Цемент против бетона» мы рассмотрели различия между ними и их назначение. В этом месяце мы решили, что прохождение классов прочности цемента и испытаний бетона станет отличным продолжением.
Почему важно знать классы прочности цемента
Цемент производится в рамках довольно сложного процесса с использованием различных ингредиентов, поэтому испытания необходимы для обеспечения соблюдения спецификаций и правил. Поскольку цемент играет жизненно важную роль в смеси бетона и раствора, он должен быть надежного качества. Бетон является одним из основных материалов во многих строительных проектах. Это материал, о котором нам нужно много знать. При возведении здания вы хотите убедиться, что оно выдержит ожидаемую нагрузку и простоит долгое время.
Тестирование бетона несложно, но включает ряд различных тестов для определения рабочих параметров цемента.
Испытание на прочность при сжатии
Вот где блестит бетон. Бетон и раствор могут выдерживать высокие сжимающие нагрузки отчасти благодаря цементу, используемому в смеси. Характеристики бетона при сжимающих нагрузках зависят от используемого цемента.
Для проверки прочности бетона на сжатие используется машина для сжатия. В машину помещают затвердевшие кубики цементно-песчаного раствора. Прочность кубиков на сжатие определяется максимальным напряжением, приложенным к кубу, которое вызывает его разрушение.
Испытание на прочность на растяжение
Если вы читали одну из наших предыдущих статей «Обзор арматуры», вы знаете, что бетон имеет низкую прочность на растяжение. Вот почему арматурная сталь используется в бетонных конструкциях, но, тем не менее, важно знать, как бетон ведет себя при растягивающих нагрузках. Это помогает понять сцепление между частицами.
Наиболее распространенное испытание, используемое при испытаниях на прочность на растяжение, проводится приложением одноосного растяжения. Брикеты из цементно-песчаного раствора помещаются в машину, которая прикладывает нагрузку на растяжение. Затем рассчитывают предел прочности при растяжении путем измерения нагрузки, необходимой для разделения нагрузки пополам в точке разрушения.
Это всего лишь две основные контрольные точки для бетона или раствора. Тонкость, прочность, текучесть и консистенция — все это часть разнообразных испытаний, необходимых для полного понимания характеристик материала. Ошибки в этих аспектах строительных материалов и процессов могут привести к серьезным бюджетным потерям и поставить под угрозу жизнь людей, строящих здание или тех, кто будет его использовать впоследствии.
Классы прочности цемента
Прочность цемента определяется различными испытаниями, проводимыми на растворе и бетонных кубиках с определенными интервалами в 2 дня, 7 дней и 28 дней твердения. Существует три основных класса прочности цемента: 32,5, 42,5 и 52,5, за которыми следует R или N. R относится к быстрому или раннему набору прочности, а N — к нормальному или стандартному набору прочности. В то время как 32,5 — это низкая крепость, 42,5 — средняя крепость, а 52,5 — самая высокая крепость.
При выборе цемента, подходящего для вашего проекта, вы должны иметь в виду, что прочность на сжатие, достигаемая 42,5N и 42,5R, будет одинаковой после полного отверждения. Однако 42,5R будет достигать более высокой начальной прочности на сжатие. Как и для всех классов.
Класс 32.5 обычно используется там, где не требуется высокая начальная прочность, при средних температурах окружающей среды (10 – 15°C) и в конструкциях стандартной толщины (
Класс 42.