Керамзитобетон прочность: Прочность керамзитобетона: что нужно знать
Прочность керамзитобетона: что нужно знать
Наполнитель
Одним из важнейших параметров строительных конструкционных материалов, является их прочность. Она варьируется в зависимости от вида бетона. Рассмотрим основные параметры, которые влияют на показатель этот у керамзитобетона и изделий из него.
Содержание статьи
- Основные виды керамзитобетона и их особенности
- Конструкционный керамзитобетон
- Конструкционно-теплоизоляционный тип
- Теплоизоляционный керамзитобетон
- Прочность бетона
- Заполнитель для керамзитобетона
- Цемент
- Прочность легкого керамзитобетона на осевое растяжение
- Основные правила контролирования прочности
- Высокопрочный керамзитобетон
Основные виды керамзитобетона и их особенности
Данный вид материала относится к группе легких пористых бетонов. Его изготовление нормируется ГОСТ 25820-2014, который действует с 1 января 2015 года.
Основными компонентами этого материала являются:
- Вяжущее – цемент.
- Наполнители – керамзитовый гравий или щебень, вспученный перлитовый песок.
- Различные добавки, регулирующие свойства керамзитобетона.
В зависимости от наполнителя различают легкий керамзитобетон и керамзитоперлитобетон.
Внешний вид заполнителя
По физико-техническим свойствам и назначению различают следующие виды керамзитобетона:
- Теплоизоляционный;
- Конструкционный ;
- Конструкционно-теплоизоляционный.
Если известна плотность кг/м3 – керамзитобетон не сложно определить к определенному виду по назначению его применения.
Основными параметрами для различных типов керамзитобетонов можно назвать:
- Класс на растяжение по оси Вt;
- Класс на растяжение во время изгиба Вtb;
- Марка материала по средней плотности — D.
Конструкционный керамзитобетон
Этот тип бетона обладает высокой прочностью и наибольшей плотностью. Его применяют при необходимости уменьшить вес несущих конструкции, снизить нагрузку на фундамент.
Марка конструкционного вида должна быть ниже D2000, а прочность при таком значении- более 12,5 МПа.
Полнотелый блок из конструкционного бетона
Конструкционно-теплоизоляционный тип
Повышенный показатель изделий из данного вида керамзитобетона делает возможным использовать его для производства ограждающих стеновых конструкций: блоки и панели. Однако они требуют устройства дополнительного утепления, потому что коэффициент их теплопроводности не соответствует в полной мере нынешним требованиям к теплоизоляции сооружений.
Объемный вес должен быть выше 500 кг/м3, характеристика устойчивости к сжатию более 1,0 МПа.
Теплоизоляционный керамзитобетон
Теплоизоляционный вид бетона уступает вышеуказанным. Он изготавливается из керамзитового гравия больших фракций: 20 мм и выше.
Специальный обжиг обеспечивает образование в материале очень крупных пор, что и определяет основные свойства данного вида:
- Высокая теплоизоляция;
- Легкий вес;
- Низкий объемный вес;
- Малая устойчивость к сжатию.
Применяется для утепления конструкций, по этой причине особых требований к последнему показателю не предъявляется. Марка керамзитобетонных блоков по плотности должна быть ниже D500, устойчивость к сжатию — более 0,3 МПа.
Прочность бетона
Наиболее важная характеристика любого бетона – его прочность при сжатии. Наибольшее значение уделяется данному показателю для конструкционного типа.
Класс бетона В обязательно назначается по проекту керамзитобетонной конструкции или изделия при их производстве. Числовое значение после В указывает значение в МПа.
Испытание
Для определения таких характеристик материал подвергаются испытанию в форме образцов-цилиндров, куба или призмы. Начало процесса разрушения фиксируется с момента появления трещин на площадках контакта цементного камня и гранул заполнителя. Они развиваются вдоль усилий сжатия.
Процесс разрушения
Рассматриваемая характеристика напрямую зависит от плотности керамзитобетона. Чем она больше, тем прочнее материал.
Объемный вес керамзитобетона зависит от плотности:
- Цемента;
- Керамзитового щебня или гравия;
- Песка.
А также пропорции всех компонентов, составляющих смесь. Естественно, что от объемного веса сырья, зависит и показатель данный у керамзитобетонных блоков.
Состав и пропорции
Плотность заполнителя зависит от степени его поризованности.
Различные фракции керамического гравия
Заполнитель для керамзитобетона
Исходя из свойств начального сырья, применяемых добавок и особенностей технологического производства получают различные виды керамзитового заполнителя:
- Гравийный;
- Песчаный;
- Щебневый.
Они могут иметь различные параметры:
- Сверхлегкие — насыпная плотность не больше 250 кг/м3 .
- Легкие заполнители с плотностью менее 450 кг/м3.
- Особо прочные — 5,5 МПа до 8 МПа при плотности — больше 800 кг/м3.
Керамический песок является наименее поризованным из наполнителей, он самый мелкий по размеру и, соответственно, прочность его выше всех остальных видов. При изготовлении керамзитобетонной смеси на основе песка, полученные из нее блоки и панели могут использоваться для конструкционных строительных систем.
Виды заполнителя
Средний по параметрам щебень – основа конструкционно-теплоизоляционного бетона.
Крупный керамзитовый гравий с высокой степенью поризованности применяют для производства теплоизоляционных изделий, к которым нет особых требований.
Технические характеристики заполнителя
Цемент
Увеличение доли цемента приводит к увеличению рассматриваемых значений. Однако, это одновременно увеличивает его объемный вес. Исходя из назначения изделий, состав бетона подбирается по усредненному уровню характеристик бетона согласно ГОСТ 27006-86 «Бетоны. Правила подбора состава».
Для того, чтобы своими руками приготовить керамзитобетонный раствор, необходимо правильно подобрать пропорции основных компонентов. В этом поможет данное фото.
Таблица пропорций материалов для изготовления бетонной смеси
Прочность легкого керамзитобетона на осевое растяжение
Для определения значения характеристики на осевой растяжение испытанию подвергаются образцы в форме цилиндра, призмы или восьмерки, имеющие поперечное сечение 15 см х 15 см. Класс Вt в обязательном порядке, назначается только тогда, когда этот параметр имеет основное значение и контролируется еще на стадии производства.
Число после буквенного обозначения соответственно гарантирует устойчивость керамзитобетонных блоков и других изделий при растяжении по оси в МПа. Классы при осевом растяжении керамзитобетона: Вt 0,8; Вt 1,2; Вt 1,6; Вt 2,0; Вt 2,4; Вt 2,8; Вt 3,2.
Основные правила контролирования прочности
На производственных предприятиях обязательно выполняется контроль прочности керамзитобетона и изделий из него. В условиях строительных площадок такая процедура необходима во время бетонирования монолитных систем. Инструкция для контролирования — ГОСТ 18105-86.
Контроль проводится у монолитных систем двумя методами:
- Ультразвуковой;
- Метод отрыва со скалыванием.
На растяжение и сжатие прочность отдельных бетонных элементов определяется по отдельным образцам.
Высокопрочный керамзитобетон
Керамзитобетон – плотность 800 кг/м3 является высокопрочным легким бетоном. Сфера применения данного материала не ограничивается только использованием для конструкций зданий и сооружений несущего типа.
Высокопрочный керамзитовый гравий на бетон широко применяется для изготовления керамдора – керамзита дорожного. Это одна из разновидностей керамзита, которая обладает повышенными характеристиками устойчивости к сжатию и растяжению. На его основе получают очень качественный строительный материал для устройства дорожного покрытия.
Многие преимущества керамзитобетонных изделий хорошо видны в сравнении с другими строительными материалами. В таблице отражено сравнение блоков, изготовленных из керамзита, со схожими строительными материалами.
Сравнительные характеристики
Выбор керамзитобетона с необходимыми характеристиками (основной из них является прочность керамзитобетона на сжатие), зависит от сферы применения изделий из него. Цена на данный строительный материал чаще всего варьируется, в зависимости от его качества. Больше полезной информации можно получить из видео в этой статье.
Марки прочности керамзитобетонных блоков, характеристики, цены
Керамзитобетонные изделия используются для возведения зданий различного назначения. Они классифицируются по прочности, которая характеризует способность противостоять внутренним напряжениям, возникающим под воздействием нагрузок. Усилия могут передаваться от элементов кровли, плит перекрытия и блоков, расположенных выше.
Оглавление:
- Характеристики
- Что влияет на показатели?
- Прочность на осевое растяжение и отпускная
- Правила выбора
- Расценки
Технические параметры
Чтобы застройщикам было проще подобрать материал с подходящими характеристиками, его разбили на марки согласно нормативному документу ГОСТ. Они характеризуют прочностной предел и обозначаются буквой «М» с числовым значением, который указывает на допустимую нагрузку.
Для блоков из керамзита и легких бетонов представляются одни и те же марки прочности на сжатие: М15, М25, М35, М50, М75, М100. Это свойство напрямую влияет на звукоизоляцию, энергосбережение, надежность и долговечность стен здания. Плотность варьируется около 500-1800 кг/м3 и зависит от типа наполнителя. Для обеспечения высоких эксплуатационных качеств в состав входит цемент высокой марки и разнофракционный керамзит. Срок службы составляет 60-65 лет.
Основными компонентами являются цемент, песок, керамзит и вода. При изготовлении следует внимательно смотреть на качество каждого элемента, тогда можно получить высокопрочный, морозостойкий и долговечный материал. Воду необходимо вносить чистую, так как различные примеси способствуют снижению срока твердения. Также на показатель влияет портландцемент. Рекомендуется использовать вяжущее очень тонкого помола, так как это повышает прочность и клеящие свойства.
Важно соблюдать пропорции цемента в растворе. Некоторые производители предпочитают экономить на его количестве, что сильно подрывает надежность конечной продукции. Различные типы керамзитоблоков обладают параметрами:
- Марка прочности на сжатие – В или М.
- На растяжение по оси – Вt.
- На растяжение при изгибе – Вtb.
- Класс по усредненной плотности – D.
Плотность материала классифицирует его на определенные виды по назначению. По физическим свойствам различают следующие типы:
- конструкционный;
- конструкционно-теплоизоляционный;
- теплоизоляционный.
1. Конструкционный керамзитоблок.
Относится к наиболее прочному и плотному виду, поэтому широко используется для возведения несущих систем здания. При этом эффективен для снижения нагрузки на основание и веса самих стен. Марка плотности составляет D2000, а прочность бетона – 12,5 МПа.
2. Конструкционно-теплоизоляционный.
Имеет высокие технические характеристики, благодаря которым его применяют для ограждений. Однако их рекомендуется дополнительно утеплять, так как коэффициент теплопроводности несколько ниже современных требований к теплоизоляции домов различного назначения. Плотность равняется более 500 кг/м3, а прочность – более 1 МПа.
3. Теплоизоляционный.
Такой вид керамзитобетонных блоков существенно уступает первым двум по технико-эксплуатационным свойствам. Изготавливается из гравия-керамзита крупной фракции от 20 мм. При помощи специального обжига в структуре образуются крупные воздушные поры, обеспечивающие такие качества, как: повышенная теплоизоляция, малый вес, пониженная плотность, низкая стойкость к нагрузкам.
Особых требований к прочности этому типу не предъявляется, так как он выбирается для теплоизоляции. Плотность может составлять менее 500 кг/м3, а устойчивость к нагрузкам – более 0,3 МПа.
Наиболее качественным является керамзитоблок, обладающий плотностью 800 кг/м3. Он применяется не только для возведения несущих конструкций зданий, но и для изготовления керамдора. Используется в дорожных работах как крупный заполнитель. Основными свойствами является повышенная устойчивость к сжатию и растяжению. Он вносится вместо щебня или гравия в той же пропорции, только обеспечивает лучшие эксплуатационные характеристики.
Прочность легкого блока на осевое растяжение
Чтобы определить такой параметр в лабораторных условиях, испытываются образцы цилиндрической, призматической формы или восьмерки с поперечным сечением 150х150 мм. Класс Bt характеризуется обязательно в том случае, если он является главным критерием и подвергается контролю на этапе изготовления.
После буквенного обозначения следует цифра, которая показывает предельную нагрузку на испытываемый образец. Прочность блоков из керамзитобетона при осевом растяжении классифицируется марками: Bt0,8, Bt1,2, Bt1,6, Bt2,0, Bt2,4, Bt2,8, Bt3,2.
Отпускная прочность
При изучении сертификата качества можно увидеть этот параметр, который устанавливается производителем. Это необходимый критерий, характеризующий прочностные свойства, приобретенные на момент выпуска материала в продажу. Как правило, изделия набирают прочность по истечении 28-30 дней.
Первоначальная прочность полнотелого керамзитоблока достигается в процессе формовки, которая проводится в специально созданных камерах с высокой влажностью и температурой. Такой этап еще называется пропаркой. Зачастую начальная устойчивость к нагрузкам составляет около 50 % от марочной. Именно при таких показателях согласно ГОСТу продукция подлежит продаже и использованию для возведения гражданских или промышленных сооружений.
При транспортировке на поддонах изделия не подвергаются разрушению, а на этапе строительства обладают всеми необходимыми техническими качествами. Остальные 50 % прочности блоки способны набрать уже в условиях эксплуатации независимо от того, какая нагрузка приложена на отдельный элемент стены. Стоит отметить, что при таких показателях материал не деформируется и не разрушается даже при строительстве 3 этажного дома.
Если применять элементы для несущих стен высокой марки, запаса прочности хватит на весь этап строительства и эксплуатации здания, а долговечность значительно увеличивается. Несмотря на то, что несущая способность рано или поздно снижается, предел прочности позволит проводить перепланировку дома без существенного снижения эксплуатационных параметров.
Нюансы выбора
Для возведения тех или иных объектов следует использовать керамзитобетон соответствующей марки, так как от этого будет зависеть не только устойчивость, но и долговечность всего здания.
Марка прочности | Область применения |
М25-М35 | Внутренние ненесущие и самонесущие стены. Заполнение проемов в каркасном доме. Возведение малозначимых построек. Изготовление декоративных элементов. |
М50 | Заполнение пустот в монолитном строительстве. Здания высотой не более 1,5 этажа. Строительство гаража или летней кухни. |
М75 | Сооружение зданий высотой 2-2,5 этажей. Цокольные части дома. Возведение гаража. |
М100 | Трехэтажные здания.![]() Строительство промышленных и сельскохозяйственных сооружений. |
Чтобы знать особенности применения той или иной марки, проводятся лабораторные испытания образцов различной формы, которые подвергаются воздействию высоких нагрузок. При появлении трещин начинается фиксация степени разрушения вследствие соприкосновения гранул заполнителя с цементным камнем. Как правило, такие дефекты развиваются по направлению приложенного усилия. Блоки для строительства дома должны обладать достаточной плотностью, так как именно она характеризует долговечность. На этот показатель влияет объемный вес песка, цемента и самого гравия.
Стоимость керамзитоблоков в Москве
Вид | Марка прочности | Размеры, мм | Цена за шт, рубли |
Пустотелый | М35 | 188х190х390 | 50 |
М75 | 52 | ||
М35 | 188х90х390 | 35 | |
М75 | 37 | ||
188х290х390 | 85 | ||
Полнотелый | М35 | 188х190х390 | 62 |
М75 | 65 | ||
М150 | 80 | ||
М35 | 188х90х390 | 36 | |
М75 | 38 |
Механические свойства легкого бетона с использованием легкого керамзитобетона
Авторы: Абхишек Кумар Сингх, Р. Ниведа, Ашиш Ананд, Аджай Ядав, Дивакар Кумар, Гаурав Верма
Ссылка DOI: https://doi.org/10.22214/ijraset.2022.43168
Сертификат: Посмотреть сертификат
Abstract
В этом исследовании изучается влияние частичной замены крупного заполнителя легким крупнозернистым материалом (LECA). Во многих аспектах LECA отражает свойства крупного заполнителя. Поскольку собственный вес составляет большую часть общей нагрузки, прикладываемой к конструкции, LECA используется в бетоне для снижения потребности в крупнозернистом заполнителе и при проектировании бетонных зданий. Это имеет решающее значение в таких обстоятельствах, как бедные почвы и высокие конструкции. Он также предлагает значительные преимущества с точки зрения снижения плотности бетона, что повышает производительность труда. Легкий бетон имеет меньшую плотность, чем стандартный бетон, и обеспечивает лучшую теплоизоляцию. Основная цель этого исследования — изучить весовые и прочностные характеристики бетона, такие как кубическая прочность на сжатие, разделенные цилиндры прочности на растяжение и прочность на изгиб легкого бетона по сравнению с обычным бетоном путем замены натуральных заполнителей LECA на 25%, 50%. , 75% и 100% соответственно. Уже более двух тысячелетий легкие заполнители успешно используются.
Введение
I. ВВЕДЕНИЕ
Бетон является наиболее широко используемым строительным материалом в мировом строительном секторе. Большой собственный вес бетона является одним из недостатков традиционного бетона. Плотность рядового бетона колеблется от 2200 до 2600 кг/м3. Из-за большого собственного веса он требует больших несущих частей и фундаментов, что делает его неэкономичным материалом. В прошлом проводились эксперименты по снижению собственного веса бетона с целью улучшения его конструкционной приспособляемости. В результате появился легкий бетон с плотностью от 300 кг/м3 до 1850 кг/м3. В последние годы популярность легкого бетона возросла благодаря многочисленным преимуществам, которые он дает по сравнению с традиционным бетоном. Легкий бетон имеет ряд преимуществ, в том числе снижение статической нагрузки, увеличение темпов строительства и снижение затрат на погрузочно-разгрузочные работы. Сравнительно низкая теплопроводность и сильная звукоизоляция — еще две ключевые характеристики легкого бетона. Существует три основных метода производства легкого бетона. путем замены традиционного минерального заполнителя легким заполнителем. Добавление газа или пузырьков воздуха в раствор. Это называется «газобетон». Не включая песчаную фракцию в заполнитель.
Этот тип бетона известен как бетон без мелких частиц. В результате они редко используются в производстве легкого бетона. Пемза, диатомит, шлак, вулканический пепел, опилки и рисовая шелуха являются одними из естественных легких заполнителей, причем обычно используется только пемза.
II. ОБЗОР ЛИТЕРАТУРЫ
Томас Таму и его коллеги [9], Чтобы исследовать качества легкого бетона, такие как прочность на сжатие и растяжение. Гранулы пенополистирола используются в качестве частичной замены крупных заполнителей в количестве 5, 10, 15, 20, 25 и 30%. Прочность бетона на сжатие и растяжение снижается по мере увеличения количества гранул пенополистирола в смеси. Неструктурное использование включает стеновые панели, перегородки и т.п.
В.Хонсари, Э.Эслами и Ах.Анвари [4]. Свойства вспученного перлитового заполнителя (EPA) включают чрезвычайно низкую объемную плотность, высокую яркость, высокое поглощение, низкую тепло- и акустическую проводимость и негорючесть. Результаты испытаний стальной фибры выявили линейную зависимость между прочностью на сжатие и прочностью на раскалывание-растяжение.
Mahyar Arabani et al. [10], Легкий керамзитобетонный заполнитель (LECA) использовался в качестве мелкого заполнителя для улучшения механических характеристик пористого асфальта. Для проведения эксперимента в этом исследовании использовались три различные комбинации каменного материала и LECA (0, 10 и 20% LECA). Результаты испытаний на восприимчивость к влаге показали, что добавление LECA к пористой асфальтобетонной смеси может улучшить устойчивость смеси к повреждению влагой.
Sivakumar и B.Kameshwari [8], Экспериментальное исследование бетонной смеси M20 выполнено путем замены цемента золой-уносом, мелкого заполнителя зольным остатком и крупного заполнителя легким керамзитовым заполнителем (LECA) в пропорции 5%, 10%, 15%, 20%, 25%, 30% и 35%. Результаты показывают, что замена 5% цемента летучей золой, мелкого заполнителя зольным остатком и крупного заполнителя легким керамзитобетонным заполнителем (LECA) дала удовлетворительные результаты прочности на сжатие.
Пол, Сачин Ганеш Бабу [7], В этом исследовании (LECA) исследуются механические характеристики легкого геополимерного бетона, полученного путем замены обычного крупного заполнителя легким заполнителем из керамзита. Однако структурное применение LECA с плотностью 1700 кг/м3 было ограничено 60% заменой крупного заполнителя. Как прочность на растяжение, так и прочность на изгиб снизились примерно на 35 процентов, когда крупный заполнитель был заменен на LECA на 40 процентов, хотя они все еще находились в пределах структурных ограничений.
III. МАТЕРИАЛЫ И МЕТОДОЛОГИЯ
A. Цемент
Использовался «обычный портландцемент» (OPC) (марка 43), который имел 34-процентную нормальную консистенцию и соответствовал IS: 8112-1989. Цемент имеет удельный вес (SG) 3,14 и модуль крупности 4% соответственно.
B. Крупный заполнитель
В качестве грубого материала использовался «щебень», соответствующий IS 383 – 1987. Были определены физические параметры, а также значения насыпной плотности в свободном и уплотненном состоянии крупных заполнителей, которые составили 4,417 кг и 4. 905кг соответственно тоже определялись. Установлено, что удельный вес составляет 2,74
C. Мелкий заполнитель
На протяжении всего эксперимента «в качестве мелкого заполнителя использовался обычный речной песок», который соответствовал классификации «зона III». Проведением испытаний по ГОСТ 2386(часть-1)-1963 можно определить качества песка. Значение удельного веса – 2,65.
D. Легкий керамзитовый заполнитель (LECA)
«LECA» размером 10-20 мм. Насыпная плотность применяемого легкого керамзитобетона составляет от 300 до 750 кг/м3, водопоглощение от 18 до 20% от крупности. Удельный вес леки составляет 0,60.
E. Вода
Поскольку вода активно участвует в химических реакциях с цементом, она является важным компонентом бетона. Бетонная смесь была приготовлена с использованием чистой питьевой воды, соответствующей стандартам IS 456 – 2000.
F. Летучая зола
Летучая зола представляет собой мелкодисперсный остаток, образующийся при сжигании пылевидного угля, который уносится выхлопными газами из камеры сгорания. Летучая зола с низким содержанием кальция (класс F по ASTM) была закуплена на тепловой электростанции для данного исследования. Летучая зола имеет удельный вес 2,36 и крупность 4%.
G. Расчет бетонной смеси
В работе использовали марку М25 с расчетной смесью по ИС 456-2000. Для бетонной смеси объемом 1 м3 используйте весовую пропорцию и соотношение «вода-цемент» «0,45». Соотношение смеси, полученное для обычного бетона марки М25 и 100-процентного легкого бетона, составляло 1:1,37:2,6 и 1:1,37:0,49 соответственно. Процент 25%, 50%, 75 и 100%. Процент летучей золы 20% использовался в качестве частичной замены цементного бетона и частичной замены природного крупного заполнителя.
H. Литье и испытания
При этом LECA был заменен натуральным заполнителем на 25, 50, 75 и 100 процентов. Для определения затвердевших свойств бетона кубы и цилиндры были сформированы для каждого процента замены LECA в виде крупного заполнителя. Для каждой доли свежего бетона проводится испытание на осадку. Окончательная прочность куба и цилиндра измеряется через 7 и 28 дней отверждения. Затем рассчитываются средние значения прочности на сжатие и растяжение для каждой фракции смеси, которые объясняются в окончательном результате. Кроме того, для количественной оценки прочности, увеличенной по сравнению с обычным бетоном, прочность бетона с легким заполнителем сравнивается с прочностью обычного бетона.
IV. РЕЗУЛЬТАТЫ
A. Прочность на сжатие
Гистограмма отображает прочность на сжатие обычного бетона и бетона с легким заполнителем с использованием LECA для различных марок. Результаты прочности на сжатие составляют 24,64 Н/мм2, 22,04 Н/мм2 и снижение прочности на 14,44% и 23,47%, где для LECA25 и LECA50 соответственно эти проценты замены относятся к легкому бетону с плотностью от 1100 до 2100 кг/м3. Эта смесь также может быть использована для строительства конструкций. Замечено, что бетон, изготовленный с заполнителями LECA, маргинален по сравнению с обычным бетоном.
B. Прочность на растяжение при разделении
Результаты прочности при растяжении при разделении 2,20 Н/мм2, 1,90 Н/мм2. Прочность на разрыв при разделении снизилась на 22,26% и 32,86% при замене 25% и 50% LECA соответственно.
C. Плотность
Таблица 1 показывает плотность обычного бетона и бетона с легким заполнителем с использованием LECA. Разница в плотности оценивается примерно в 1250 кг/м3.
D. Удобообрабатываемость
Удобоукладываемость бетона с легким заполнителем с LECA была измерена с использованием обычного испытательного прибора с осадкой конуса. Подробная информация о результатах представлена в Таблице 2.
Заключение
LECA (легкие керамзитовые заполнители) представляют собой тип изготовленного легкого заполнителя, который имеет широкий спектр применения и стал хорошо известным материалом в проекты гражданского строительства. LECA обладает уникальными свойствами, которые делают его отличным конструкционным и геотехническим материалом. LECA используется для строительства легких бетонных зданий, легких насыпных, дренажных и изоляционных материалов для насыпей автомобильных и железных дорог и других транспортных зон, а также легкой обратной засыпки для подпорных стен и в качестве фундамента для сооружений и сельскохозяйственных угодий. Согласно полученным данным, увеличение процентного содержания легкого заполнителя снижает массу кубов с 8,21 до 4,03 кг.
1) Результаты исследования показывают, что по мере увеличения количества леки прочность куба на сжатие снижается.
2) С увеличением количества леки прочность на отрыв при растяжении постепенно снижается.
3) При замене указанного выше процента обычного заполнителя на лека плотность бетона снижается.
4) Когда 50% леки заменяется обычным заполнителем, прочность на сжатие, прочность на растяжение и плотность улучшаются по сравнению с другими пропорциями смеси.
5) В результате мы делаем вывод, что бетон, изготовленный с этими заполнителями, может быть использован в строительном секторе для уменьшения собственного веса бетона в многоэтажных зданиях.
6) Из приведенного выше результата мы также можем сделать вывод, что его можно использовать как:
а) Стяжки и утолщения общего назначения, в частности, когда такие стяжки или утолщения используются для поддержки веса полов, крыш и других конструктивных элементов.
b) Стяжки и стены, где необходимо прибить древесину.
c) Использование конструкционной стали в качестве покрытия в архитектурных целях или для защиты от огня и коррозии.
г) Изоляция крыши и стен для обогрева.
д) Изоляция водопроводных труб.
е) В каркасных конструкциях строить перегородки и панельные стены.
g) Поверхность, отрендеренная для наружных стен небольшого дома,
Ссылки
[1]. Легкий бетон с заполнителями из промышленных отходов Диана Баяре, Янис Казжонов*, Александр Корякин Рижский технический университет, Строительный факультет, ул. 1, LV-1658, Рига, Латвия
[2]. Джихад Хамад Мохаммед, Али Джихад Хамад, 2014 г., Классификация легкого бетона: материалы, свойства и обзор приложений, Международный журнал передовых инженерных приложений, том 7, выпуск 1, 2014 г. , стр. 52–57.
[3]. Сивакумар С. и Камешвари Б., 2015 г., Влияние летучей золы, зольного остатка и легкого керамзитового заполнителя на бетон, Достижения в области материаловедения и инженерии
[4]. Рэймонд Т., Хеммингс, Брюс Дж., Корнелиус, 2009 г., Сравнительное исследование легких заполнителей, Конференция World of Coal Ash, май 2009 г.
[5]. Пармар А., Пател У., Вагашия А., Пармар А. и Пармар П. Свойства свежего бетона легкого бетона с использованием EPS и LECA в качестве замены обычных заполнителей International Journal of Engineering Development and Research 4 663–6, (2016)
[6]. Боднарова Л., Хела Р., Хубертова М. и Новакова И. Поведение легкого керамзитобетона при воздействии высоких температур Международный научный индекс, Гражданское и экологическое строительство 1, 2014 498, (2014).
[7]. Ариоз О., Килинц К., Карасу Б., Кая Г., Арслан Г., Тункан М., Тункан А., Коркут М. и Киврак С. Предварительное исследование свойств легкого керамзитового заполнителя Журнал Австралийского керамического общества 44 23–40, (2008) .
[8]. С.Сивакумар1 и Б.Камешвари2, Влияние летучей золы, зольного остатка и легкого керамзитового заполнителя в бетоне
[9]. Томас Таму и др., Частичная замена крупных заполнителей гранулами пенополистирола в бетоне. Строительство и строительные материалы, Том-3, 2014 г.
[10]. Махьяр Арабани*1 , Голам Хоссейн Хамеди2 , Хасан Джаефари3 , Оценка влияния легкого керамзитобетона на механические свойства пористого асфальта. Текущие достижения в области гражданского строительства.
[11]. Мохд Рожи Самиди (19 лет)97). Первый отчет исследовательского проекта по легкому бетону, Технологический университет Малайзии, Скудай, Джохор-Бару.
[12]. Сиамак Боудагпур и Шервин Хашеми, Исследование легкого заполнителя из израсходованной глины (LECA) с геотехнической точки зрения и его применение при выращивании теплиц и зеленых крыш. Международный геологический журнал, том 2, 2008 г.
[13]. O. Arioz1*, K.Kilinc1 и др. Предварительные исследования свойств легкого керамзитобетона, J. Aust. Керам. соц. 44 [1] (2008) 23-30.
[14]. Серкан Суба_?, Влияние использования летучей золы на высокопрочный легкий бетон, изготовленный с керамзитовым заполнителем. Научные исследования и эссе Vol. 4 (4) стр. 275-288, апрель 2009 г..
[15]. В.Хонсари, Э.Эслами и Ах.Анвари, Влияние вспученного перлитного заполнителя (EPA) на механическое поведение легкого бетона. Корейский институт бетона, 2010 г.
[16]. Хемант К. Сарье, Амол С. Аутаде, «Исследование характеристик легкого бетона», Международный журнал последних тенденций в области техники и технологий, ISSN: 2278-621X, том 4, выпуск 4, ноябрь 2014 г., стр. 139-141.
Copyright
Copyright © 2022 Абхишек Кумар Сингх, Р Ниведа, Ашиш Ананд, Аджай Ядав, Дивакар Кумар, Гаурав Верма. Это статья с открытым доступом, распространяемая в соответствии с лицензией Creative Commons Attribution License, которая разрешает неограниченное использование, распространение и воспроизведение на любом носителе при условии надлежащего цитирования оригинальной работы.
Фрактальная модель влияния макроструктуры керамзитобетона на его прочность
[1]
Мандельброт, BB (1982). Фрактальная геометрия природы. Нью-Йорк – Сан-Франциско: Фримен.
[2] Волчук В., Клименко И., Кровяков С. и Орешкович М. (2018). Метод оценки качества материалов с использованием мультифрактального формализма. Tehnički glasnik — Технический журнал, 12 (2), 93-97. https://hrcak.srce.hr/202359.
DOI: 10.31803/tg-20180302115027
[3]
Ван З.С., Ван Л.Дж. и Су Х.Л. (2011). Экспериментальные исследования по гранулометрическому составу мелкого заполнителя в каркасном бетоне. Передовые исследования материалов, 163-167, 1085-1089. https://doi. org/10.4028/www.scientific.net/AMR.163-167.1085.
DOI: 10.4028/www.scientific.net/amr.163-167.1085
[4] Волчук, В. М. (2017). О применении фрактального формализма для ранжирования критериев качества многопараметрических технологий. Металлофизика и новые технологии, Международный научно-технический журнал Института физики металлов. Г.В. Курдюмова НАН Украины, 39(7), 949-957. (на русском языке) https://doi.org/10.15407/mfint.39.07.0949.
DOI: 10.15407/mfint.39.07.0949
[5]
Большаков В.И., Волчук В.М., Дубров Ю.В. И. (2018). Регуляризация одной условно III-постановочной задачи добывающей металлургии. Металлофизика и новые технологии, Международный научно-технический журнал Института физики металлов. Г.В. Курдюмова НАН Украины, 40(9)), 1165-1171. https://doi.org/10.15407/mfint.40.09.1165.
DOI: 10.15407/mfint.40.09.1165
[6] Кровяков С., Волчук В., Заволока М. и Крыжановский В. (2019). Поиск подходов к ранжированию критериев качества керамзитобетона. Материаловедческий форум, 968, 20-25. https://doi.org/10.4028/www.scientific.net/MSF.968.20.
DOI: 10.4028/www.scientific.net/msf.968.20
[7]
Чжао, Л., Ван, В., Ли, З. и Чен, Ю. (2015). Микроструктура и фрактальные размеры пор вторичного теплоизоляционного бетона. Испытание материалов, 57, 349-359. https://doi.org/10.3139/120.110713.
DOI: 10.3139/120.110713
[8] Мишутн А., Кровяков С., Пишев О. и Сольдо Б. (2017). Модифицированные керамзитобетонные легкие бетоны для тонкостенных железобетонных плавучих конструкций. Технический гласник -Технический журнал, 11(3), 121-124. https://hrcak.srce.hr/186657.
[9]
Большаков В., Волчук В., Дубров Ю. (2016). Фракталы и свойства материалов. Саарбрюкен, Германия: Lambert Academic Publishing.
[10] Хаусдорф, Ф. (1919). Размеры и размеры. Математический Аннален, 79, 157-179.
[11] Крауновер Р. М. (1995). Введение во фракталы и хаос. Бостон, Лондон: Jones and Bartlett Publishers, Inc.
[12]
Ло, Т.Ю., Тан, В.К., Цуй, Х.З. (2007). Влияние свойств заполнителя на легкий бетон. Строительство и окружающая среда, 42 (8), 3025-3029. https://doi.org/10.1016/j.buildenv. 2005.06.031.
DOI: 10.1016/j.buildenv.2005.06.031
[13] Ке, Ю., Бокур, А.Л. Ортола, С., Дюмонте, Х., Кабрилак, Р. (2009). Влияние объемной доли и характеристик легких заполнителей на механические свойства бетона. Строительство и строительные материалы, 23 (8), 2821-2828. https://doi.org/10.1016/j.conbuildmat.2009.02.038.
DOI: 10.1016/j.conbuildmat.2009.02.038
[14]
Большаков В.И., Дворкин Л.И. (2016). Структура и свойства строительных материалов. Швейцария: Trans and Technical Publication Ltd.
[15] Большаков В.И., Дубров Ю.В. И. (2002). Оценка применимости фрактальной геометрии для описания языка качественного преобразования материалов. Журнал отчетов Национальной академии наук Украины, 4, 116-121. (на русском).
[16]
Большаков В.И. и Волчук В.Н. (2011). Материаловедческие аспекты использования вейвлет-мультифрактального подхода к оценке структуры и свойств малоуглеродистых низколегированных сталей. Металлофизика и новые технологии, Международный научно-технический журнал Института физики металлов. Г.В. Курдюмова НАН Украины, 33(3), 347-360.