Бетон теплопроводность: Теплопроводность бетона: понятие и определение коэффициента

Теплопроводность бетона (монолитного железобетона)

При возведении частного дома или проведении утепляющих работ необходимо ответственно подойти к вопросам покупки материалов. Чтобы уменьшить потери тепловой энергии и снизить расходы на обогрев, следует учитывать такой параметр, как теплопроводность бетона. Он определяет способность блоков пропускать тепло и считается важнейшей эксплуатационной характеристикой.

Содержание

  • 1 Влияние теплопроводности на микроклимат внутри помещения
  • 2 Теплопроводность железобетона и тепловое сопротивление
  • 3 Коэффициент теплопроводности
    • 3.1 Коэффициент для различных видов монолита
    • 3.2 Факторы влияющие на коэффициент
    • 3.3 Теплопроводность и утепление зданий
    • 3.4 Как производится расчет
  • 4 Теплопроводность строительных материалов таблица
    • 4.1 Конструкционные материалы и их показатели
    • 4.2 Материалы из бетона с добавлением пористых заполнителей
    • 4.3 Показатели теплоизоляционных материалов
    • 4.
      4 Таблица показателей

Влияние теплопроводности на микроклимат внутри помещения

Среди большого разнообразия материалов бетонный массив считается достаточно популярным. Его ключевым свойством считается степень теплопередачи. Чтобы избежать непредвиденных теплопотерь, нужно учитывать это значение еще при составлении проекта теплоизоляции. В таком случае постройка будет как надежной и долговечной, так и комфортной для пребывания.

Если определить коэффициент теплопроводности бетона и найти подходящие материалы теплоизоляции, это позволит получить такие преимущества:

  • снизить затраты тепловой энергии;
  • уменьшить расходы на отопление;
  • организовать в помещении комфортный микроклимат.

Зависимость микроклимата в доме от степени теплопередачи объясняется следующими особенностями:

  1. По мере роста значений увеличивается интенсивность подачи тепла. В результате помещение быстрее остывает, но так же быстрее прогревается.
  2. Если теплопередача снижается, тепло долго удерживается внутри здания и не выходит наружу.

В результате степень проводимости тепловой энергии становится ключевым фактором, определяющим комфорт пребывания в доме. В зависимости от особенностей материала, он может обладать разной структурой и свойствами, а также теплопроводностью. Перед выбором блоков нужно внимательно изучить их эксплуатационные свойства и подготовить грамотный проект.

Теплопроводность железобетона и тепловое сопротивление

Начиная строительство помещения, следует ознакомиться с такими характеристиками:

  1. Коэффициент проводимости тепла. Он указывает на объемы тепла, которое проходит через блок в течение заданного интервала. Если значение снижается, это уменьшает способность пропускать тепловую энергию. При повышении значений ситуация выглядит противоположным образом.
  2. Сопротивление конструкций к потере тепла. Показатель указывает на способность материала сохранять тепло внутри постройки.
    Если он высокий, бетон подходит для теплоизоляции, если низкий — для быстрого отвода тепла наружу.

При составлении проекта здания и проведении тепловых расчетов важно уделять таким значениям особое внимание.

Коэффициент теплопроводности

В поисках хорошего материала для строительства необходимо определить, как меняется степень теплопроводности в зависимости от типа и модели монолита.

Коэффициент для различных видов монолита

Для сравнения показателей теплопроводности следует ознакомиться с таблицей, охватывающей свойства всех типов материала. Наименьшая степень присутствует у пористых конструкций:

  1. Сухие блоки и газонаполненный бетон обладают небольшой теплопроводностью. Она зависит от показателей плотности. Если удельный вес блока составляет 0,6 т/м³, коэффициент составит 0,14. При плотности 1 т/м³ — 0,31. Если влажность находится на базовом уровне, показатели увеличатся от 0,22 до 0,48. При повышении влажности — от 0,25 до 0,55.
  2. Бетон с наполнением керамзитом. С учетом значений плотности определяется теплопроводность. Изделие с плотностью 0,5 т/м³ получит показатель 0,14. По мере увеличения плотности до 1,8 т/м³ свойство вырастет до 0,66.

Еще коэффициент зависит от применяемых наполнителей. Так, если тяжелый бетон (2,4 т/м³) будет иметь в составе щебенку, параметр составит 1,51.

При использовании шлака теплопроводность составит 0,3-0,7. Изделия на основе кварцевого или перлитового песка с плотностью 0,8-1 получат проводимость тепла 0,22-0,41.

Факторы влияющие на коэффициент

Степень проводимости бетона любой марки определяется множеством факторов. В их числе:

  1. Структура массива. Если в монолите присутствуют воздушные полости, передача тепла будет медленной и без больших потерь. По мере увеличения пористости теплоизоляция улучшается.
  2. Удельный вес массива. Монолит обладает разной плотностью, которая определяет его структуру и интенсивность обмена тепла. При росте показателей плотности растет и теплоотдача.
    В результате конструкция быстрее лишается тепла.
  3. Содержание влаги в стенах из бетона. Массивы с пористой структурой гигроскопичны. Остатки влаги, находящейся в капиллярах, могут просачиваться в бетон и заполнять воздушные поры, способствуя быстрой передаче тепла.

При выполнении расчетов нужно учитывать, что снижение влажности минимизирует проводимость тепла, из-за чего уровень теплопотерь становится невысоким.

С помощью пористых компонентов можно защитить постройку от быстрого расходования тепла и обеспечить хорошие климатические условия в здании. Изделия с низкой теплопроводностью эффективны при изоляции помещений, поэтому их применяют в северных регионах с суровыми зимами.

Теплопроводность и утепление зданий

Приступая к организации эффективной теплозащиты частного жилища, важно обращать внимание на тип материала, из которого создаются стены. С учетом специфики конструкции и эксплуатационных свойств, выделяют такие разновидности бетонных масивов:

  1. Конструкционные. Необходимы при возведении капитальных стен. Их характеризует повышенная устойчивость к нагрузкам и способность быстро пропускать тепловую энергию.
  2. Материалы для теплоизоляции. Задействуются при обустройстве помещений с минимальными нагрузками на стены. Обладают небольшим весом, пористым строением и малой теплопередачей.

Чтобы в помещении всегда сохранялась комфортная температура, рекомендуется использовать для возведения стен разные виды бетона. Однако в таком случае показатели толщины стен будут меняться. Оптимальный уровень проводимости тепла возможен при таких параметрах толщины:

  1. Пенобетон — не больше 25 см.
  2. Керамзитобетон — до 50 см.
  3. Кирпичи — 65 см.

Как производится расчет

Для сохранения тепла внутри дома и сокращения потерь тепловой энергии несущие стены делаются многослойными. Чтобы рассчитать толщину слоя изоляции, необходимо руководствоваться следующей формулой — R=p/k.

Она имеет следующую расшифровку:

  • R — показатель устойчивости к скачкам температуры;
  • p — толщина слоя в метрах;
  • k — Проводимость тепла монолитом.

С помощью такой формулы можно благополучно выполнить расчет с помощью простого калькулятора. Это решается путем разделения толщины на коэффициент теплопроводности.

Теплопроводность строительных материалов таблица

Конструкционные материалы и их показатели

Конструкционный бетон, теплопроводность которого зависит от применяемых наполнителей, пользуется большой популярностью. Это обусловлено его прочностью и эластичностью, что позволяет возводить надежные и защищенные от потерь тепла постройки.

Чем тяжелее наполняющий компонент, тем выше степень теплопроводности раствора. Тяжелый материал не сможет долго удерживать тепло, поэтому большинство построек из конструкционных материалов требуют дополнительной теплоизоляции, в большинстве случаев — снаружи.

Для таких материалов характерны следующие коэффициенты:

  1. Тяжелый — 1,2-1,5 Вт/м К.
  2. Легкий — 0,25-0,52 Вт/м К.

Материалы из бетона с добавлением пористых заполнителей

Пористые конструкции характеризуются хорошим удержанием тепла, при этом точный показатель теплопроводности зависит от следующих факторов:

  1. Параметры ячеистости.
  2. Уровень влажности.
  3. Показатели плотности.
  4. Теплопроводность матрицы.

Так, кирпич керамический пустотелый обладает теплопроводностью в 0,4-0,7 Вт/(м град). Полнотелые разновидности проводят тепло в 1,5-2 раза лучше.

Показатели теплоизоляционных материалов

Теплоизоляционные конструкции, состоящие из шлакового наполнителя и керамзита, характеризуются минимальной теплопроводностью. Однако их прочностные свойства остаются невысокими, поэтому основная сфера применения — изоляция несущих стен и пола. Возводить основные конструкции из таких материалов запрещено.

Таблица показателей

Таблица значений для разных материалов выглядит следующим образом:

МатериалПлотность кг/м³Теплопроводность

Вт/(м/С)

Паро-

проницаемость

Сопротивление теплопередаче
Железобетон25001.690.037.10
Бетон24001.510.036.34
Керамзитобетон18000.660.092.77
Кирпич красный18000.560.112.35
Пенобетон3000.080.260.34
Гранит28003.490.00814.6
Мрамор28002.910.00812.2

Руководствуясь сведениями из этой таблицы, можно подобрать оптимальный строительный материал для возведения надежной и защищенной от холода постройки.

Что такое теплопроводность бетона? Определение и основные показатели

Содержание статьи:

  • Определение теплопроводности;
  • Основные показатели теплоотдачи;
  • Взаимосвязь влажности и теплопроводности.

Основная цель сферы строительства заключается в обеспечении сохранения тепла в пространстве, поэтому при возведении зданий нужно подбирать материалы, обладающие пониженным уровнем теплопроводности. Чем меньше показатель пропускания тепла, тем прохладнее в доме в жару и теплее в холодную пору. Данная характеристика актуальна и для бетонов. Наша компания предлагает бетон в СПб от производителя всех марок с добавлением необходимых упрочнителей и присадок.

Определение теплопроводности

Теплопроводимость представляет собой относительный коэффициент, для определения которого вычисляют показатель теплоты, проходящей через стену с площадью 1 м2, толщиной 1 м за 1 час. Условная разница температур снаружи помещения и внутри него составляет 1 градус.

Способность материала к проведению тепла – важный фактор, ведь чем больше пропускная величина, тем, соответственно, выше коэффициент теплосохранения. Соотношение энергии, охлаждающей или нагревающей материал в процессе теплообмена обуславливает уровень пропуска.

Основные показатели теплоотдачи

Коэффициент проводимости тепла вычисляется на основании двух критериев:

  • типа использованного заполнителя, который оказывает существенное влияние на плотность стройматериалов;
  • климатических условий.

Классификация бетонных смесей осуществляется по плотности. Именно по этой причине фактор разновидности заполнителя столь важен. На величину теплопроводности влияют строительные стандарты.

К примеру, различные составляющие бетона имеют разный коэффициент теплоотдачи:

  • монолитные бетоны – 1,75;
  • пористые бетоны – 1,4;
  • щебень – 1,3;
  • песок – 0,7;
  • теплозащитные составы – 0,18.

Таким образом, можно подвести итог, что чем тяжелее наполнитель, тем выше коэффициент теплопроводности раствора. Тяжелые бетоны обладают увеличенной плотностью, а значит хуже сохраняют тепло. Как следствие, строения, изготовленные из смеси с добавлением щебня, нуждаются в дополнительном утеплении. В свою очередь, керамзитобетон с низким уровнем теплопроводности (всего 0,41) не нуждаются в теплозащитном материале.

Взаимосвязь влажности и теплопроводности

Влажность оказывает существенное влияние на способность постройки из бетона пропускать тепло. Повышенное содержание влаги в воздухе уменьшает способность бетонных стен удерживать комфортную температуру. Если поры материала заполняются водой, а не воздухом, значительно повышается риск промерзания помещения в зимний период.

К примеру, пористые бетоны способны проводить тепло на коэффициент 0,14 Вт, тогда как аналогичные материалы, пропитанные водой – уже на 1-3 Вт.

При строительстве помещений теплопроводности следует уделять повышенное внимание, ведь от данной характеристики напрямую зависит не только комфортность нахождения в доме, но и экономия на коммунальных услугах

Теплопроводность

Теплопроводность
9
79,5
9
3 9000 9000 9000
Материал Теплопроводность
(Cal/Sec)/(CM 2 C/см)
Теплопроводности
(W/M K)*
Diamond
. .. … … …
1000
Серебро
1.01
406.0
Copper
0.99
385.0
Gold
314
Brass
109.0
Алюминий
0,50
205,0
Железо
0,163
79,5
Сталь
Steel
50.2
Lead
0.083
34.7
Mercury
. ..
8.3
Ice
0,005
1,6
Стекло, обычный
0,0025
0,8
0005 0.002
0.8
Water at 20° C
0.0014
0.6
Asbestos
0.0004
0.08
Snow (dry)
0,00026
Стеклолок
0,00015
0,04
Брикир.0009
0.15
Brick, red
. ..
0.6
Cork board
0.00011
0.04
Wool Feel
0,0001
0,04
Скальная шерсть
0,04
(StyrofOAM)
(Styrof0009
0.033
Polyurethane
0.02
Wood
0.0001
0.12-0.04
Воздух при 0 ° C
0,000057
0,024
Глия (20 ° C)
0,138
0,138
0,138
0,138
Hydrogen(20°C)
. ..
0.172
Nitrogen(20°C)
0.0234
Oxygen(20°C
0.0238
Силик Аэрогель
0,003

*Большинство из Юнга, Хью Д., Университетская физика, 7-е изд. Таблица 15-5. Значения для аэрогеля алмаза и кремнезема из CRC Handbook of Chemistry and Physics.

Обратите внимание, что 1 (кал/сек)/(см 2 Кл/см) = 419 Вт/м·К. Имея это в виду, два приведенных выше столбца не всегда совпадают. Все значения взяты из опубликованных таблиц, но не могут считаться достоверными.

Значение 0,02 Вт/мК для полиуретана можно принять за номинальную цифру, которая делает пенополиуретан одним из лучших изоляторов. NIST опубликовал процедуру числового приближения для расчета теплопроводности полиуретана на http://cryogenics. nist.gov/NewFiles/Polyurethan.html. Их расчет для наполненного фреоном полиуретана плотностью 1,99 lb/ft 3 при 20°C дает теплопроводность 0,022 Вт/мК. Расчет для наполненного полиуретана CO 2 с плотностью 2,00 фунт/фут 3 дает 0,035 Вт/мК.

Обсуждение теплопроводности
Температура Дебая и теплопроводность
Индекс

Таблицы

Справочник
Юнг
Глава 15.

  Гиперфизика***** Термодинамика Назад
0004 Обсуждение теплопроводности

Соотношение между теплопроводностью и электропроводностью металлов можно выразить через отношение:

, которое можно назвать отношением Видемана-Франца или постоянной Лоренца.

9
2,23
9
Металл K/ST (10 -8 WW/K 2 )
CU
2,23
AG
AG
2. 31
Au
2.35
Zn
2.31
Cd
2.42
Sn
2.52
Mo
2.61
PB
2,47
PT
2,51
Закон Видемана-Франца
Алфавитный указатель

Таблицы

Справочные материалы
Блатт
Раздел 13.2

Гиперфизика***** Термодинамика Вернуться назад

TLS 50 мм Применение: теплопроводность бетона

Измерительная платформа-2 (MP-2) представляет собой усовершенствованный измеритель с уникальным набором датчиков переходной теплопроводности для различных применений, с акцентом на первичные измерения. Датчики переходной теплопроводности имеют схожие принципы работы. Провод датчика нагревается с использованием источника постоянного тока (q), и повышение температуры регистрируется путем наблюдения за изменением электрического сопротивления провода (THW и EFF) или с помощью устройства для измерения температуры сопротивления (TLS). У образцов с высокой теплопроводностью сопротивление со временем увеличивается медленнее; для образцов с низкой теплопроводностью сопротивление со временем увеличивается быстрее.

Рисунок 1. Измеритель теплопроводности Thermtest MP-2

Измеритель теплопроводности MP-2 Пользователи выигрывают от удобства и точности, получаемых при использовании основных методов измерения. Контроллер МП-2 автоматически определяет подключенный датчик и загружает соответствующие параметры тестирования. Измерения легко выполняются с помощью интеллектуального встроенного программного обеспечения и передаются на компьютер с помощью прилагаемой служебной программы Windows.

Рисунок 2. Датчик Thermtest TLS 50 мм для использования с портативным расходомером MP-2.

Датчик TLS 50 мм является одним из многих датчиков, предлагаемых с портативной измерительной платформой Thermtest (MP-2), с диапазоном температур от -40°C до 100°C. Этот датчик обеспечивает простые, но точные измерения бетона, горных пород и полимеров в диапазоне от 0,3 до 5 Вт/м·К с помощью метода линейного источника переходного процесса. TLS 50 мм соответствует международно признанному стандарту испытаний в соответствии с ASTM D5334-22. TLS 50mm имеет точность 5% и воспроизводимость измерений 2%, что делает его высокоточным и прецизионным инструментом для измерения теплопроводности бетона, горных пород и полимеров.

Теплопроводность бетона

Бетон — это тип строительного материала, который изготавливается из смеси цемента и заполнителя, которым обычно является камень или гравий. Цемент является связующим веществом и редко используется сам по себе. Различные смеси бетона будут влиять на прочность и плотность материала, поэтому конкретная используемая смесь будет зависеть от области применения. Теплопроводность бетона также будет меняться в зависимости от таких факторов, как его заполнительная смесь. Это важное свойство, особенно с точки зрения зданий и энергоэффективности. В этом листе применения используется датчик Thermtest TLS 50 мм для измерения теплопроводности четырех различных образцов бетона.

Для этого эксперимента в каждом образце бетона было просверлено отверстие. Затем TLS 50 мм покрыли достаточным количеством термопасты, чтобы обеспечить надлежащий контакт между датчиком и образцом. Затем теплопроводность образца может быть проверена с высокой степенью точности.

Рис. 1: a) Четыре образца бетона, каждый из которых изготовлен из разных смесей заполнителя и цемента b) Датчик TLS 50 мм, вставленный в образец бетона.

Таблица 1: Результаты измерения четырех образцов бетона при комнатной температуре с помощью TLS 50 мм.

LEAVE A REPLY

Ваш адрес email не будет опубликован. Обязательные поля помечены *