Глубина промерзания грунта в московской области для фундамента: Глубина промерзания грунта в Подмосковье

Содержание

Глубина промерзания грунта в Подмосковье

Из данной статьи вы узнаете, что собою представляет понятие глубины промерзания грунта и почему его необходимо учитывать при проектировании фундаментов. Мы рассмотрим нормативные величины ГПГ для разных регионов России и узнаем, как определить фактическую и расчетную величину глубины промерзания почвы согласно действующим нормативам СНиП.

Оглавление:

Глубина промерзания грунта (ГПГ) — нормативное понятие, которое описывает среднестатистическую глубину, на которою почва промерзает в холодное время года.

Для расчета глубины промерзания берется среднестатистический показатель сезонного промерзания в конкретном регионе за последние 10 лет.



Рис. 1.0:  Карта нормативной глубины промерзания почвы в разных регионах России

Уровень промерзания почвы — одна из основных величин, которые учитываются при проектировании фундаментов любого типа. Если в основе расчетов будет лежать неправильный показатель ГПГ, либо данный фактор будет не учитываться вообще, проектировщик не сможет рассчитать требуемую глубину заложения фундамента.

Важно учесть! Плитные и ленточные фундаменты, не обладающие достаточной глубиной заложения, отличаются чрезмерной подверженностью воздействиям морозного пучения почвы — они неустойчивы, подвержены деформациям и разрушениям.

Рис. 1.1:  Характерный признак неправильно рассчитанной глубины заложение фундамента и, как следствие, повреждение здания под воздействием пучения грунта


Морозное пучение происходит в промерзших пластах почвы, пропитанных влагой. Грунтовые воды, при замерзании, склонны к увеличению своего объема на 2-9%, в результате такого расширения пропитанная водой почва начинает подниматься вверх и давить на фундамент здания, оказывая на него выталкивающее воздействие.

Важно! Чтобы избежать негативных влияний пучения, ленточные и плитные фундаменты должны закладываться ниже глубины промерзания почвы.

При таком расположении основание полностью лишено воздействия вертикальных сил пучения (выталкивающего давление почвы, находящейся под фундаментной лентой). Фундамент подвергается лишь касательному пучению (в результате трения стенок основания и боковых пластов пучинистой почвы), влияние которого можно устранить с помощью обустройства уплотняющей отсыпки по периметру стенок фундамента.



Рис 1.2:  Схема промерзания участка застройки


Перед началом любого строительства, проводящегося на пучинистых грунтах, необходимо выяснить ГПГ в конкретном регионе, чтобы в дальнейшем иметь возможность подобрать оптимальную глубину заложения фундамента.

Внимание! Как неправильный расчет нагрузки на фундамент может привести к большим финансовым потерям: ссылка.

Глубина промерзания СНИП

ГПГ — величина, которую без наличия специального оборудования невозможно определить непосредственно перед началом строительства, поскольку ее расчеты требуют предварительного анализа конкретной местности на протяжении более чем 10-ти лет. В строительной практике, для определения глубины промерзания, используются нормативные данные о ГПГ и базовая информация для ее расчета, заложенная в документах СНиП.

До недавнего времени основным документом, в котором были приведены данные о глубине промерзания грунта, являлся СНиП № 20101-82 «Климатология и геофизика строительства», и сопутствующие ему карты разных регионов Российской Федерации. 

Важное замечание! С недавних пор данный нормативный документ был разделен на две отдельные справки — СНИП № 20201-83 «Фундаменты зданий о сооружений» и СНИП № 2301-99 «Климатология строительства».

В данный документах приведены среднестатистические показатели глубины промерзания почвы для конкретных регионов РФ, ознакомится с которыми вы можете в таблице 1.1

Город Сезонная глубина промерзания разных видов почвы (см)
Глиняный грунт и суглинок Супеси и мелкие сухие пески Крупные и гравелистые пески
Ярославль 143 174 186
Архангельск 156 190 204
Челябинск 173 211 226
Вологда 143 174 186
Тюмень 173 210 226
Екатеринбург 157 191 204
Сургут 222 270 290
Казань 143 175 187
Саратов 119 144 155
Курск 106 129 138
Санкт-Петербург 98 120 128
Москва 110 134 144
Самара 154 188 201
Нижний Новгород 145 176 189
Рязань 136 165 177
Новосибирск 183 223 239
Ростов на Дону 66 80 86
Орел 110 134 144
Псков 97 118 127
Пермь 159 193 207


Таблица 1.1:  Нормативная глубина промерзания почвы в разных городах России


ГПГ зависит от двух основных факторов — среднестатистических минусовых температур в конкретных регионах и типа грунта.

Косвенным фактором, влияющим на ГПГ, является толщина снежного покрова, которым укрыт грунт — чем он толще, тем меньшей будет глубина промерзания. Стоит учитывать, что данные, указанные в нормативных таблицах СНИП, не учитывают толщину снежного покрова, поэтому фактическая величина ГПГ в регионе всегда будет меньшей, чем глубина, указанная в таблице 1.1.


Рис. 1.3

:  Схема зависимости ГПГ от толщины снежного покрова

Важное замечание! Всем домовладельцам, сталкивающимся с проблемой пучения почвы, стоит помнить о том, что они сами себе могут доставить дополнительных неприятностей, очищая снег и формируя сугробы возле стен дома.

Неравномерное пучение, которое происходит в местах, где почва обладает разной глубиной промерзания, крайне негативно сказывается на состоянии фундамента — из-за различных выталкивающих сил, воздействующих на фундаментную ленту, основание дома перекашивается, в результате чего возникают трещины на стенах и цоколе. Если вы очищаете снег вокруг постройки — делайте это по всем периметру здания, и не формируйте сугробы возле одной из стен дома.

Глубина промерзания грунта в Подмосковье

Как свидетельствуют отзывы опытных строителей, свыше 80% грунтов в Москве и области представлены пучинистой почвой — суглинком, глиной, песками, супесями. При строительстве домов на таких грунтах крайне важно учитывать глубину их промерзания, поскольку фундамент, заложенный выше требуемого уровня, не будет обладать ожидаемой от него надежностью и долговечностью.

ГПГ в Подмосковье варьируется достаточно сильно — от 90 до 200 сантиметров. Такие колебания обусловлены разной плотностью грунтов — чем большая плотность, и чем выше уровень залегания грунтовых вод, тем сильнее будет промерзать почва.

Среднестатистической расчетной величиной ГПГ, учитываемой при строительстве зданий в Подмосковье, принято считать 140 сантиметров. Более детальные показатели для разных городов Подмосковья вы можете увидеть в таблице 1.2.

Город Сезонная глубина промерзания почвы (см)
Дубна 150
Талдом
130
Сергиев Посад, Александров 140
Орехово-Зуево 130
Егорьевск 130
Коломна 110
Ступино 120
Серпухово 100
Обнинск 110
Балабаново 110
Можайск 125
Волоколамск 120
Клин, Солнечногорск 120
Звенигород, Истра 110
Наро-Фоминск 125
Чехов 120
Воскресенск 110
Павловский Посад, Ногинск, Пушкино 110
Дмитров 140
Пушкино, Щепково, Балашиха 150
Одинцово, Болицыно, Кубинка 140
Подольск, Домодедово, Люберцы 100
Железнодорожный 110
Мытища, Лобня 140


Таблица 1.2:  Глубина промерзания грунта в Московской области

Внимание! Почему пучение способно разрушить ваше будущее строение:как обезопасить себя

Расчетная глубина промерзания грунта

Расчетная величина ГПГ, согласно нормативам СНИП, определяется по формуле: h = √M*k, в которой:

  • М — сумма максимальных показателей минусовых температур в холодное время года;
  • k — коэффициент, отличающийся для разных видов грунтов.

Величина коэффициента, использующегося в расчетной формуле, составляет:

  • 0,23 — для глинистой почвы и суглинков;
  • 0,28 — для пылеватой и мелкой песчаной почвы, супесей;
  • 0,3 — для средне крупных гравелистых и крупных песков;
  • 0,34 — для почвы с вкраплениями крупнообломочных горных пород.

Для примера, определим расчетную величину ГПГ для Вологды. Данные среднемесячных минусовых температур для этого города мы можем взять в документе СНИП № 2101.99.

Для Вологды она составляет:


Из данной таблицы мы определяем значение M — для этого нам нужно суммировать показатели месяцев, обладающих минусовыми температурами.

  • M = 11,6 + 10,7 + 5,4 + 2,9 + 7,9 = 38,5.

Теперь нам нужно извлечь квадратный корень из получившейся величины:

Что позволяет выполнить расчеты согласно основной формуле, учитывая коэффициент типа грунта, на котором будут выполняться строительные работы. Для примера используем коэффициент суглинистой почвы, он равен 0,23.

В результате мы получаем расчетную величину промерзания суглинистой почвы в Вологде равную 143 сантиметрам. Аналогичным образом расчеты выполняются для любых видов почв в других городах России.

Как определить реальную глубина промерзания грунта

Внимание! Фактические и нормативные показатели ГПГ всегда будут отличаться между собой из-за ряда сопутствующих факторов, таких как толщина снега и льда, которыми укрыт грунт.

Рис. 1.4:  Нормативная глубина промерзания грунта в РФ (данные на 2006 год)


Для определения реальной глубины промерзания используется специальный прибор — мерзлотомер. Данное устройство представляет собою обсадную трубку, внутри которой размещен наполненный водой шланг с внутренними ограничителями передвижения льда. На шланг нанесена сантиметровая разметка.

Мерзлотомер погружается в грунт на глубину, равную фактической величине ГПГ (все измерения проводятся в холодное время года). Вода в трубке мерзлотомера превращается в лед на участке, где с прибором контактирует промерзшая почва.

Рис. 1.5:  Фактическая глубина промерзания почвы в РФ

Спустя 10-12 часов после погружения устройства в почву шланг с водой изымается из обсадной трубки и по замершему участку воды определяется реальная глубина промерзания почвы.

Наши услуги

Услуги компании «Богатырь» это забивка свай и лидерное бурение. Мы имеем собственный автопарк бурильно-сваебойной техники и готовы поставлять сваи на объект с дальнейшим их погружением на строительной площадке. Цены на забивку свай представлены на странице: цены на забивку свай. Для заказа работ по забивке железобетонных свай, оставьте заявочку.

Глубина промерзания грунта в Подмосковье, 🔨 СНИП, расчётная глубина как определить.

Из данной статьи вы узнаете, что собою представляет понятие глубины промерзания грунта и почему его необходимо учитывать при проектировании фундаментов. Мы рассмотрим нормативные величины ГПГ для разных регионов России и узнаем, как определить фактическую и расчетную величину глубины промерзания почвы согласно действующим нормативам СНиП.

Глубина промерзания грунта (ГПГ) — нормативное понятие, которое описывает среднестатистическую глубину, на которою почва промерзает в холодное время года.

Для расчета глубины промерзания берется среднестатистический показатель сезонного промерзания в конкретном регионе за последние 10 лет.


Карта нормативной глубины промерзания почвы в разных регионах России

Карта нормативной глубины промерзания почвы в разных регионах России
Рис. 1.0:  Карта нормативной глубины промерзания почвы в разных регионах России

 

Уровень промерзания почвы — одна из основных величин, которые учитываются при проектировании фундаментов любого типа. Если в основе расчетов будет лежать неправильный показатель ГПГ, либо данный фактор будет не учитываться вообще, проектировщик не сможет рассчитать требуемую глубину заложения фундамента.

внимание!

внимание!

Важно учесть! Плитные и ленточные фундаменты, не обладающие достаточной глубиной заложения, отличаются чрезмерной подверженностью воздействиям морозного пучения почвы — они неустойчивы, подвержены деформациям и разрушениям.

повреждение здания под воздействием пучения грунта

повреждение здания под воздействием пучения грунта

Рис. 1.1:  Характерный признак неправильно рассчитанной глубины заложение фундамента и, как следствие, повреждение здания под воздействием пучения грунта


Морозное пучение происходит в промерзших пластах почвы, пропитанных влагой. Грунтовые воды, при замерзании, склонны к увеличению своего объема на 2-9%, в результате такого расширения пропитанная водой почва начинает подниматься вверх и давить на фундамент здания, оказывая на него выталкивающее воздействие.

внимание!

внимание!

Важно! Чтобы избежать негативных влияний пучения, ленточные и плитные фундаменты должны закладываться ниже глубины промерзания почвы.

 

При таком расположении основание полностью лишено воздействия вертикальных сил пучения (выталкивающего давление почвы, находящейся под фундаментной лентой). Фундамент подвергается лишь касательному пучению (в результате трения стенок основания и боковых пластов пучинистой почвы), влияние которого можно устранить с помощью обустройства уплотняющей отсыпки по периметру стенок фундамента.


Схема промерзания участка застройки

Схема промерзания участка застройки
Рис 1.2:  Схема промерзания участка застройки


Перед началом любого строительства, проводящегося на пучинистых грунтах, необходимо выяснить ГПГ в конкретном регионе, чтобы в дальнейшем иметь возможность подобрать оптимальную глубину заложения фундамента.

 

 

 

внимание!

внимание!

Внимание! Как неправильный расчет нагрузки на фундамент может привести к большим финансовым потерям: ссылка.

 

Глубина промерзания СНИП

ГПГ — величина, которую без наличия специального оборудования невозможно определить непосредственно перед началом строительства, поскольку ее расчеты требуют предварительного анализа конкретной местности на протяжении более чем 10-ти лет. В строительной практике, для определения глубины промерзания, используются нормативные данные о ГПГ и базовая информация для ее расчета, заложенная в документах СНиП.

До недавнего времени основным документом, в котором были приведены данные о глубине промерзания грунта, являлся СНиП № 20101-82 «Климатология и геофизика строительства», и сопутствующие ему карты разных регионов Российской Федерации. 

внимание!

внимание!

Важное замечание! С недавних пор данный нормативный документ был разделен на две отдельные справки — СНИП № 20201-83 «Фундаменты зданий о сооружений» и СНИП № 2301-99 «Климатология строительства».


В данный документах приведены среднестатистические показатели глубины промерзания почвы для конкретных регионов РФ, ознакомится с которыми вы можете в таблице 1.1

Город Сезонная глубина промерзания разных видов почвы (см)
Глиняный грунт и суглинок Супеси и мелкие сухие пески Крупные и гравелистые пески
Ярославль 143 174 186
Архангельск 156 190 204
Челябинск 173 211 226
Вологда 143 174 186
Тюмень 173 210 226
Екатеринбург 157 191 204
Сургут 222 270 290
Казань 143 175 187
Саратов 119 144 155
Курск 106 129 138
Санкт-Петербург 98 120 128
Москва 110 134 144
Самара 154 188 201
Нижний Новгород 145 176 189
Рязань 136 165 177
Новосибирск 183 223 239
Ростов на Дону 66 80 86
Орел 110 134 144
Псков 97 118 127
Пермь 159 193 207


Таблица 1.1:  Нормативная глубина промерзания почвы в разных городах России


ГПГ зависит от двух основных факторов — среднестатистических минусовых температур в конкретных регионах и типа грунта.

Косвенным фактором, влияющим на ГПГ, является толщина снежного покрова, которым укрыт грунт — чем он толще, тем меньшей будет глубина промерзания. Стоит учитывать, что данные, указанные в нормативных таблицах СНИП, не учитывают толщину снежного покрова, поэтому фактическая величина ГПГ в регионе всегда будет меньшей, чем глубина, указанная в таблице 1.1.


Рис. 1.3:  Схема зависимости ГПГ от толщины снежного покрова

 

внимание!

внимание!

Важное замечание! Всем домовладельцам, сталкивающимся с проблемой пучения почвы, стоит помнить о том, что они сами себе могут доставить дополнительных неприятностей, очищая снег и формируя сугробы возле стен дома.


Неравномерное пучение, которое происходит в местах, где почва обладает разной глубиной промерзания, крайне негативно сказывается на состоянии фундамента — из-за различных выталкивающих сил, воздействующих на фундаментную ленту, основание дома перекашивается, в результате чего возникают трещины на стенах и цоколе. Если вы очищаете снег вокруг постройки — делайте это по всем периметру здания, и не формируйте сугробы возле одной из стен дома.

 


Глубина промерзания грунта в Подмосковье

Как свидетельствуют отзывы опытных строителей, свыше 80% грунтов в Москве и области представлены пучинистой почвой — суглинком, глиной, песками, супесями. При строительстве домов на таких грунтах крайне важно учитывать глубину их промерзания, поскольку фундамент, заложенный выше требуемого уровня, не будет обладать ожидаемой от него надежностью и долговечностью.

ГПГ в Подмосковье варьируется достаточно сильно — от 90 до 200 сантиметров. Такие колебания обусловлены разной плотностью грунтов — чем большая плотность, и чем выше уровень залегания грунтовых вод, тем сильнее будет промерзать почва.

Среднестатистической расчетной величиной ГПГ, учитываемой при строительстве зданий в Подмосковье, принято считать 140 сантиметров. Более детальные показатели для разных городов Подмосковья вы можете увидеть в таблице 1.2.

Город Сезонная глубина промерзания почвы (см)
Дубна 150
Талдом 130
Сергиев Посад, Александров 140
Орехово-Зуево 130
Егорьевск 130
Коломна 110
Ступино 120
Серпухово 100
Обнинск 110
Балабаново 110
Можайск 125
Волоколамск 120
Клин, Солнечногорск 120
Звенигород, Истра 110
Наро-Фоминск 125
Чехов 120
Воскресенск 110
Павловский Посад, Ногинск, Пушкино 110
Дмитров 140
Пушкино, Щепково, Балашиха 150
Одинцово, Болицыно, Кубинка 140
Подольск, Домодедово, Люберцы 100
Железнодорожный 110
Мытища, Лобня 140


Таблица 1.2:  Глубина промерзания грунта в Московской области

 


 

 


Расчетная глубина промерзания грунта

Расчетная величина ГПГ, согласно нормативам СНИП, определяется по формуле: h = √M*k, в которой:

  • М — сумма максимальных показателей минусовых температур в холодное время года;
  • k — коэффициент, отличающийся для разных видов грунтов.

Величина коэффициента, использующегося в расчетной формуле, составляет:

  • 0,23 — для глинистой почвы и суглинков;
  • 0,28 — для пылеватой и мелкой песчаной почвы, супесей;
  • 0,3 — для средне крупных гравелистых и крупных песков;
  • 0,34 — для почвы с вкраплениями крупнообломочных горных пород.

Для примера, определим расчетную величину ГПГ для Вологды. Данные среднемесячных минусовых температур для этого города мы можем взять в документе СНИП № 2101.99.

Для Вологды она составляет:

определим расчетную величину ГПГ для Вологды.

определим расчетную величину ГПГ для Вологды.
Из данной таблицы мы определяем значение M — для этого нам нужно суммировать показатели месяцев, обладающих минусовыми температурами.
  • M = 11,6 + 10,7 + 5,4 + 2,9 + 7,9 = 38,5.

Теперь нам нужно извлечь квадратный корень из получившейся величины:

Что позволяет выполнить расчеты согласно основной формуле, учитывая коэффициент типа грунта, на котором будут выполняться строительные работы. Для примера используем коэффициент суглинистой почвы, он равен 0,23.

В результате мы получаем расчетную величину промерзания суглинистой почвы в Вологде равную 143 сантиметрам. Аналогичным образом расчеты выполняются для любых видов почв в других городах России.

 

 

 

Как определить реальную глубина промерзания грунта

внимание!

внимание!

Внимание! Фактические и нормативные показатели ГПГ всегда будут отличаться между собой из-за ряда сопутствующих факторов, таких как толщина снега и льда, которыми укрыт грунт.

 

promerzanie6

promerzanie6

Рис. 1.4:  Нормативная глубина промерзания грунта в РФ (данные на 2006 год)


Для определения реальной глубины промерзания используется специальный прибор — мерзлотомер. Данное устройство представляет собою обсадную трубку, внутри которой размещен наполненный водой шланг с внутренними ограничителями передвижения льда. На шланг нанесена сантиметровая разметка.

Мерзлотомер погружается в грунт на глубину, равную фактической величине ГПГ (все измерения проводятся в холодное время года). Вода в трубке мерзлотомера превращается в лед на участке, где с прибором контактирует промерзшая почва.

 

Фактическая глубина промерзания почвы в РФ

Фактическая глубина промерзания почвы в РФ

Рис. 1.5:  Фактическая глубина промерзания почвы в РФ

Спустя 10-12 часов после погружения устройства в почву шланг с водой изымается из обсадной трубки и по замершему участку воды определяется реальная глубина промерзания почвы.

 

 

Наши услуги

Услуги компании «Богатырь» это забивка свай и лидерное бурение. Мы имеем собственный автопарк бурильно-сваебойной техники и готовы поставлять сваи на объект с дальнейшим их погружением на строительной площадке. Цены на забивку свай представлены на странице: цены на забивку свай. Для заказа работ по забивке железобетонных свай, оставьте заявочку:

 

Статьи по теме

 

Полезные материалы

partnery-02partnery-02
Пучение грунта

Из данного материала вы узнаете, что такое морозное пучение грунта и какую опасность оно представляет для фундамента.

 

partnery-02partnery-02
Испытания грунтов

Испытание грунтов — это этап строительства, предшествующий проектированию фундамента. Испытание грунтов производится на плотность и на сдвиг.

 

partnery-02partnery-02
Виды и сфера применения забивных ЖБ свай

При проектировании свайных фундаментов зданий и инженерно-технических сооружений выбор типа используемых железобетонных конструкций необходимо производить максимально тщательно.

 

 

Карта промерзания грунта в Московской области

   ?Глубина промерзания грунта напрямую зависит от типа грунта, климатических условий данной местности, уровня грунтовых вод, растительности, уровня снежного покрова, рельеф местности, влажность грунта и других факторов. Параметры и особенности промерзания необходимо знать и учитывать при бурении скважин в разных районах Московской области.

   Глубина промерзания грунтов – это случайная величина, которая не может быть постоянной, потому что одни уз выше указанных факторов, практически, не меняются со временем – это тип грунта, рельеф местности, другие же, наоборот, постоянно меняются – это высота снежного покрова, влажность грунта, продолжительность и интенсивность минусовой температуры, уровень залегания грунтовых вод и другие.

Карта промерзания грунта Московской области

Можно скачать программу для расчета глубины промерзания грунта. скачать…

Калькулятор промерзания грунта (скриншот)

Видео инструкция к программе

Величины промерзания грунтов Московской области

   Надо отметить, что величина промерзания грунта в различных районах Московской области колеблется от полуметра до одного метра восьмидесяти сантиметров. Естественно, такой разрыв связан с совершенно разной плотностью грунта. Разумеется, чем плотнее грунт и чем сильнее морозы, тем он сильнее промерзает. Так же сухой грунт промерзает меньше, чем грунт, насыщенный влагой. Средней величины промерзания в Подмосковье как таковой нет, а расчетной принято считать один метр сорок сантиметров. Но это учитываются крайне суровые условия – очень сильные морозы, высокий уровень грунтовых вод и отсутствие какого-либо снежного покрова. Но это лишь нормативные данные. На самом деле, реальная глубина промерзания, как показывает практика, довольно сильно отличается от нормативных данных и часто не превышает одного метра. По некоторым данным, на западе Московской области, грунт промерзает где-то до шестидесяти пяти сантиметров,   а на юге, севере и востоке Подмосковья до семидесяти пяти сантиметров. В очень холодные зимы с маленьким снежным покровом, глубина промерзания грунта может доходить до одного метра пятидесяти сантиметров.

Промерзание грунтов Московской области

   Как правило, песчаные грунты промерзают на большую глубину, чем глинистые грунты. Это связано с тем, пористость песка меньше пористости глины. В Московской области, в основном, преобладают крупнообломочные грунты,  песчаные грунты, суглинки, супесь и торфяные грунты. Например, крупнообломочные грунты, которые состоят из кусков скальных и полускальных  грунтов, начинают замерзать уже при нулевой температуре. Поэтому максимально точно определить глубину промерзания грунта в конкретном районе Подмосковья и в определенном месте, могут лишь специалисты, которые при расчетах учитывают все возможные факторы влияния.

Нормативная глубина промерзания грунта СНИП
Состояние грунта с высоким содержанием влаги при отрицательных температурах и положительных

   Пунктирной линией показана граница промерзания грунта

   Конечно такие свойства воды, содержащейся в грунте крайне опасны для фундаментов, поэтому это необходимо всегда учитывать при лубом строительстве, располагая подошву фундамента ниже линии промерзания!

Промерзания почвы на территории центральной России

   Нормативные глубины промерзания (по данным СНиП) в сантиметрах для разных городов и типов грунта представлены в таблице.

Город глина, суглинки пески, супеси
Архангельск 160 176
Астрахань 80 88
Брянск 100 110
Волгоград 100 110
Вологда 140 154
Воркута 240 264
Воронеж 120 132
Екатеринбург 180 198
Ижевск 160 176
Казань 160 176
Кемерово 200 220
Киров 160 176
Котлас 160 176
Курск 100 110
Липецк 120 132
Магнитогорск 180 198
Москва 120 132
Набережные Челны 160 176
Нальчик 60 66
Нарьян Мар 240 264
Нижневартовск 240 264
Нижний Новгород 140 154
Новокузнецк 200 220
Новосибирск 220 242
Омск 200 220
Орел 100 110
Оренбург 160 176
Орск 180 198
Пенза 140 154
Пермь 180 198
Псков 80 88
Ростов-на-Дону 80 88
Рязань 140 154
Салехард 240 264
Самара 160 176
Санкт-Петербург 120 132
Саранск 140 154
Саратов 140 154
Серов 200 220
Смоленск 100 110
Ставрополь 60 66
Сургут 240 264
Сыктывкар 180 198
Тверь 120 132
Тобольск 200 220
Томск 220 242
Тюмень 180 198
Уфа 180 198
Ухта 200 220
Челябинск 180 198
Элиста 80 88
Ярославль 140 154

показатели глубины и температуры, СНиП и карты

Перед началом любого строительства необходимо учитывать глубину, на которую способен промёрзнуть грунт. На такой показатель значительно влияет климатическая среда, проявляющая себя по-разному в зимний период.

Интерес специалистов вызывает глубина промерзания грунта в Московской области, где на протяжении последних лет ведутся довольно активные и многочисленные строительные работы.

таблица_глубины_промерзания_грунтаГлубина промерзания грунта зависит от температуры в регионе

Природные факторы

Степень глубины всегда соотносится с конструкцией фундамента и её значение необходимо знать абсолютно точно, прежде чем приступать к процессу строительства. С приходом морозов находящаяся в земле вода неминуемо преобразуется в лёд. В связи с увеличением объёма грунта он начинает усиленно сдавливать фундамент.

Если это не учитывается при возведении здания, то основание строения вскоре станет деформироваться, давать трещины, а впоследствии может полностью разрушиться.

В этом видео показана реальная глубина промерзания грунта в зимнее время:

Уровень этого показателя в любой природной зоне зависит от следующих факторов:

  1. Типа грунта. Глинистая почва является более пористой, по сравнению с песчаной, такой грунт промерзает сильнее.
  2. Условий местного климата. При достаточно низкой среднегодовой температуре воздуха почва подвергается более значительному воздействию минусовых температур.
  3. Уровня грунтовых вод. Если этот показатель является высоким, он оказывает немалое влияние на основание здания при замерзании почвы.

Правила и нормы

Инженеры, архитекторы, проектировщики, труд которых связан со строительством зданий, в обязательном порядке используют для работы соответствующую нормативно-правовую базу. Документация, включающая в себя и карту промерзания почв, была разработана ещё советскими специалистами несколько десятилетий назад.

Эти правила повсюду применяются и сегодня. С помощью его требований и основных положений делаются правильные расчеты и возводятся действительно надёжные и долговечные строения. Исходя из этих нормативных стандартов, известных под наименованием СНиП, степень промерзания грунта связана с определёнными параметрами:

  1. Назначением здания.
  2. Отличительными свойствами конструкции и ожидаемой нагрузкой на фундамент.
  3. Степенью глубины, где ожидается создание коммуникаций.
  4. Рельефом имеющейся зоны строительства, а также ожидаемой в дальнейшем.
  5. Содержанием воды в почве на территории, где будет производиться постройка.
  6. Уровнем промерзания в холодный период года.

Степень промерзания почвы

Уровень промерзания грунта в Московской области варьируется от 60 см до почти 2-метрового уровня. Профессионалы полагают, что столь существенная разница связана с различиями в плотности почвы. Там, где содержание влаги является более высоким, возможно и более значительное промерзание в сезон морозов.

Исходя из СНиП, средний уровень этого показателя в указанном регионе составляет 1,4 метра. При этом учитываются природные условия с высоким уровнем грунтовых вод, отсутствием снега зимой и довольно сильными морозами.

утепление_грунтаДля защиты фундамента от промерзания грунта следует произвести утепление

Но в реальности глубина промерзания в Московской области обычно не превышает метра, во время наиболее суровой зимы этот параметр может достигать 1,5 метра. Имеет огромное значение тип почвы: более плотная песчаная земля обычно промерзает сильнее, если сравнивать с глинистой. На подмосковной территории глубина промерзания колеблется между уровнем в 1,2 и 1,32 метра.

Сегодня существуют возможности несколько уменьшить степень глубины промерзания земли. Для этой цели вокруг здания устанавливают отмостку теплоизоляционного характера.

Высококачественный утеплитель непременно поможет снизить показания промерзания почвы поблизости от строения.

защита_от_промерзанияВ холодных регионах фундамент следует утеплять качественным утеплителем, иначе он будет поврежден

На территории Ленинградской области встречается весьма разнообразный покров почвы. Песчаный грунт промерзает несильно, тогда как глина не очень подходит для осуществления работ строительного плана. Глубина промерзания почвы в Московской области в таких случаях достигает 1,5 метра, а в ситуации сильных и долговременных морозов показатель может ещё увеличиться.

В ситуации супесей и суглинок уровень промерзания также достаточно высок. Необходимо тщательно изучить почву на конкретном участке, прежде чем приступать к возведению строения. В Ленинградской области этот параметр удерживается в границах от 1,2 до 1,3 метра.

Воды и почвенный состав

Из имеющейся в СНиП таблицы нетрудно сделать выводы о степени замерзания грунта в любом регионе. В соответствии с правилами, фундамент должен быть заложен на более низком уровне, по сравнению с промерзанием грунта, расчёт можно осуществить на основании особой формулы.

На глубину промерзания грунта в Подмосковье также воздействует уровень осадков, образующих снежный и ледяной покров. Они выступают в качестве отличных теплоизоляторов и снижают глубину промерзания в среднем на 30% от максимального для данной местности показателя.

Имеют немалое значение и грунтовые воды, в связи с чем нередко выполняются работы для осушения почвы либо дренаж. При более низком уровне грунтовых вод уменьшается и степень промерзания. Если не учитывать этот параметр, здание в летний и зимний период станет смещаться, в результате его ожидает быстрая деформация и полное разрушение.

Исходя из типа грунта, можно определить степень и точку его проседания и пучинистости, то есть способности вспучиваться при замерзании, когда фундамент выталкивается наружу из земли. В соответствии с правилами СНиП, основание будущего здания следует закладывать на почве песчаного плана и выполнять эти действия на 10 см ниже ожидаемой глубины промерзания. В случае других почв такой показатель может достигать 25 см.

Необходимо полностью учитывать все особенности почвы и понять, на сколько промерзает земля в Московской области, на которой планируется возводить строение.

В противном случае здание рискует быстро начать проседать, разрушаться и будет крайне недолговечным. Финансовые затраты и усилия, приложенные для его постройки, окажутся неоправданными и напрасными.

Глубина промерзания грунта в московской области для фундамента снип

Какова должна быть глубина заложения ленточного фундамента + влияние грунтовых вод на заглубление

Популярность ленточного фундамента далеко опередила все остальные варианты конструкции основания.

Причиной этого является универсальность, способность выдерживать высокие нагрузки и работать на различных типах грунта.

Большим преимуществом считается совместимость с другими типами фундамента, возможность усиления ленты вспомогательными элементами — столбами, сваями и прочими дополнениями.

Важным достоинством ленты считается отсутствие необходимости слишком глубокого погружения в грунт.

В зависимости от условий и веса постройки можно обойтись малыми глубинами траншеи, что позволяет получить заметную экономию денег, времени и труда.

Что влияет на выбор глубины ленточного фундамента

К факторам, оказывающим основное воздействие на фундамент, относятся:

  • Уровень залегания грунтовых вод. Они создают механические нагрузки с различным направлением вектора усилия, проникают в толщу бетона, разрушая его изнутри. Водоносные горизонты создают особую гидрогеологическую обстановку на участке, определяют выбор типа основания и прочие вопросы строительства.
  • Глубина промерзания грунта в холодное время года. Обычный ленточный фундамент, согласно, технологическим требованиям, должен быть погружен на 0,5 м глубже точки замерзания. Это позволяет избежать морозного пучения, когда замерзшая вода, расширяясь, начинает выталкивать фундамент. Чем глубже находятся водоносные слои, тем меньше может быть погружена лента.
  • Тип грунта. Состав почвы определяет способность удерживать воду. Наличие большого количества влаги вызывает сильное морозное пучение, подвижки грунта из-за расширения линейных размеров замерзшей воды.

Зависимость глубины погружения ленты от типа и состава грунта

Тип грунта оказывает большое влияние на выбор глубины погружения ленты. Разные виды почв требуют собственного подхода к заглублению ленты, поскольку обладают различными сочетаниями качеств, показателей плотности, рыхлости, способности пропускать или задерживать воду и т.д.

Рассмотрим наиболее характерные типы грунтов:

  • Скалистые. Прочные, надежные слои, практически не требующие погружения ленты.
  • Крупнообломочные. В этот тип входят галечные, гравийные и хрящеватые типы почв, состоящих из обломков горных пород и гравия. Рекомендованный уровень заглубления — 0,5 м.
  • Песчаные. Существует три типа — крупные, средние и пылеватые пески. Первые и вторые нуждаются в заглублении на 0,4-0,7 м, третьи считаются непригодными для строительства фундаментов из-за чрезмерно низкой несущей способности и требуют использования дополнительных опорных элементов (свай).
  • Глинистые почвы. Отличаются высоким уровнем морозного пучения, поэтому требуют погружения на всю глубину промерзания грунта.
  • Содержащие органические примеси. К ним относятся ил и торф. Эти грунты не подходят для устройства ленточного фундамента.

На практике состав грунта редко бывает однородным. Чаще всего встречаются слоистые структуры с наличием нескольких типов, поэтому выбор глубины погружения надо производить по сочетанию условий.

Определение типа грунта можно произвести самостоятельно. Для этого надо скатать из щепотки почвы шарик между ладонями, немного сжать его и посмотреть на результат. Если шарик не получился совсем — это песок.

Шарик, рассыпавшийся на мелкие части при сдавливании, указывает на супесчаный грунт. Трещины при сдавливании образуются на суглинке, а ровный и пластичный шарик, легко изменяющий форму без разрушений может получиться только из глины.

Глубина закладки

Само название основания раскрывает его особенности. Лента сооружается целиком на дневной поверхности, без погружения в грунт. Вариант встречается довольно редко, так как требует специфических условий и применяется только для легких вспомогательных построек, в основном, из древесины.

Жилые дома, построенные на таком фундаменте, встречаются крайне редко, поскольку подходящие условия для этого отыскать непросто. Требуется плотное, в идеале — скальное основание с ровной площадкой. Под ленту делается песчаная подушка, служащая дренажным слоем.

После этого устанавливается опалубка и заливается лента, полностью размещенная над уровнем грунта. Такая лента не обладает достаточной степенью прочности, так как не имеет опоры по боковым поверхностям.

Для незаглубленных ленточных фундаментов существует ограничение по длине стен — не более 5-7 м. Отсутствие опоры боковых частей ленты имеет и полезную сторону — нет опасности возникновения нагрузок, вызванных морозным пучением.

Мелкозаглубленный ленточный фундамент

Рекомендуется использовать на непучинистых (или, как минимум, слабопучинистых) грунтах. Мелкозаглубленный ленточный фундамент не подходит для участков со сложным составом почв, на стыке разных типов грунта, на подтапливаемых или заболоченных участках с высоким уровнем залегания грунтовых вод.

Глубина погружения мелкозаглубленной ленты намного меньше глубины промерзания грунта. Она может находиться в пределах 0,5-1,5 м в зависимости от глубины промерзания и степени морозного пучения.

Более подробно эта зависимость отображена в таблице:

Чаще всего используется глубина в пределах 0,5-0,7 м. Это обусловлено тем, что строители стараются не рисковать и отказываются от применения мелкозаглубленного типа ленты на сомнительных участках.

Определенные коррективы может внести уровень подъема грунтовых вод.

Для глинистых и суглинистых грунтов рекомендуется заглублять фундамент минимум на половину глубины промерзания.

Погружение заглубленной ленты

Заглубленный тип — основной, классический вариант конструкции ленточного основания, обладающий максимальной прочностью, надежностью и несущей способностью.

Он погружается на глубину, превышающую уровень замерзания почвы, причем, разница уровней определяется как произведение табличного значения глубины промерзания на коэффициенты теплоотдачи дома и условий работы. По данным некоторых специалистов, погружать ленту следует не менее, чем на 0,5 м от уровня промерзания.

Другие источники утверждают, что достаточно 10-20 см. Такие расхождения возникают из-за разницы в точке отсчета — одни считают полную глубину траншеи, другие отталкиваются от слоя подготовки (песчано-гравийной засыпки).

Глубина заложения в московской области

Нормативная глубина промерзания почвы в Московской области составляет 1,32 м на песчаных грунтах и 1,2 м на глинистых участках. Соответственно, в зависимости от геологического состава почв на участке, глубина погружения должна быть не менее 1,5-2 м, с учетом толщины песчано-гравийной подушки.

Однако, специалисты отмечают большую неоднородность грунтов, высокое разнообразие уровней водоносных горизонтов. Поэтому в каждом конкретном случае следует уточнить строение грунта и, в особенности, наличие и уровень залегания водоносных слоев.

Для мелкозаглубленных оснований оптимальным вариантом считается диапазон от 0,2 до 0,6 м, с учетом высоты цоколя не менее 30-40 см. Нередко используется способ, когда траншею выкапывают значительно глубже, чем надо, а затем поднимают ее дно с помощью песчано-гравийной подушки.

Так достигается возможность опереть подушку на плотные слои и параллельно образовать мощный и качественный дренажный слой.

Как уменьшить глубину

Вопрос решается с помощью использования различных приемов:

  • Утепление фундамента. Траншея выкапывается выше уровня промерзания, но ее ширина заведомо больше, чем требуется. На поверхность бетонной ленты устанавливается герметичный слой теплоизолятора из экструдированного пенополистирола (пеноплекса) для фундаментов. Затем пазухи засыпаются песчано-гравийной смесью, образуя качественный дренажный слой, препятствующий проникновению воды к ленте и снижающий нагрузки пучения.
  • Отвод грунтовых вод с помощью дренажной системы. Этот способ подходит не всегда, поскольку надо иметь точку сброса или участок должен располагаться рядом с понижением рельефа или водоемом. Влага отводится в дренажную канавку, пройденную по периметру фундамента. Затем из канавки вода сбрасывается в трубопровод, откуда удаляется в дренажный колодец, водоем или иной удобный участок.

Кроме этих способов можно просто использовать мелкозаглубленный вариант ленты, если это позволяют размеры и вес постройки и состав грунта.

Влияние грунтовых вод

Грунтовые воды оказывают на фундамент резко отрицательное воздействие. Они способствуют разрушению бетона при заморозках, коррозии металлических элементов, по капиллярам проникают в стеновые конструкции и понемногу разрушают постройку.

При создании проекта необходимо подробно выяснить о глубине, мощности водоносных пластов, уточнить, имеются ли сезонные колебания их уровня. При наличии опасных количеств или резких перепадов уровней, следует обеспечить отвод влаги, дренировать траншею или использовать другие средства для решения вопроса.

В крайнем случае, следует рассмотреть другой вариант конструкции фундамента.

Полезное видео

В данном видео вы узнаете, какова должна быть глубина заложения ленточного фундамента:

Заключение

Глубина погружения ленточного фундамента — величина изменяющаяся в зависимости от внешних условий и массы постройки. Большинство строителей сходятся во мнении, что погоня за большой глубиной установки ленты сама по себе никаких проблем не решает.

Важно грамотно использовать свойства грунта на участке, обеспечить гидроизоляцию и надежный дренаж основания. Это позволит применить меньшую глубину заложения, сократить расходы и время застывания бетона при отливке.

Какова глубина промерзания грунта в Московской области?

Еще до начала строительства во время проектирования любых зданий и построек такой показатель, как глубина промерзания грунта, является очень важным. Он влияет на правильность расчетов в отношении закладки фундаментов любых сооружений. На промерзание грунта влияют климатические условия, которые в зимний период времени по-разному себя проявляют.

Большой интерес вызывают показатели замерзания земли в Московской области, где строительные работы ведутся наиболее активно за последние годы. Величина глубины всегда связана с фундаментной конструкцией, поэтому ее важно знать точно, прежде чем начинать строительные работы.

Что может влиять на глубину замерзания почвы?

Вода в почве обязательно кристаллизуется в лед, с наступлением морозов. Объем грунта увеличивается , а когда это происходит, то грунт начинает сдавливать заложенный фундамент с очень большой силой. Он давит на него с силой, равной нескольким десяткам тонн. Если строить с нарушениями, не учитывать глубину промерзания, то в скором времени основание здания начнет подвергаться деформации, затем оно даст трещины и в скором времени может разрушиться. На такой важный показатель всегда влияют следующие факторы:

  1. Тип грунта — у глинистой почвы пористость выше, чем у песчаного, отчего он промерзает сильней.
  2. Климатические условия — на уровень промерзания будет влиять среднегодовая температура, чем она ниже, тем больше промерзает почва.
  3. Уровень грунтовых вод — высокий показатель грунтовых вод будет сильней влиять при замерзании на основание строения.

Строительные нормы и правила (СНиП)

Существует нормативно-правовая база для строительных инженеров, проектантов, архитекторов, частных застройщиков. Документация с картой промерзания грунта была разработана геологами, инженерами еще во времена Советского Союза.

Прошло много лет, но документ, правильно и грамотно составленный, успешно используется и в настоящее время. Указанные в нем требования и основные положения позволяют сделать правильный расчет, и возвести надежное строение. Глубина промерзания грунтов СНиП, согласно документам, зависит от таких условий:

  1. Назначение здания
  2. Особенности конструкции и общая нагрузка на фундамент
  3. Глубина, на которой планируется заложить инженерные коммуникации, а также глубина фундамента близкорасположенных зданий
  4. Рельеф зоны постройки существующей и планируемой
  5. Инженерно-геологические условия проектных работ
  6. Гидрогеологические условия местности под строительство
  7. Грунтовое промерзание в сезон холодов.

Глубина промерзания грунта в Московской области

Величина промерзания в Московской области колеблется в пределах от 60 см до 1 метра 80 см. Специалисты считают, что такая разница объясняется разной плотностью почвы. Когда грунт плотней, то в сильные морозы он больше промерзает. В почве, в которой больше влаги, уровень промерзания будет больше, чем в сухой. По СНиП средняя величина промерзания по Московской области — 1 метр 40 см. В эти данные были заложены жесткие погодные условия с большим уровнем грунтовых вод, без снега в зимний период и сильные морозы.

На самом деле глубина промерзания составляет максимум 1 метр, в крайне суровые зимы глубина может быть около 1,5 метра. Например, в Западной части Подмосковья глубина замерзания грунта будет примерно 65 см, а в остальных направлениях области до 75 см.

На глубину промерзания большое влияние оказывает тип почвы. Песчаная почва промерзает сильней, чем глинистая, поскольку она более плотная. В Подмосковье в основном почва песчаная, суглинки, торфяники и супесь, крупнообломочные почвы, последние начинают промерзать уже при 0 о С. Для песчаной почвы и супесей глубина будет составлять 132 см, а для глинистой и суглинистой почвы — 1 метр 20 см.

В настоящее время есть возможности для уменьшения глубины промерзания земли, если сделать утепление. С этой целью вокруг строения устанавливается теплоизоляционная отмостка. Хороший, качественный утеплитель, проложенный с шириной 1,5-2 метра вокруг строения поможет уменьшить эти показания промерзаний глубины земли, окружающей здание.

Глубина промерзания грунта по Ленинградской области

Почвенный покров этой области характеризуется большим разнообразием и сложностью. К основным почвообразующим породам нужно отнести глину, пески, торф и суглинки. Песчаный грунт слабо подвержен промерзанию. Песок имеет свойство уплотняться и хорошо пропускать через себя влагу. Глинистый грунт считается не самым лучшим для строительных работ. Его глубина промерзания доходит до 1, 5 метра, а когда морозы сильные, держатся длительное время, то может промерзнуть глубже.

Суглинки и супеси — это в основном глина и песок, поэтому важно знать чего в такой почве больше. Глубина замерзания здесь также высокая. Торфяники представляют собой осушенные болота, поэтому они очень сильно промерзают. Средняя глубина промерзания в Ленинградской области составляет 120-130 см. На этот показатель влияет качество почвы, ландшафт местности и погодные условия.

Влияние состава почвы и глубины вод

В СНиП существует таблица, по ней можно увидеть информацию по замерзанию почвы каждого региона страны. Специалисты считают, что закладка фундамента должна быть ниже уровня промерзания грунта. Воспользовавшись специальной формулой, можно самостоятельно выполнить расчет. Для этого необходимо вывести сумму среднемесячных отрицательных температур, затем извлечь из полученной цифры квадратный корень и затем умножить на коэффициент определенного вида почвы.
  • Глинистая почва и суглинок — 0,23
  • Песок и супеси — 0,28
  • Песок крупнозернистый — 0,3
  • Крупнообломочный грунт — 0,34.

На промерзание оказывает большое влияние уровень осадков в виде снежного покрова и льда. Они являются хорошими теплоизоляторами и могут снизить глубину замерзания на 20-40% от максимального показателя.

Большое значение имеют грунтовые воды, поэтому строители часто делают дренаж или осушают почву. Когда уровень грунтовых вод становится меньше, то и глубина промерзания также уменьшается. Если не учитывать влияние грунтовых вод, то зимой и летом строения будут смещаться и подниматься, а это приведет к тому, что здание быстро деформируется, а затем разрушится.

Заключение

По типу грунта можно определить его проседание и пучинистость, последний термин означает способность грунта вспучиваться в период замерзания, когда так происходит, то фундамент здания выталкивается из земли.

Согласно СНиП фундамент необходимо закладывать на песчаном грунте на 10 см ниже глубины замерзания, для глинистых и суглинков на 25 см.

Глубина промерзания грунта в Московской области

При закладке любого фундамента одним из самых важных параметров является глубина промерзания грунта, которая зависит не только от климатических условий региона, как могло показаться, на первый взгляд. На самом деле, существует много факторов, на которые необходимо обратить внимание.

В разных ситуациях уровень затвердевания почвы зимой в одном и том же регионе может отличаться в несколько раз. В значительной степени глубина промерзания зависит от таких факторов:

  • уровень грунтовых вод;
  • рельеф местности;
  • природная влажность;
  • высота снежного покрова;
  • растительность;
  • продолжительность минусовых температур.

Как видно, глубина затвердевания грунта – значение непостоянное и зависит от многих факторов. Практически постоянными для региона являются рельеф и тип грунта, остальные сугубо индивидуальны для места.

Что касается именно Московской области, то её карта промерзания представлена ниже.

Особенности закладки фундамента

Очевидно, что фундамент надо закладывать ниже уровня промерзания грунта. Поскольку при вспучивании почвы при замерзании, фундамент, заложенный выше этого уровня, также поднимается и в итоге после многократных циклов дом «поведёт».

Величина снежного покрова влияет на уровень затвердевания грунта. При глубоком снежном покрове, создаётся эффект «шапки» и земля промерзает гораздо меньше. Поэтому в случае недостаточной закладки фундамента, ветреная сторона дома без снежного покрова будет промерзать за фундамент, а сторона под снежной подушкой будет находиться на приемлемом расстоянии. Это приведёт к тому, что дом «поведёт» в одну сторону. Поэтому в случае если вы решили убрать снежный покров у себя на участке вокруг дома, делайте это либо по всему периметру, либо не делайте вообще. Это может привести к нежелательным последствиям. На некоторых участках возникнут эпицентры обмерзания и это приведёт к тому, что фундамент «поведёт» или приведёт к его деформации.

Для разных видов почв разница между уровнем промерзания и уровнем установки фундамента варьируется. Для грунтов глиняных и суглинки уровень закладки фундамента с уровнем промерзания должен отличаться минимум на 25 см. На песчаном грунте на 10 см.

Также рекомендуется устанавливать фундамент на песчаную подушку. Это связано с тем, что общее поднятие грунта не приведёт к перекосу фундамента, т. к. песок из-за своей мягкости нивелирует подъём.

Рельеф местности необходимо учитывать при закладке фундамента, каким бы он ни был всегда рекомендуется делать фундамент горизонтальным.

Если нет желания или возможности сделать фундамент ниже уровня промерзания, можно пойти другим путём – уменьшить глубину промерзания грунта. Это делается с помощью утепления почвы вокруг постройки при помощи качественных утеплительных материалов с высокой теплостойкостью. Уложенный по периметру утеплитель шириной более полутора метров способен существенно снизить глубину замерзания.

Морозное пучение

Как известно, морозное пучение приводит к поднятию уровня грунта, это является огромной проблемой для строителей. Высота вспучивания напрямую зависит от глубины замерзания почвы. В районе Москвы оно может достигать до 15 см. Также степень выпучивания зависит от скорости замерзания почвы. Быстрое замерзание даже менее вредно по сравнению с медленным.

Невысокая скорость замерзания приводит к тому, что структура почвы становится льдистой. Весной при таянии, почва становится рыхлой и теряет свои физические свойства, это приводит к тому что твёрдые породы, на которых был установлен фундамент становятся текучими и его может «повести».

Глубина замерзания грунта в Москве и Московской области

Степень промерзания грунта в Московской области колеблется в пределах от 50 см до практически 2 м. Такой большой разброс обусловлен разными факторами. Одним из основных является плотность грунта. Чем плотность выше, тем уровень промерзания больше. Глина будет промерзать гораздо меньше песка. Средним по Московской области принято считать уровень промерзания в 1,4 м, однако, в большинстве случаев грунт не промерзает выше 80 см. Исключения составляют только аномально холодные зимы. Также сильно влияет влажность грунта и соответственно высота грунтовых вод. Чем выше влажность грунта, тем более высоким будет уровень промерзания.

Уровень промерзания около Москвы в среднем составляет от 70 см до 1,2 метра, в южных районах Подмосковья – 0,4-0,8 метра, в северных – 1,4-1,8 м. Более подробно смотрите на карте выше.

Состав почв Московской области

В Московской области преобладают следующие типы почв:

  • супесь;
  • торфяники;
  • крупнообломочные почвы;
  • суглинки;
  • песчаные почвы;
  • глинистые почвы.

Крупнообломочные почвы состоят из обломков скальных и полускальных пород и начинают отвердевать уже при нулевой температуре. В каждом индивидуальном случае только специалисты способны определить уровень промерзания.

Существует СНиП 2.02.01-83 в котором есть таблица с усреднённым значением уровня промерзания почвы. Для расчёта уровня используется следующая формула:

  1. Берётся сумма среднемесячных отрицательных температур.
  2. Из неё извлекается квадратный корень.
  3. Получившееся число умножается на коэффициент для своего вида почв. Например, для глины этот коэффициент составляет 0,23, для песка и супеси – 0,28, а для крупнообломочной почвы – 0,34.

Глубина промерзания грунта в Московской обл

Зимний период характеризуется промерзанием почв на определённую глубину, что сопровождается застыванием содержащейся в грунте воды, приводящим к расширению и увеличению объёма. Почва, увеличившаяся в объёме, оказывает воздействие на фундамент строения, что приводит к его сдвигам и нарушению естественного положения.
Промерзание оказывает отрицательное воздействие, избежать которого можно заложив основание ниже уровня промерзания. Указанный показатель зависит от типа почвы (глина, песок, супесь) и климатической зоны (среднегодовые показатели температуры в конкретном регионе).

Определение уровня промерзания в соответствии с требованиями СНиП

Устанавливается глубина промерзания в соответствии с положениями СНиП 2.02.01-83. Указывается, что нормативная глубина определяется исходя из средних показателей сезонного промерзания в конкретном регионе, выявленных в результате наблюдений проводимых в течение 10 лет. Внимание! Наблюдения проводятся на открытых, горизонтальных площадках очищенных от снежного покрова, при условии, что глубина залегания грунтовых вод, ниже уровня промерзания.
Если многолетние наблюдения не проводились, то степень промерзания определяется посредством теплотехнических расчётов. Если работы проводятся в местности, где почва не промерзает больше чем на 2.5 метра, то для расчётов используется формула: dfn=d0 √Mt.

Расшифровка формулы:
Mt – коэффициент, сравнимый в численном выражении с абсолютными значениями средних минусовых температур в течение зимнего периода в конкретном регионе (если необходимые наблюдения не велись, то берутся данные гидрометеорологических станций, работающих в идентичных климатических зонах).
d0 – величина, равная уровню промерзания, характерному для конкретного типа почвы.

Согласно требованиями СНиП указанные величины, имеют следующие значения:

  • глина (суглинки) – 0.23м;
  • крупнообломочная почва – 0.34м;
  • пески (супеси) – 0.28м;
  • гравелистый песок – 0.30м.
Если необходимо узнать расчётную глубину, то используется следующая формула: df = kh dfn.

Расшифровка формулы:

dfn – нормативная глубина степени промерзания почвы (указана в подпунктах 2.26 – 2.27 СНиП 2.02.01-83).
kh – коэффициент теплового режима здания, применимый для внешних фундаментов отапливаемых зданий (если работы ведутся с неотапливаемыми объектами, то kh=1.1).

Уровень промерзания почвы в Москве и Подмосковье

Уровень промерзания грунта в Подмосковье зависит от степени насыщения почвы влагой в конкретной местности. Указанный показатель является крайне вариабельным для данного региона и варьируется в пределах 0.4 – 2 метра. Максимальные показатели характерны для районов с наиболее влажным и плотным грунтом, при условии, что будут иметь место крепкие и устойчивые морозы. Когда на участке рыхлая почва, а влага отсутствует, уровень промерзания будет крайне низким.

Фактически в Московской области почва редко промерзает, более чем на метр. Можно ориентироваться на конкретные данные, приведённые для каждого из районов:

  • Сергиев-Посад – 1.4м;
  • Наро-Фоминск – 0.6 – 1м;
  • Можайск – 0.6м;
  • Волоколамск – 0.7 – 1.2м;
  • Дубна – 1.5 – 2.1м;
  • Подольск – 0.4м.
Характерно, что в населённых пунктах, расположенных поблизости от Москвы уровень промерзания варьируется в пределах 0.7 – 1.2 метра. Южные районы, такие как Чехов и Серпухов, могут похвастаться показателями 0.4 – 0.8 метра. Наибольшие показатели отмечаются в северных районах области: Клин (1.8), Талдом (1.3), Дмитров (1.6).

Непосредственно в Москве степень промерзания почвы варьируется в пределах 1.2 – 1.32 метра. Конкретные показатели следует рассчитывать исходя из типа почвы на конкретном участке и наблюдений, проводимых в течение длительного времени. Если пренебречь расчётами, то последствия для здания могут быть плачевными.

Полезные материалы

Усиление фундаментов

Достаточно часто в строительстве зданий и сооружений можно столкнуться с проблемой, когда фундамент находится в аварийном состоянии.

 

 

 

 

Глубина промерзания грунта в Московской области

При закладке любого фундамента одним из самых важных параметров является глубина промерзания грунта, которая зависит не только от климатических условий региона, как могло показаться, на первый взгляд. На самом деле, существует много факторов, на которые необходимо обратить внимание.

В разных ситуациях уровень затвердевания почвы зимой в одном и том же регионе может отличаться в несколько раз. В значительной степени глубина промерзания зависит от таких факторов:

  • уровень грунтовых вод;
  • рельеф местности;
  • природная влажность;
  • высота снежного покрова;
  • растительность;
  • продолжительность минусовых температур.

Как видно, глубина затвердевания грунта – значение непостоянное и зависит от многих факторов. Практически постоянными для региона являются рельеф и тип грунта, остальные сугубо индивидуальны для места.

Что касается именно Московской области, то её карта промерзания представлена ниже.

Особенности закладки фундамента

Очевидно, что фундамент надо закладывать ниже уровня промерзания грунта. Поскольку при вспучивании почвы при замерзании, фундамент, заложенный выше этого уровня, также поднимается и в итоге после многократных циклов дом «поведёт».

Величина снежного покрова влияет на уровень затвердевания грунта. При глубоком снежном покрове, создаётся эффект «шапки» и земля промерзает гораздо меньше. Поэтому в случае недостаточной закладки фундамента, ветреная сторона дома без снежного покрова будет промерзать за фундамент, а сторона под снежной подушкой будет находиться на приемлемом расстоянии. Это приведёт к тому, что дом «поведёт» в одну сторону. Поэтому в случае если вы решили убрать снежный покров у себя на участке вокруг дома, делайте это либо по всему периметру, либо не делайте вообще. Это может привести к нежелательным последствиям. На некоторых участках возникнут эпицентры обмерзания и это приведёт к тому, что фундамент «поведёт» или приведёт к его деформации.

Для разных видов почв разница между уровнем промерзания и уровнем установки фундамента варьируется. Для грунтов глиняных и суглинки уровень закладки фундамента с уровнем промерзания должен отличаться минимум на 25 см. На песчаном грунте на 10 см.

Также рекомендуется устанавливать фундамент на песчаную подушку. Это связано с тем, что общее поднятие грунта не приведёт к перекосу фундамента, т. к. песок из-за своей мягкости нивелирует подъём.

Рельеф местности необходимо учитывать при закладке фундамента, каким бы он ни был всегда рекомендуется делать фундамент горизонтальным.

Если нет желания или возможности сделать фундамент ниже уровня промерзания, можно пойти другим путём – уменьшить глубину промерзания грунта. Это делается с помощью утепления почвы вокруг постройки при помощи качественных утеплительных материалов с высокой теплостойкостью. Уложенный по периметру утеплитель шириной более полутора метров способен существенно снизить глубину замерзания.

Морозное пучение

Как известно, морозное пучение приводит к поднятию уровня грунта, это является огромной проблемой для строителей. Высота вспучивания напрямую зависит от глубины замерзания почвы. В районе Москвы оно может достигать до 15 см. Также степень выпучивания зависит от скорости замерзания почвы. Быстрое замерзание даже менее вредно по сравнению с медленным.

Невысокая скорость замерзания приводит к тому, что структура почвы становится льдистой. Весной при таянии, почва становится рыхлой и теряет свои физические свойства, это приводит к тому что твёрдые породы, на которых был установлен фундамент становятся текучими и его может «повести».

Глубина замерзания грунта в Москве и Московской области

Степень промерзания грунта в Московской области колеблется в пределах от 50 см до практически 2 м. Такой большой разброс обусловлен разными факторами. Одним из основных является плотность грунта. Чем плотность выше, тем уровень промерзания больше. Глина будет промерзать гораздо меньше песка. Средним по Московской области принято считать уровень промерзания в 1,4 м, однако, в большинстве случаев грунт не промерзает выше 80 см. Исключения составляют только аномально холодные зимы. Также сильно влияет влажность грунта и соответственно высота грунтовых вод. Чем выше влажность грунта, тем более высоким будет уровень промерзания.

Уровень промерзания около Москвы в среднем составляет от 70 см до 1,2 метра, в южных районах Подмосковья – 0,4-0,8 метра, в северных – 1,4-1,8 м. Более подробно смотрите на карте выше.

Состав почв Московской области

В Московской области преобладают следующие типы почв:

  • супесь;
  • торфяники;
  • крупнообломочные почвы;
  • суглинки;
  • песчаные почвы;
  • глинистые почвы.

Крупнообломочные почвы состоят из обломков скальных и полускальных пород и начинают отвердевать уже при нулевой температуре. В каждом индивидуальном случае только специалисты способны определить уровень промерзания.

Существует СНиП 2.02.01-83 в котором есть таблица с усреднённым значением уровня промерзания почвы. Для расчёта уровня используется следующая формула:

  1. Берётся сумма среднемесячных отрицательных температур.
  2. Из неё извлекается квадратный корень.
  3. Получившееся число умножается на коэффициент для своего вида почв. Например, для глины этот коэффициент составляет 0,23, для песка и супеси – 0,28, а для крупнообломочной почвы – 0,34.

Почему в Подмосковье разная глубина промерзания почвы?

Глубина промерзания почвы зависит от ее типа, климата, местности, влажности и других факторов. Особенности и параметры учитываются при бурении, строительстве и других видах хозяйственной деятельности.

Какая глубина сезонного промерзания почвы? Что это за мера?

Это случайная величина и не может быть постоянной. Это связано с тем, что некоторые факторы, влияющие на производительность, со временем почти не меняются (например,г., тип почвы, рельеф) и другие — наоборот, постоянно меняются (влажность почвы, высота снежного покрова, интенсивность и продолжительность пониженной температуры и т. д.). При строительстве зданий большое значение имеет глубина промерзания грунта. В Подмосковье сегодня ведется активное строительство. Насколько глубоко промерзнет грунт, зависит от глубины проникновения конструкции фундамента. При строительстве учтите, что в зимний период (в случае постоянного проживания) территория под домом теплая.За счет этого расчетную глубину промерзания почвы можно уменьшить на пятнадцать-двадцать процентов. Обеспечить максимальное сохранение тепла почвы способна качественная изоляционная лента шириной от полутора до двух метров. Ее размещают по всему дому, создавая тем самым теплоизоляционную отмостку.

Чем отличается глубина промерзания почвы в Подмосковье?

Диапазон значений от 50 см до 1 м 80 см. Эту разницу специалисты объясняют разной плотностью почвы. Чем больше заморозков и плотнее почва, тем больше промерзнет земля.В насыщенном влагой грунте показатели будут выше, чем в сухом. Таким образом, среднее значение в Подмосковье отсутствует. Но есть нормативная глубина промерзания почвы. СНиП устанавливает следующий размер — 1 метр 40 см. Но следует сказать, что при его определении были учтены крайне суровые климатические условия: высокие грунтовые воды, сильный мороз, отсутствие снега. На самом деле глубина промерзания почвы в Подмосковье отличается от существующих нормативов. Часто он не превышает одного метра.Если зима очень холодная, снега почти нет, то уровень может доходить до полутора метров. На западе Подмосковья почва промерзшая около 65 см, а на востоке, севере, юге — до 75 см.

Рекомендовано

Происхождение славян. Влияние разных культур

Славяне (под этим именем), по мнению некоторых исследователей, появились в повести только в 6 веке нашей эры. Однако язык национальности несет в себе архаичные черты индоевропейского сообщества.Это, в свою очередь, говорит о том, что происхождение славян h …

Влияние типа почвы

Глубина промерзания почвы в Подмосковье зависит от разных факторов. Один из них — тип почвы. Итак, почва промерзает сильно, по сравнению с глинистой глубиной. Это потому, что глина более пористая, чем песок. Для Подмосковья характерны песчаные почвы, суглинки, крупнозернистые почвы, торф и супеси. Точно уровень могут определить специалисты, учитывая при расчетах все факторы в совокупности.Например, крупнозернистый грунт начинает промерзать при температуре 0 градусов. Для песков и супесей глубина промерзания — 132 см, для суглинистых и глинистых почв — 1,2 м

.

14 Проблемы обращения с отходами в Московской области | Роль экологических НПО: вызовы России, уроки Америки: материалы семинара

Давайте исследуем несколько неэкологических аспектов этой проблемы, потому что экологические последствия вторичной переработки миллиардов бутылок, банок и упаковок вполне очевидны.

Большая часть населения России живет за чертой бедности. При покупке бутылок водки, пива или безалкогольных напитков необходимо внести залог (10–20 коп. За бутылку).Самые бедные люди будут нести бутылки в пункты приема. Система сбора упаковки будет работать сама по себе. Нужны только точки приема. Собранные миллионы рублей будут перераспределены между беднейшими слоями населения в их пользу, и социальная проблема бедных будет решена в известной мере не благотворительностью, а нормальными экономическими средствами.

Второй момент также хорошо известен. В рыночной экономике одна из важнейших проблем — это занятость.Что произойдет, когда будет введена стоимость trade-in?

Тысячи новых рабочих мест создаются на приемных пунктах и ​​на предприятиях по переработке стекла, пластика и т. Д. И нам не нужно ни копейки из госбюджета. Более того, эти предприятия будут платить налоги и потреблять продукцию других отраслей промышленности, принося доход в бюджет, не говоря уже о подоходном налоге с новых рабочих мест.

Есть еще одна сторона дела. Требуется значительное финансирование из бюджетов местных органов власти, включая коммунальные платежи за сбор и вывоз мусора на полигонах и мусоросжигательных заводах.Снижение затрат на утилизацию отходов может стать существенной поддержкой жилищно-коммунальной реформы в целом.

Практически невозможно в целом оценить экологический эффект, когда тысячи тонн отходов перестанут занимать прилегающие к городам участки в качестве долговременных свалок. Эксплуатационные расходы пунктов приема и транспортные расходы могут быть покрыты за счет средств, полученных от производителей и возвращенной упаковки. Кроме того, когда отрасль по переработке мусора будет развиваться и становится прибыльной, предприятия по переработке отходов смогут оказывать частичную поддержку пунктам приема.

Стоимость Trade-in может быть введена для всех видов упаковки, кроме молочных продуктов и продуктов для детей. Она может составлять от 15 до 30 копеек за контейнер, в зависимости от его размера. Если все пластиковые бутылки с водой и пивом продавать по стоимости trade-in только в Москве, то общая сумма достигнет 450 млн рублей в год. С учетом стеклянных бутылок, алюминиевых банок и пакетов — миллиард рублей. Эта сумма будет перераспределена в пунктах приема среди малообеспеченных людей, когда они получат деньги за использованную упаковку и работу в пунктах приема и переработке отходов.

Узким местом проблемы сейчас является отсутствие в России высокотехнологичных производств по переработке отходов. Это решается довольно легко. На первом этапе использованная упаковка может быть продана как сырье для предприятий, в том числе за границу. Спрос на ПТА и алюминий на деталь

неограничен. .

Заморозка грунта | Geoengineer.org

В этом отчете представлен подробный обзор искусственного замораживания грунта (AGF) как метода улучшения условий на площадке для проектов гражданского строительства.

Искусственное замораживание грунта (AGF) — это метод улучшения грунта, при котором масса грунта определенной геометрии замораживается с использованием процесса охлаждения с использованием хладагента, либо охлажденного рассола, либо жидкого азота, который циркулирует по трубам замораживания, встроенным в земля.AGF обычно используется для стабилизации грунта и контроля грунтовых вод в самых разных областях, включая все типы почв.

Этот отчет основан на обзоре доступной литературы по промерзанию грунта и содержит краткую историю промерзания грунта и его влияния на типичные инженерно-геологические свойства. Далее обсуждаются соображения по внедрению замораживания грунта в полевых условиях, а также преимущества и недостатки этого процесса. Наконец, рассмотрены два тематических исследования внедрения AGF в полевых условиях.

История

Искусственное замораживание грунта (AGF) — это метод стабилизации грунта, включающий отвод тепла от земли для замораживания поровой воды почвы. Концепция промерзания грунта была впервые представлена ​​во Франции, а промышленное применение относится к 1862 году, когда оно использовалось в качестве метода строительства шахтных стволов в Южном Уэльсе (Schmidt 1895). В конце концов, этот метод был запатентован немецким горным инженером Ф. Х. Поетчем в 1883 году (иногда называемый процессом Поэтша). Способ включает систему труб, состоящую из внешней трубы и концентрических внутренних питающих труб, по которым циркулирует охлажденный хладагент (обычно хлорид кальция).Хладагент закачивается по внутренней трубе и обратно по внешней трубе. Затем он снова охлаждается в процессе охлаждения и возвращается по системе трубопроводов. Дальнейшее развитие технологии AGF произошло во Франции в 1962 году, когда жидкий азот (LN2) закачивался в замораживающие трубы вместо охлажденного рассола хлорида кальция. Это позволяет при необходимости намного быстрее промерзать грунт. Жидкий азот проходит через трубы замораживания и испаряется в атмосферу (Sanger and Sayles, 1979).

В настоящее время AGF применяется в большом количестве инженерных проектов, где важны стабильность, состояние грунтовых вод и локализация. Примеры ситуаций включают: строительство вертикального ствола для добычи полезных ископаемых или проходки туннелей, стабилизация непроектированных земляных насыпей (большие препятствия), площадки, требующие горизонтального доступа (например, навес ТБМ для строительства поперечного перехода), боковая и вертикальная локализация загрязняющих веществ, перенаправление загрязняющих веществ, грунтовые воды отсечка (может быть привязана к коренным породам) и аварийная поддержка / стабилизация с использованием LN2 (Schmall and Braun 2006).

Во время процесса тепло отводится от почвы по цилиндрической форме вокруг замораживающих труб. Это создает столбики из мерзлого грунта. Столбцы продолжают расширяться, пока не пересекутся. Отсюда замерзшая масса будет расширяться наружу, создавая стену или твердое кольцо из мерзлого грунта (Sanger and Sayles, 1979).

В следующих разделах описывается влияние AFG на инженерные свойства грунтов, а именно на гидравлическую проводимость, жесткость, прочность на сдвиг и способность изменять объем.Кроме того, вводятся лабораторные испытания и классификация мерзлых грунтов в соответствии со стандартами JGS и ASTM.

Гидравлическая проводимость мерзлых грунтов

При применении в проектах гражданского строительства для локализации или контроля грунтовых вод мерзлый грунт практически непроницаем. Трещины льда также могут излечиться путем повторного замораживания. Проблемы с проницаемостью возникают, когда процедуры замораживания не выполняются должным образом, и почва не замерзает полностью как одна масса, оставляя «окна» из незамерзшей почвы, которые могут поставить под угрозу способность замороженного барьера удерживать и контролировать грунтовые воды или изолировать загрязнитель в почве. .Окна незамерзшей почвы часто определяют и определяют их размер с помощью ультразвукового метода измерения (Jessberger 1980).

Прочностное поведение мерзлого грунта

Прочностное поведение мерзлого грунта, как и любого другого грунта, зависит от ряда факторов, включая тип грунта, температуру, ограничивающее напряжение, относительную плотность и скорость деформации. Мерзлые грунты обладают большей прочностью, чем незамерзшие. Как правило, прочность мерзлого грунта увеличивается при понижении температуры и увеличении ограничивающего напряжения.

Da Re et al. В 2003 году было проведено исследование характеристик трехосной прочности замороженного мелкозернистого песка Manchester Fine Sand (MFS), в котором образцы были подготовлены с различными относительными плотностями (20-100%), ограничивающими напряжениями (0,1-10 МПа), скоростями деформации (3 x 10-6 — 5 x 10-4 с-1) и температуры (от -2 до -25 ° C).

Результаты, графически представленные на Рисунке 1, показывают две отдельные области деформации, на которые мерзлая почва действует по-разному. Небольшие деформации (менее 1% в осевом направлении) приводят к линейному увеличению прочности, наклон (модуль) которого не зависит от относительной плотности или ограничивающего напряжения.Величина начального предела текучести (при осевой деформации 0,5–1% во всех случаях) увеличивается с увеличением скорости деформации и понижением температуры. Поведение при больших деформациях включает в себя деформационное разупрочнение, проявляемое образцами, подготовленными при низкой относительной плотности и при низком ограничивающем напряжении, до деформационного упрочнения, проявляемое образцами, приготовленными при высокой относительной плотности и высоком ограничивающем напряжении.

Рис. 1. Прочностные характеристики MFS (Da Re et al. 2003)

Поведение MFS при деформационном смягчении, показанное в Da Re et al.Исследование объясняется Корнфилдом и Зубеком 2013. Они утверждают, что снижение напряжения выше начального предела текучести происходит из-за увеличения дробления и плавления под давлением замороженной поровой воды. Ян и др. 2009 г. и Xu et al. 2011 год также показал, что по мере увеличения ограничивающего давления прочность на сдвиг достигает пика, а затем уменьшается из-за дробления льда и таяния под давлением. Обычно при -10 ° C мерзлые пески и мерзлые глины имеют прочность на сжатие 15 МПа и 3 МПа соответственно (Klein 2012).

Прочность замороженной глины на сжатие была проанализирована Li et al.при переменных температурах, скоростях деформации и плотности в сухом состоянии. Глина была уплотнена до трех различных плотностей в сухом состоянии и имела предел текучести 28,8% и предел пластичности 17,7%. Испытания на одноосное сжатие проводились при различных температурах (от -2 до -15 ° C) и различных скоростях деформации (приблизительно от 1 x 10-6 до 6 x 10-4 с-1) для каждой плотности в сухом состоянии. Результаты исследования показали, что силовые характеристики аналогичны исследованию, проведенному Da Re et al. для замороженных MFS. Прочность на сжатие испытанной глины увеличивалась с увеличением скорости деформации, понижением температуры и увеличением плотности в сухом состоянии, аналогично поведению MFS, испытанного в Da Re et al.учиться. Кроме того, замороженные глины проявляли как деформационное упрочнение, так и деформационное разупрочнение после достижения начального предела текучести, который сильно зависел от времени до разрушения, которое само по себе зависит от скорости деформации. Результаты исследования показали, что образцы замороженной глины, нагруженные при низких скоростях деформации, достигли низкой прочности на одноосное сжатие (приблизительно 2 МПа при 10% деформации, если разрушение не было достигнуто) при более длительном времени до разрушения, но демонстрировали характеристики деформационного упрочнения. Напротив, образцы замороженной глины, нагруженные при высоких скоростях деформации, достигают гораздо более высокой прочности на одноосное сжатие (примерно 6 МПа при разрушении), но демонстрируют деформационное разупрочнение (Li et al.2004 г.).

Жесткость мерзлого грунта

В целом мерзлые почвы более жесткие, чем незамерзшие. Да Ре и др. В своем исследовании прочности мерзлого грунта на MFS провели исследование модуля Юнга. Они обнаружили, что замороженный MFS имеет модуль Юнга от 23 до 30 ГПа. Поскольку поведение замороженного MFS при малых деформациях было одинаковым во всех тестируемых переменных, модуль Юнга не зависел от тестируемых переменных (относительная плотность, ограничивающее напряжение, скорость деформации и температура).


Рис. 2. Нормированное поведение напряженно-деформированного состояния MFS (Da Re et al. 2003)

Рис. 2 из Da Re et al. al., 2003 исследование показывает независимость модуля Юнга мерзлых песков путем нормализации напряжения сдвига с начальным пределом текучести. На рисунке 2 также показаны различные объемные деформации из-за деформационного упрочнения или разупрочнения замороженного MFS после начального напряжения текучести, что обозначено как поведение типа A, B, C или D.

Характеристики изменения объема мерзлого грунта

Во время фазового перехода от жидкого к твердому, вода увеличивается в объеме примерно на 9%, что приводит к вспучиванию грунта на поверхности земли (Lackner et al. 2005). Пучка из-за увеличения объема может повредить близлежащие конструкции (туннели, поверхностные конструкции) во время замерзания и оттаивания, поэтому понимание свойств почвы и того, как они влияют на вспучивание почвы, важно во время AGF. Почва, подвергшаяся вспучиванию, также будет оседать при оттаивании, что необходимо учитывать.Грунт может также наблюдать изменения объема из-за ползучести под нагрузкой.

Пучкование почвы происходит в почвах, где линзы льда образуются внутри пустот. Структура почвы должна способствовать переносу воды из окружающих пустот к фронту замерзания ледяной линзы за счет капиллярных сил. По этой причине илистые почвы особенно чувствительны к заморозкам (Widianto et al. 2009).

Также важно отметить, что в некоторых случаях глины могут проявлять низкую морозостойкость. По мере того как фронт замерзания движется наружу, глины демонстрируют вспучивание из-за объемного расширения ледяной линзы, однако уплотнение может происходить перед фронтом замерзания, где отрицательное поровое давление создается движением воды в зону замерзания.Чистый эффект вспучивания и уплотнения под ледяной линзой может быть небольшим или незначительным на поверхности (Han and Goodings, 2006). Несмотря на это, грунты на конкретных участках должны быть проверены на морозоустойчивость, если ожидается, что морозное пучение будет проблемой для близлежащих строений.

Общие лабораторные испытания мерзлых грунтов

Что касается мерзлых грунтов, как ASTM, так и JGS имеют некоторые стандарты для лабораторных испытаний. Однако многие из этих испытаний относятся либо к дорожному покрытию, многократным циклам замораживания-оттаивания, либо дают информацию только о направлении теплового потока.JGS 0171-2003 — это метод испытаний для прогнозирования морозного пучения почвы. В этом стандарте используется уравнение Такаши для морозного пучения в направлении теплового потока. Kanie et al. В 2013 году было предложено использовать метод трехмерной оценки с использованием уникального лабораторного оборудования и моделирования методом конечных элементов.

В настоящее время существуют стандарты для определения прочностных свойств при постоянной деформации (ASTM D7300-11) и свойств ползучести (ASTM D5520-11). Оба этих теста выполняются при одноосном сжатии.Стандарты трехосного испытания незамерзшей почвы не применяются к мерзлым грунтам, и для получения сопоставимых результатов необходимы новые стандарты.

Существует множество нестандартных лабораторных и полевых испытаний, используемых в настоящее время для мерзлых грунтов, включая (Oestgaard and Zubeck 2013):

  • Прямой сдвиг (Bennett and Nickling 1984, Yasufuku et al. 2003).
  • Трехосное сжатие (Бейкер и др. 1984, Аренсон и др. 2004).
  • Одноосное растяжение (Zhu and Carbee 1987, Erckhardt 1981).
  • Постоянная ползучесть (Андерсленд и Ладаньи, 2004).
  • Тест на расслабление (Андерсленд и Ладаньи, 2004).
  • Консолидация оттепели (Моргенштерн и Никсон, 1971).
  • Давление ползучести (Ladanyi 1982).
  • Давление релаксации давления (Ladanyi 1982, Ladanyi and Melouki 1992).

Классификация мерзлых грунтов

Классификация и описание мерзлых грунтов в настоящее время задокументированы ASTM D4083-89 (повторно утверждены в 2007 г.). Это включает в себя описание как почвенной фазы, так и ледяной фазы материала.Описание фазы почвы такое же, как у незамерзшей почвы, ASTM D2488. Затем замороженная фаза классифицируется на одну из двух групп: N для почвы без видимого льда и V для почвы со значительной видимой льдом.

Эти группы впоследствии разбиваются на подгруппы, описанные в стандарте. На рисунках 3 и 4 показаны визуальные представления классификации видимого и невидимого льда в соответствии со стандартом ASTM D4083-89.

Young

Рис. 3. Видимый лед в мерзлой почве (ASTM D4083-89)

Видимый лед представлен черным цветом на Рис. 3.Видимый лед может существовать в структуре почвы в виде отдельных ледяных карманов (Vx), покрытий вокруг частиц почвы (Vc), нерегулярных образований (Vr) или слоистых образований (Vs).

Young

Рис. 4. Структура мерзлого грунта без видимого льда (ASTM D4083-89)

Как и на Рис. 3, лед представлен черным цветом на Рис. 4. Когда нет видимого льда в структуре Мерзлый грунт классифицируется по тому, насколько хорошо образец сцеплен со льдом.Замерзший грунт без видимого льда может быть плохо связан (Nf), хорошо связан без лишнего льда (Nbn) или хорошо связан с лишним льдом (Nbe).

Sayles et al. 1987 дает несколько рекомендаций для полного описания мерзлого грунта. К ним относятся символ и описание USCS незамерзшей почвы, символ и описание замороженной почвы, гранулометрический состав, пределы Аттерберга, а также физические свойства, такие как содержание льда (замороженный), содержание воды (незамерзшее), удельный вес, удельный вес почвы, насыщение процент и соленость.Эти параметры имеют сильное влияние на прочность и поведение почвы в мерзлом состоянии. Для искусственного замораживания грунта рекомендуется использовать систему, описанную в Andersland and Anderson 1978 (Sayles et al. 1987). Still et al. В 2013 году было предложено разработать стандартизированные индексные тесты для использования при классификации мерзлых грунтов.

Внедрение замораживания грунта в полевых условиях может выполняться с использованием различного оборудования, охлаждающих жидкостей и процедур. В следующих разделах описан общий обзор реализации замораживания грунта.

Оборудование

Для замораживания грунта требуется мобильная холодильная установка. Установка может работать на охлаждающих жидкостях, таких как аммиак или CO2, и отводить тепло от циркулирующей жидкости, которой обычно является хлорид кальция или рассол хлористого магния (Jessberger 1980).

Young

Рис. 5. Мобильные холодильные установки при AGF (SoilFreeze)

Температуры рассола -25 ° C или ниже обычно достаточно для большинства проектов. Также доступны коммерческие рассолы, разработанные специально для использования с AFG.Важно исследовать свойства этих охлаждающих жидкостей, чтобы гарантировать совместимость с другим оборудованием (например, коррозия труб). Используемая охлаждающая жидкость может зависеть от температурных требований проекта, рассол хлорида магния замерзает при -34 °, а рассол хлористого кальция замерзает при -55 ° C.

LN2 кипит при температуре -196 ° C и может использоваться вместо обычного хладагента. Из-за чрезвычайно низкой температуры LN2 промерзание почвы при контакте с LN2 происходит намного быстрее.Таким образом, полное замораживание может быть выполнено намного быстрее, используя LN2 вместо охлажденного рассола. Однако из-за более высокой стоимости его обычно резервируют для аварийной стабилизации, краткосрочного замораживания и проектов небольшого объема. В этом случае LN2 транспортируется на площадку в специализированных резервуарах для хранения и вводится непосредственно в замораживающие трубы. Он не циркулирует через холодильную установку. Скорее, ему дают испариться на поверхности, как показано на рисунке 5, после того, как он отводит тепло от почвы (Jessberger 1980).

Рис. 6. Испарение жидкого азота во время AGF («замораживание грунта»)

В таблице 1 представлена ​​основная сводка относительных сравнений между охлажденным рассолом с хлоридом кальция и жидким азотом (LN2).

Young

Таблица 1. Сводка свойств рассола хлорида кальция и жидкого азота для AGF

В более холодном климате термосифоны могут использоваться для достижения температур, необходимых для замораживания почвы. Термосифоны осуществляют конвекцию рабочего тела для отвода тепла от земли и передачи его воздуху на поверхности земли.Для того, чтобы этот процесс работал, температура окружающего воздуха должна быть ниже температуры земли, поэтому он обычно используется в холодных регионах. Рабочая жидкость термосифона закапывается в землю, где содержащаяся в ней жидкость поглощает тепло, испаряется и поднимается к верху сифона. Там он охлаждается окружающим воздухом, в результате чего он конденсируется и возвращается на дно термосифона. Этот процесс показан на рисунке 6 ниже. Этот процесс является энергоэффективным, однако для его эффективного использования в процессе AGF требуется температура воздуха ниже нуля.Если требуется дальнейшее замораживание, можно использовать термосифоны с питанием для снижения температуры земли после того, как они достигли температуры окружающего воздуха (Wagner and Yarmak 2013).

Young

Рис. 7. Схема пассивного термосифона (Wagner and Yarmak 2012)

Морозильные трубы могут быть изготовлены из различных материалов. Типичная установка может включать стальные внешние трубы диаметром 5 дюймов и внутренние пластиковые (например, полиэтиленовые) трубы диаметром 3 дюйма (Klein 2012). Трубы для замораживания должны стоять в вертикальном положении и выдерживать боковое давление грунта, связанное с площадкой.Согласно историческому эмпирическому правилу, замораживающие трубы должны выдерживать 13 кПа на метр глубины заглубления шахты (Klein 2012). Необходимо следить за целостностью замерзшей трубы, чтобы предотвратить повреждение труб из-за вспучивания почвы.

Одним из наиболее важных аспектов проекта AGF является мониторинг состояния почвы во время замерзания и оттаивания. Обычно возле промерзшей стены просверливают отверстие, куда устанавливают датчики температуры для контроля температуры почвы. Это имеет жизненно важное значение для конечного продукта (мерзлая срезанная стенка, масса мерзлого грунта и т. Д.).Кроме того, отслеживается пучение и оседание грунта из-за замерзания и оттаивания грунта после завершения проекта. Если предполагается проведение земляных работ за замороженной стеной, для измерения прогибов стен могут использоваться дефлектометры, экстензометры и инклинометры. Чтобы определить, существуют ли какие-либо окна из незамерзшей почвы в массе мерзлого грунта, можно провести ультразвуковые измерения. Наконец, при необходимости выполняются измерения для конкретных проектов, такие как вертикальное давление и деформации существующих конструкций из-за вертикального подъема (проходка туннелей, фундаменты, особые проектные соображения) (Jessberger, 1980).

С помощью компьютерных систем большая часть процесса AGF автоматизирована.

Автоматический сбор данных используется для измерения температуры и прогиба. Кроме того, компьютерные системы регулируют поток охлаждающей жидкости в морозильные трубы, чтобы более точно контролировать температуру земли.

Методы проектирования и соображения

Возможно, наиболее важным шагом в обеспечении успешного внедрения AGF является определение характеристик площадки, как и во всех инженерно-геологических проектах.Тип почвы и грунтовые воды должны быть точно охарактеризованы, чтобы обеспечить соответствие мерзлого грунта проектным требованиям. В частности, для проектов AGF всегда следует брать пробы грунтов и проверять их термические свойства. Подземные воды также проверяются на температуру и скорость замерзания. Высокая скорость грунтовых вод (> 2 м / сутки) создает проблемы во время промерзания почвы и может приводить к неоднородностям. Меньшее расстояние между трубами, несколько рядов или использование LN2 могут использоваться для противодействия высокой скорости грунтовых вод (FHWA 2013, Klein 2012).

Xanthakos et al. 1994 рекомендует использовать отношение расстояния между замораживающими трубами к диаметру не более 13 для труб диаметром 120 мм или меньше. Также необходимо учитывать соленость грунтовых вод. На участках с высокой соленостью будет наблюдаться снижение температуры замерзания и более низкая прочность при замерзании. По мере увеличения солености будут уменьшаться морозное пучение, оседание оттаивания и сила пучения (Hu et al. 2010). Некоторые из этих изменений полезны, однако в конечном итоге будет менее консервативный дизайн, если соленость не будет должным образом учтена.Кроме того, минерализация поровой воды может быть неоднородной. Области с более высокими концентрациями могут образовывать карманы из незамерзшей воды или пленки из незамерзшей воды вокруг частиц (Hu et al. 2010).

Дальнейшее рассмотрение, помимо свойств почвы и грунтовых вод, включает температуру окружающего воздуха, сроки и риски проекта, а также ожидаемое вспучивание и оседание почвы. Если температура окружающего воздуха достаточно низкая, термосифоны могут быть более энергоэффективным решением. В случае возникновения чрезвычайной ситуации, требующей немедленного замораживания грунта, например, conta

.

Исследование комбинированной модели гидротермальной соли для насыщенной замерзающей засоленной почвы

Вода и тепло взаимодействуют в процессе замерзания насыщенной почвы. А для засоленной почвы вода, тепло и соль взаимодействуют в процессе замерзания, потому что засоленная почва имеет растворимую соль. В данной статье установлена ​​одномерная математическая сопряженная модель гидротермальной соли. В модели для вывода уравнений применяются закон Дарси, закон сохранения энергии и закон сохранения массы.Учтите, что столбец насыщенной засоленной почвы подвергается условиям промерзания, чтобы смоделировать миграцию влаги и перенос соли. И эксперимент, и численное моделирование при одних и тех же условиях проводятся в колонке почвы. Затем сравнивают содержание влаги и соли между моделированием и экспериментом. Результат показывает, что моделирование хорошо согласуется с данными эксперимента, и через 96 часов распределение температуры становится стабильным, фронт замерзания достигает стабильного положения, и большое количество незамерзшей воды успевает переместиться.Кроме того, избыток соли выпадает в осадок, когда концентрация превышает растворимость, и осаждение распространяется прерывисто. Эти результаты могут служить справочным материалом для инженерной геологии и экологической инженерии в регионах с холодным климатом и засоленными почвами.

1. Введение

Почва в вечной мерзлоте и сезонном мерзлоте представляет собой типичную многофазную систему. В замерзающей почве вода, тепло и механика всегда взаимодействуют друг с другом. Под действием температурного градиента влага может перемещаться.А миграция влаги может повлиять на изменение пор почвы, например, на размер пор и давление воды в порах, что может вызвать морозное пучение и повреждение инфраструктуры [1, 2], в то время как для засоленной почвы в холодных регионах растворимая соль, растворенная в воде, будет переноситься во время миграции воды в процессе замерзания, что может вызвать вторичное засоление [3, 4]. Таким образом, замораживание засоленной почвы — сложный процесс, который называют гидротермально-солевым (ГТС) процессом.И засоление является серьезной проблемой, поскольку наносит ущерб сельскому хозяйству, такому как сельскохозяйственное производство и инженерное строительство, включая эрозию зданий и распространение солей.

Исследование засоленной почвы включает в себя ее основные свойства, механизм и оценку засоления, математическую сопряженную модель, а также контроль и улучшение засоления, в которых исследование связанной модели является предметом исследования [5]. Что касается сопряженного процесса почвы, связанного с условиями промерзания, большое внимание было уделено морозному пучению и взаимодействию между влагой, теплом и стрессом.Во время процесса замерзания вода постоянно движется к замерзающей части под действием потенциала почвы и воды, что приводит к динамическому изменению теплопроводности [4, 6]. Харлан [7] вывел связанные уравнения и установил связанную модель воды и тепла методом конечных разностей, на основе которой были разработаны связанные модели. Кроме того, в результате миграции воды и фазового перехода изменится структура почвы, что приведет к морозному пучению и перераспределению напряжений.В свою очередь, структурные изменения повлияют на миграцию воды. Таким образом, предложены термогидромеханические модели для описания взаимодействия тепла воды и напряжения при замерзании. Предыдущие исследования включают капиллярную модель [8, 9], модель потенциала сегрегации, модель жесткого льда, полуэмпирические подходы [10] и термодинамическую модель. Конрад и Моргенштерн [11] впервые предложили модель потенциальной сегрегации и изучали количество миграции воды и поведение при морозном пучение; затем О’Нил и Миллер [12] изучили взаимодействие воды и тепла, предложили модель жесткого льда и смоделировали образование ледяной линзы.Основываясь на жесткой модели, многие ученые [13] начали проводить исследования по изучению сопряженной модели с целью изучения характеристик морозного пучения, миграции воды и теплопередачи; таким образом, эта модель получила широкое распространение. Duquennoi et al. [14] и Фремонд и Миккола [15] впервые предложили термодинамическую модель; и с помощью этой модели они изучили изменение динамического изменения воды и тепла в процессе промерзания почвы. Вдохновленный термодинамической моделью, Nishimura et al. [16] исследовали аналогию криогенного всасывания в промерзающей почве с всасыванием матрикса в ненасыщенных почвах и разработали термогидромеханическую сопряженную формулу, а Чжан и Михаловски [17] представили упруго-пластическую конститутивную модель для изучения переноса воды и тепла в почве при промерзании. и цикл оттаивания.Однако все эти типовые модели, упомянутые выше, не касались переноса соли, не говоря уже об осадках.

Для исследования характеристик миграции воды и переноса солей в почве был проведен ряд работ в лабораторных экспериментах и ​​модельном анализе. Де Жосслен Де Йонг [18] впервые изучил характеристики переноса растворимых веществ, анализируя диффузию почвы. Париенте [19] рассмотрел влияние окружающей среды на перенос растворимых веществ и изучил динамику концентрации растворимых солей в различных климатических условиях.Несмотря на то, что некоторые ученые сосредоточились на модели, объединяющей тепло воды и соль [20, 21], мало усилий было потрачено на описание явления осаждения при переносе соли. В последнее время предпринимаются усилия по изучению характеристик влаго- и солепереноса [22, 23] и с учетом осадков [24]. Однако все эти модели были разработаны только в условиях испарения. Из всего вышесказанного меньше усилий было приложено для исследования взаимосвязи фазового превращения между льдом и водой, переноса соли и осаждения в условиях замерзания.

Путем анализа взаимосвязей между различными полями, в этой статье была создана объединенная модель гидротермальной соли для насыщенной засоленной почвы в условиях промерзания и рассчитана путем численного моделирования. Описание связанной модели основано на относительном объеме элементов почвы. В процессе замерзания потенциал почвы и воды является движущей силой миграции воды, что можно вывести с помощью закона Дэнси и уравнения Клапира. Кроме того, осадки всегда можно увидеть в процессе солевого транспорта; распределение осадков в разное время имеет определенную характеристику; таким образом, в данном исследовании учитываются осадки.С помощью одномерного эксперимента влаго- и солепереноса продемонстрирована надежность математической модели. И это исследование должно представить эффективную модель для оценки переноса воды и солей в насыщенной почве в условиях замерзания для инженерных целей.

2. Эксперимент в типичных условиях

Как мы знаем, западный Цзилинь является одним из типичных сезонных районов распространения мерзлых почв на северо-востоке Китая, который отличается высокой степенью засоленности. Климат — муссонный, средних широт.Весной и осенью здесь сухо и ветрено, жаркое лето и суровая холодная зима. Сезон дождей — июнь и август. Для сильного испарения весной соленость собиралась и осаждалась на поверхности. А для эффекта замерзания зимой миграция воды приближает соленость к фронту замерзания. С наступлением весны соленость снова собралась на поверхности [3]. Почва в западном Цзилине богата натрием и обладает свойством дисперсности [25]. Таким образом, почва в западной части провинции Цзилинь имеет свойства сезонно мерзлой почвы, засоленной почвы и дисперсной почвы.Испарение и промерзание являются важными причинами засоления почвы на этой территории. Таким образом, для изучения механизма формирования засоленной почвы необходимо изучить миграцию воды и перенос солей в процессе промерзания и испарения. И в этой статье представлены эксперимент и математическая модель для моделирования процесса замерзания зимой.

2.1. Экспериментальный материал

Почва, изучаемая в этой статье, собрана в уезде Нонгань, западный Цзилинь, что показано на Рисунке 1.В этом районе промерзание оказывает большое влияние на свойства почвы. Замерзшая почва состоит из минералов, органических веществ, незамерзшей воды, льда, воздуха и микроорганизмов. В данном исследовании игнорируется действие микроорганизмов. Минеральные и органические вещества составляют частицы почвы. В почве почвенный скелет устанавливается частицами почвы. Жидкость и газ заполняют поры скелета почвы. Для мерзлого или промерзшего грунта необходимо учитывать ледяную фазу. В этой статье представлена ​​теоретическая комбинированная модель гидротермальной соли для насыщенной почвы; таким образом воздух игнорируется.А насыщенная засоленная почва, подверженная замерзанию, моделируется и проверяется экспериментальными данными, чтобы изучить характеристики фазового перехода между жидкой водой и льдом. На Рисунке 2 схематично показан состав насыщенного промерзшего грунта, а в правой части Рисунка 2 дан относительный объем.



В насыщенной массе почвы соотношение объема и качества между каждым компонентом, включая жидкую воду, лед и частицы почвы, можно представить в виде следующих уравнений: где — общая масса почвы, равна масса частиц почвы, масса незамерзшей воды, общий объем массы почвы, объем пор,,, и плотность почвы, плотность в сухом состоянии и плотность частиц почвы, пористость, пустота соотношение, — содержание незамерзшей воды.

В процессе замерзания не вся жидкая вода превращается в лед. И при этом немного воды остается незамерзшей. Поскольку содержание незамерзшей воды зависит от текстуры почвы (включая минералы, химический компонент, плотность и засоленность), состояния окружающей среды, истории замерзания и оттаивания и т. Д. [26], содержание незамерзшей воды можно выразить следующим образом: уравнение [27, 28]: в котором — содержание незамерзшей воды; — отрицательная температура; и — эмпирические коэффициенты, связанные со свойствами почвы и содержанием соли.В этой статье и, которые проверены в предыдущем исследовании [29]. Путем преобразования относительных объемов трех фаз материалов объемное содержание незамерзшей воды в почве может быть выражено следующим уравнением согласно рисунку 1:

Когда температура ниже или равна температуре замерзания, объемное содержание незамерзшей воды в почве почва может быть выражена заменой (2) в (3):

2.2. Экспериментальная установка

Экспериментальная система состояла из камеры контроля температуры, холодильной системы и системы водоснабжения.Схематическое изображение экспериментального устройства показано на рисунке 3. И эксперимент с односторонним замораживанием проводился в открытой системе. Почва, используемая в этом эксперименте, представляет собой засоленную почву, собранную в западной части провинции Цзилинь, а гранулометрический состав представлен на рисунке 4. Максимальная плотность почвы в сухом состоянии составляет 1,68 г / см 3 . Учитывая, что оптимальная влажность почвы составляет 22%, образец почвы смешивают с влажностью 22%. Образец грунта уплотняется в виде столбика высотой 20 см и диаметром 5 см.Начальная концентрация соли в воде равна 2,73%, а растворимость соли составляет 3,9%. Перед экспериментом образец помещался в камеру контроля температуры на 24 ч, из которых температура была установлена ​​на уровне + 2 ° C. Затем образец грунта был проведен в эксперименте по одностороннему замораживанию. Температура верха столба почвы регулируется камерой контроля температуры ① на -5 ° C, в то время как температура нижней части поддерживается на уровне + 2 ° C. Боковая стенка столба грунта адиабатическая.Также раствор такой же концентрации беспрепятственно вносится на дно столба почвы для подачи воды и соли; а именно, содержание и концентрация воды на дне неизменны. Всего эксперимент длился 96 ч. После эксперимента образец разрезали на кусочки толщиной 2 см для проверки содержания воды и содержания соли.

.

LEAVE A REPLY

Ваш адрес email не будет опубликован. Обязательные поля помечены *