Армирование под ленточный фундамент: Схема армирования ленточного фундамента: арматурный каркас своими руками
Армирование ленточного фундамента – основа прочности здания
Правильно построенный фундамент – гарантия прочного, сухого, теплого дома. Из разновидностей фундаментов ленточный средний по затратам материалов и трудоемкости. Использованный арматурный каркас делает из бетонной ленты жесткую раму, выдерживающую значительные нагрузки от стен, перекрытий, кровли, внутреннего наполнения дома.
Для чего нужно армировать ленточный фундамент?
Особенностью мелкозаглубленного облегченного ленточного фундамента является обязательность его армирования. Известно, что бетонные изделия очень прочные на сжатие, менее прочные на сдвиг, и малопрочные на изгиб и разрыв. Компенсируют такие недостатки бетона традиционным способом – созданием композитного материала, в котором одно вещество прекрасно работает на сжатие, а другое – на разрыв. Хорошо сжимаемое вещество дополняют волокнами или стержнями из материала плохо рвущегося и получают новый материал, свойства которого расчетом можно изменять в больших пределах.
Поэтому тонкий слой бетона, известного людям уже более 3 тыс. лет только в XIX веке придумали упрочнить стальной сеткой. Хотя строители знали, что хорошо разрывающаяся глина прекрасно армируется прочной на разрыв соломой.
В случаях, когда на участке неоднородные грунты, армирование ленточного фундамента обеспечит жесткость его рамной конструкции, берущей на себя всю нагрузку от здания и равномерно ее распределяющую.
Общая высота ленточного фундамента обычно от 0,7 – 0,8 м до 1,5 м при ширине от 0,3 до 0,5 м. При длине стены здания от 7 – 10 м такая полоса бетона рассматривается как бетонная балка. Она будет работать на прогиб, когда ее края нагрузить значительно больше, чем середину или наоборот. Т. е. бетон будет нагружен изгибающими усилиями. Защитить балку от разрушения можно поместив в ее толщу в верхней и нижней части продольные стальные или композитные стержни с регулярной профилировкой поверхности. Они за счет профилировки воспримут на себя разрывающие усилия и не дадут растрескаться бетону.
Особенности конструкции армирующего каркаса
Ленточный фундамент фактически состоит из монолитных длинных балок, работающих на изгиб при неравномерных нагрузках сверху от элементов здания и неравномерных просадок снизу от разной плотности грунта.
Поэтому и армируются они в двух зонах балки:
- сверху, под защитным слоем из бетона – от нагрузок на концах балки, когда середина находится на опоре;
- снизу, чуть выше нижнего защитного слоя – при нагрузке на середину полосы ленты и опорах под углами здания.
В схеме армирования ленточного фундамента несколько продольных стержней нижнего ряда удерживаются на определенном расстоянии от слоя стержней верхнего ряда вертикальными поперечными стержнями, идущими с шагом от 300 до 500 – 700 мм.
По ширине продольные пруты арматуры удерживаются горизонтальными поперечными стержнями, расположенными с тем же шагом, что и вертикальные.
Поперечные стержни арматуры предназначены:
- воспринимать поперечные усилия, прилагаемые к балке;
- ограничивать увеличение образовавшихся трещин;
- удерживать положение продольных стержней по требованиям чертежа;
- удерживать стержни от выпучивания в любую сторону.
Стержни связываются проволокой или свариваются в объемный каркас. Его высота и ширина меньше на удвоенную толщину защитного слоя бетона.
Основные функции защитного слоя бетона:
- сохранение арматуры от внешнего, в т. ч. и агрессивного воздействия, в основном, воды или водяного пара;
- передача нагрузок от бетона на арматуру;
- обеспечение анкеровки, т. е. «зацепляемости» арматуры в толще бетона;
- обеспечение стыка элементов арматуры;
- обеспечение стойкости арматуры в пламени пожара.
Обычно толщина защитного слоя от 25 – 30 мм до 50 – 60 мм.
Требования к арматуре для ленточного фундамента
В качестве продольной арматуры для мелкозаглубленных фундаментов используют стальную или композитную арматуру с профилированной поверхностью. Профили на стержнях обеспечивают передачу большей нагрузки от изгибающегося бетона на арматурный стержень, чем при гладкой поверхности стержня.
Обычно используют стержни диаметром от 10 до 16 – 18 мм.
Для поперечного армирования обычно берут гладкие стержни диаметром 6 – 8 мм.
Количество стержней, их диаметр, шаг арматуры при установке, толщину защитного слоя, способы и конструкции для армирования углов фундамента и мест пересечения с внутренними несущими стенами должен рассчитывать профессиональный строитель, имеющий высшее образование и практику в этом деле. Он же и отразит принятые решения в чертежах ленточного фундамента, в т. ч. и разработает схему армирования ленточного фундамента.
В СНиП 52-01-2003 по бетонным и железобетонным конструкциям в п. 5.3 изложены требования к арматуре как стальной, так и композитной.
Стальная арматура может быть гладкая и профилированная, горячекатаная, профилированная упрочненная термомеханически, холоднодеформированная, т. е. упрочненная механически без нагревания.
Правильное армирование углов ленточного фундамента
Угловые участки ленточного фундамента – зоны концентрации разнородных напряжений. Две сходящиеся под углом «балки» монолитной конструкции могут иметь в этой зоне нагрузки противоположного направления. Кроме того может быть разная по величине нагрузка от разных стен. На угол могут действовать напряжения растяжения от одной стены и сжатия от другой. Разнородные напряжения должна выдерживать каркасная конструкция угла. Для этого должно быть обеспечено сопряжение каркасов.
Поэтому армирование производится усилением арматурного каркаса как минимум в 2 раза. Для этого поступают следующим образом:
- арматурный продольный стержень первого каркаса, являющийся внутренним по отношению к наружной части фундамента пропускается вперед и загибается под прямым углом, так, чтобы отогнутая длина была не менее 50 диаметров стержня;
- стержень передвигается, пока он не примкнет к наружному стержню перпендикулярного второго арматурного каркаса, образуется первый нахлест;
- наружный стержень перпендикулярного второго каркаса тоже сгибается и подводится к наружному стержню первого каркаса, образуется второй нахлест;
- внутренний стержень второго каркаса сгибается, сгиб передвигается к наружному стержню первого каркаса и прикладывается ко второму нахлесту;
- первый и второй нахлесты и перекрест внутренних стержней перевязываются проволокой или свариваются, обвязываются (свариваются) и вертикальные и горизонтальные поперечные стержни.
Как вариант – наружные стержни не сгибаются, а гнется кусок арматуры в виде Г-образного хомута, оба конца которого перевязываются с обоими наружными стержнями.
Для стыковки балок для несущих внутренних стен с наружными балками вязку делают так, как указано на рисунках.
Идея та же, что и при армировании в углах – перевязка или сварка внутренних стержней с наружными или с добавочными элементами в виде Г- или П-образных элементов или петель из арматуры. Ни в коем случае не делать простое пересечение стержней.
Этапы строительства ленточного армированного фундамента
Этапы строительства такие:
- Выкапывание котлована или траншей. Глубина должна учитывать глубину тела фундамента и противопучинистой подушки.
- Разметка. (см. статью «Как разметить ленточный фундамент своими руками»).
- Засыпать в траншею песчаную подушку и утрамбовать ее, потом – щебневую.
- Установить и закрепить щиты опалубки.
Уложить на дно и стены слой гидроизоляции в виде полиэтиленовой пленки.
- Связать и подготовить продольные куски арматурных каркасов. Установить их в опалубку и проверить равенство расстояний от опалубки до каркаса с обеих сторон. В качестве дистанционных элементов использовать заранее заготовленные бруски из бетона или специальные пластиковые стойки-«стульчики». Те же расстояния обеспечить и в нижней части каркаса. Куски кирпича не использовать.
- Правильно связать угловые части каркасов и места пересечения с несущими стенами.
- Проверить установку каркасов – защитные расстояния, высоту, горизонтальность, правильность и полноту увязки, и другие требования, изложенные в чертеже фундамента.
- Залить бетонный раствор одним заходом и тщательно провибрировать его. Выждать 10 – 15 дней и можно снимать опалубку.
- Основа дома будет готова на 10 – 15 день после заливки, ее можно понемногу нагружать строительством стен. Полная готовность будет на 28 – 30 день после окончания бетонирования.
Основные ошибки при армировании
Ошибок делается много и разных, но главные из них такие:
- Для арматурного каркаса не делается защитный слой бетона или делается недостаточной толщины. Как дистанционные прокладки используются куски керамического или даже силикатного кирпича, хорошо пропускающие воду.
- Не используется пленка для предотвращения вытекания жидкого цементного «молочка» через деревянную опалубку. Или большие щели в опалубке – через них тоже течет.
- Нет гидроизоляции между подошвой и стенками ленточного фундамента – при высокой водопроницаемости бетона коррозия его разрушит за 10 – 15 лет, в т. ч. его будет «рвать» ржавеющая арматура.
- Песчано-щебневая смесь под подошвой имеет крупный щебень и не закрыта сверху гидроизоляцией от бетона.
- Бетон при заливке подается порциями через день или реже – получают две или три балки с независимым армированием. Интервалы – не более 1,5 – 2 часов.
- Укладка стержней в углах с обычным поворотом
наружных и внутренних стержней или, что еще хуже с их простым перекрещиванием.
Вопросы и ответы по теме
По материалу пока еще не задан ни один вопрос, у вас есть возможность сделать это первым
Как сделать армирование ленточного фундамента своими руками: Инструкция- Обзор +Видео
Фундамент любого строения в процессе эксплуатации подвергается значительным нагрузкам. Поэтому его прочность и устойчивость являются чрезвычайно важными.
С помощью армирования показатели этих характеристик значительно улучшаются, при меньшем весе конструкция приобретает большую устойчивость. Фундамент любого типа должен быть устроен таким образом, чтобы он отвечал всем необходимым требованиям. Это относится к его надежности и долговечности, устойчивости к механическим нагрузкам и климатическим воздействиям.
[contents]
Содержание:
Основными несущими строительными материалами при возведении строения являются бетон и сталь.
Свойства материалов принципиально различны: сталь значительнее тверже и прочнее бетона, зато последний дешевле чуть не в сто раз.
Их сочетание позволяет получать облегченный строительный материал повышенной прочности. Таким композитным материалом является железобетон.
Характеристики бетона определяют расположение в нем стальных составляющих. Обычно это те места, которые наиболее подвержены изгибу и растяжению.
Некоторые полагают, что основание здания работает исключительно на сжатие, и армирование фундамента ленточного типа не так уж нужно. Согласиться с этим можно в том случае, если основанием фундамента служат скальные грунты.
Однако гораздо чаще грунт не является сплошным монолитом, и имеется множество факторов, вынуждающих его работать на изгиб.
К ним относятся:
- Нестабильность (подвижность) верхних слоев почвы;
- Неоднородность грунта.
Различная плотность его поверхностных слоев может стать причиной усадки;
- Размыв грунта подземными водами или осадками;
- Морозное пучение. Низкие зимние температуры и соседство грунтовых вод увеличивает (или вспучивает) глинистые почвы на 15 процентов от первоначального объема. Когда такое происходит, фундамент начинает выдавливаться основанием вверх.
Конструкции из бетона под действием возникающего напряжения начинают разрушаться – образуются трещины, происходит усадка фундамента. Эти процессы не только ухудшают внешний вид строения, но способны стать причиной его разрушения.
Другими словами, на армировании фундамента лучше не экономить, так как последующий ремонт жилища и его восстановление обойдутся в разы дороже.
В чем состоит суть процесса армирования? Это создание надежного пространственного каркаса, состоящего из поперечной и продольной арматуры, специальной вязальной проволоки и усиливающих хомутов.
Продольное армирование фундамента
Вдоль всей длины фундамента укладываются металлические пруты длиной от 6-ти до 12-ти метров. Растяжению сопротивляется именно такая продольная арматура.
Такое армирование обычно осуществляют по нижнему и верхнему краю конструкции из бетона. Схема укладки осуществляется согласно произведенному заранее расчету. Он производится с обязательным учетом всех потенциальных нагрузок, в том числе собственного веса, воздействия климатических факторов – ветра и снега.
Показатели несущей способности грунта берутся из геологических изысканий, по геологическому разрезу. Занимаясь армированием, важно помнить о необходимости бетонного защитного слоя. Это расстояние между стержнем непосредственно арматуры и боковой поверхности самого фундамента.
Данный слой имеет большое значение. Он оберегает металл от агрессивного действия грунтовых вод и воздуха. Чтобы железобетон хорошо справлялся с возложенной на него задачей, металлическая арматура должна располагаться внутри цементной массы.
Армирование фундамента поперечное
Применение поперечного конструктивного армирования предполагает использование
Их функция заключается в следующем:
- Предотвращение образования и развития трещин;
- Фиксирование в рабочем положении продольной арматуры;
- Сдерживает неучтенную нагрузку, такую, как, например, выпучивание фундамента сбоку.
Для этого используется железная арматура сечением не менее 6-ти миллиметров.
Армирование углов
Нередко армирование углов производится из обрезков и остатков арматуры, из-за чего приходится состыковывать стержни внахлест. Соединяются они посредством сварки ли особых стыковых сочленений.
При этом концы гладкопрофильной арматуры загибают в форме петель, лапок и крюков. Концы же прутов с периодическим профилем в этом не нуждаются.
В сварных соединениях стыков используют специальные накладки-скобы, в механических соединениях применяют обжимные и резьбовые муфты.
Важно обратить внимание на тот факт, что строго запрещается простым нахлестом армировать углы.
В противном случае не гарантируется неподвижность и целостность получившегося угла. Т-образные и угловые примыкания каркасов осуществляются тремя различными методами: изогнутыми хомутами формы П и Г или специальными лапками.
Армирование ленточного фундамента: основная технология
Существует подробная инструкция, которой можно придерживаться при укреплении фундамента. Порядок действий следующий.
Устанавливается опалубка, затем с внутренней стороны она застилается пергаментом. Перед укладкой каркаса необходимо сделать специальную песчано-гравийную подушку, или подбетонку.
Можно обойтись без нее, но тогда придется использовать специальные подставки, которые должны быть помещены под нижний ряд прутов.Расстояние от песчаной подушки до железных прутьев должно составлять не менее семи сантиметров.С функциями таких подставок отлично справляются поставленные на ребро строительные кирпичи.
Арматурные стержни забиваются в траншею: длина их должна быть равно высоте предполагаемого основания, и не менее пяти миллиметров отделяют их от самой опалубки.
Кладется начальный, нижний ряд арматуры, состоящий примерно из 2-4 металлических стержней. Их располагают внахлест, расстояние между ними должно составлять около 30 см. Размер самого нахлеста – не менее 50 сечений арматурных прутов.
При монтировании верхнего слоя отступ составляет пять-шесть сантиметров. Прутья распределяются строго равномерно по всей ширине возводимого фундамента. Формирующие верхний ряд стержни не должны располагаться над просветами между прутьями нижними.
Если имеется арматура с разным сечением, то более толстые стержни должны быть использованы на углах и в нижней части. Поперечные вспомогательные пруты сгибаются в форме рамки. Их необходимо расположить на расстоянии до 80 сантиметров.
Нижний и верхний ряд, вместе с перемычками, крепятся к штырям, вбитым в грунт под прямым углом. Чтобы повысить прочность и надежность конструкции, отдельные стержни соединяются под прямым углом (клеточкой).
Для этого создается специальный крючок, который соединяется специальной мягкой проволокой. Электросварка для этого не используется. Дело в том, что данный процесс изменяет рабочие характеристики стального сплава. Полученные швы будут иметь слишком малую толщину, и соединение прутьев окажется недостаточно надежным.
Исключением является только специально предназначенная для сварки арматура, имеющая особенную маркировку С.
В окончании процесса нужно сделать специальные отверстия для вентиляции. Они служат не только для предотвращения развития процессов гниения, но и для повышения амортизационных рабочих качеств конструкции.
Далее начинает процесс заливки бетона, после чего осуществляется обязательная гидроизоляция фундамента.
При выполнении всех перечисленных условий и требований строение получится устойчивым и крепким.
Ленточный фундамент своими руками: выбор арматуры
Качество металлической арматуры во многом определяет крепость и устойчивость постройки. Поэтому к выбору арматуры стоит отнестись со всей серьезностью.
Прежде всего, обратите внимание на нанесенную маркировку товара. Индекс «С» обозначает, что этот материал подлежит сварке. Пометка буквой «К» объясняет, что данный прокат вполне невосприимчив к коррозии, появляющейся от большого напряжения.
Если на арматурных прутьях нет хотя бы одного из этих символов, они категорически не подходят для обустройства фундамента.
Для укрепления ленточного фундамента лучше использовать стержни, имеющие поперечные выступы и ребра жесткости. Их наличие обеспечивает им гораздо более надежный контакт со смесью бетона. Гладкие прутья не могут так же воспринимать нагрузки, поэтому они обычно используются при построении каркаса. Для армирования предпочтительны стержни с сечением 12 мм.
youtube.com/embed/ax9hsi1xug4″ frameborder=»0″ allowfullscreen=»allowfullscreen»>
Арматура ленточного фундамента (75) | Помощь пользователям Tekla
Арматура ленточного фундамента (75) создает арматуру для бетонного ленточного фундамента.
Бары созданы
Использовать для
Не использовать для
Фундаменты, имеющие:
Прежде чем начать
Порядок выбора
Выберите бетон ленточный фундамент.
Используйте Вкладка «Изображение» для определения толщины защитного слоя бетона и хомута компенсировать.
Толщина покрытия
Описание | |
---|---|
1 | Толщина покрытия (концы полосы) |
2 | Смещение хомута |
3 | Толщина покрытия (сверху и снизу) |
Используйте вкладку Основные стержни, чтобы определить свойства верхней,
нижняя, левая и правая полосы.
Длина соединения основных стержней
Длина связи определяет, насколько стержни проходят в соседние конструкции на концах ленточных фундаментов. Использовать Длина скрепления 1 коробка для первого конца фундамента (с желтой ручкой), и ящики Bond length 2 для второй конец основания (с пурпурной ручкой).
Длину связи можно определить отдельно для:
Используйте Вкладка «Хомуты» для определения свойств хомутов и расстояния между ними. тип.
Колено
Выберите расположение хомута нахлесты в ленточном фундаменте.
Размеры хомута
Описание | |
---|---|
1 | Толщина крышки (боковины) |
2 | Внешнее расстояние между основными стержнями и внешними боковыми стержнями |
3 | Длина перехлеста двойного хомута |
4 | Длина нахлеста двойных U-образных стержней |
Направление изгиба
Опция | |
---|---|
1 | |
2 | |
3 | |
4 |
Наконечник двойного хомута бары
Если вы выбрали двойное стремя
стержней, вы можете выбрать концевые формы для стержней из списка.
Опция | Примеры |
---|---|
135 градусов По умолчанию | |
90 градусов | |
Перекрываются Если вы выберете
перекрываются, вы можете ввести длину перекрытия. |
Используйте Вкладка «Атрибуты» для определения свойств нумерации стержней и стремена.
Опция | Описание |
---|---|
Префикс | Префикс для номера позиции детали. |
Стартовый номер | Начальный номер для номера позиции детали. |
Имя | Tekla Structures использует это имя на чертежах и в отчетах. |
Класс | Использовать Класс к групповому подкреплению. Например, вы можете отображать арматуру разных классов разными цветами. |
Влияние армирования на осадочную характеристику ленточного фундамента, примыкающего к зернистому грунту-выемке
В этом разделе рассматриваются и обсуждаются полученные результаты. Во-первых, обсуждается, как рассчитать окончательную несущую способность поверхностных фундаментов. Далее рассматривается исходный двухмерный расчет ленточного фундамента в направлении, параллельном котловану. Наконец, были сопоставлены предварительные результаты первоначального анализа неармированного и армированного грунта.
Окончательную несущую способность армированного гранулированного грунта можно рассматривать как функцию этих параметров следующим образом:
$$\frac{{P}_{u}}{\gamma B}=f\left(\frac{ H}{B}, \frac{b}{B}, N, \phi , \frac{L}{B}, \frac{u}{B}, \frac{h}{B}, \frac{ s}{B}, \frac{\varDelta}{H}, \frac{\varDelta}{B}, BCR, \frac{D}{B}\right) \left(1\right)$$
в котором (H) обозначает глубину выемки, (b) представляет «отступ от края» выемки, (N) представляет количество «слоев георешетки», (BCR) описывает коэффициент «несущей способности», ( φ) — «угол трения», (L) — длина арматуры, (u) — глубина залегания первого «слоя георешетки», (h) — вертикальное расстояние между слоями георешетки, (s) — основание осадка, (B) — ширина фундамента, (D) — расстояние между двумя фундаментами, а (Δ) — прогиб «шпунтовой стены». Были проведены тесты численного анализа для восьми различных краевых расстояний основания на армированных и неармированных песчаных грунтах вблизи котлована с глубиной заделки (H/B = 3), что соответствует b / B = 0, 1,0, в… 8,0 для двух типов зернистых грунтов.
Расстояние между слоями георешетки считается равным h/B = 0,6, а расстояние первой георешетки до уровня земли, равным u/B = 0,3, является постоянным. Длина арматуры также достаточно велика, чтобы не влиять на несущую способность поверхностных фундаментов. Отношение длины арматуры к ширине фундамента равно L/B = 5, что равно L длине арматуры.
4.1. Влияние расположения фундамента, связанного с котлованом
В этой работе для определения влияния близости фундамента к котловану (b/B) на несущую способность был проведен численный анализ для восьми различных краевых расстояний основание на неармированных и армированных песчаных грунтах вблизи котлована (Н = 3В), что соответствует б / Б = 0, 1,0, в… 8,0. Изменения конечной несущей способности (указанной как безразмерный коэффициент P u / γB , где P u показывает конечную несущую способность, а γ представляет удельную массу неармированного грунта (рис. 5. Полученные данные показывают, что в неармированном рыхлом песчаном грунте конечная несущая способность увеличивается за счет увеличения отступов. В пределах отступа 8 B конечная несущая способность фундамента на неармированном рыхлом песчаном грунте такая же, как и у фундамента на ровной поверхности. Расположение фундамента на расстоянии от края, превышающем 8-кратную ширину фундамента, сводит к минимуму воздействие земляных работ.
По мере увеличения отношения b/B влияние на конечную несущую способность фундамента уменьшается. Это можно увидеть, рассмотрев влияние деформации и общих перемещений, возникающих в результате нагрузки фундамента в районе котлована, а также влияние расстояния от котлована на распределение и расширение основных напряжений под полосой. фундамента, как показано на рис. 6. Аналогичным образом, контролируя точки затвердевания модуля упругости, можно исследовать влияние расстояния от котлована на конечную несущую способность фундамента, как показано на рис. 7. цветные точки, представленные на рис. 7, представляют собой точки, в которых напряжение достигло пластического состояния, в соответствии с критерием разрушения при упрочнении (HSM). Сплошные черные точки также указывают на разрыв из-за растягивающих напряжений. Основываясь на этой базовой концепции, согласно которой грунт не может передавать растягивающие напряжения, возникают трещины при растяжении. Эти типы точек, которые находятся под напряжением, часто создаются близко к поверхности и из-за смещения стенки карьера, где прочность низкая.
4.2. Влияние одного армирующего слоя
Вторая серия численных исследований была проведена для восьми различных уступов основания поверх одного слоя георешетки, что эквивалентно ( D / B = 0 − 8). На рис. 8 показаны изменения конечной несущей способности при различных отклонениях. Результаты на этом рисунке показывают, что при любом заданном краевом расстоянии для включения одного слоя георешетки конечная несущая способность ленточного фундамента на армированном рыхлом песке вблизи котлована больше, чем у фундамента на неармированном рыхлом песке, но это увеличение несущей способности рыхлого песка для одного слоя георешетки невелико, что отражает слабую эффективность одного слоя георешетки в повышении несущей способности основания вблизи котлована.
По результатам численного анализа сделан вывод, что включение одного армирующего слоя приводит к улучшению физико-механических характеристик зернистого грунта, а размещение одного армирующего слоя в рыхлом песчаном грунте с малой плотностью более эффективно, чем плотный песчаный грунт. За счет этого улучшается жесткость рыхлого песчаного грунта и такой грунт становится более плотным. В результате его прочность на сдвиг увеличивается. Армирование не оказывает большого влияния на характеристики плотного песчаного грунта. Это будет объяснено в следующих разделах.
4.3. Влияние количества армирующих слоев
Третья серия численных исследований была проведена для восьми различных уступов основания поверх многослойной арматуры, эквивалентных D / B = 0 − 8. конечная несущая способность при различных отступах представлена на рис. 9. Для сравнения были введены параметры коэффициента несущей способности (BCR), соответствующие отношению несущей способности армированного основания к несущей способности неармированного основания. На рис. 10 показаны результаты, основанные на этом параметре.
Четко указано, что использование большего количества армирующего слоя значительно увеличивает предельную несущую способность. Это увеличение несущей способности за счет использования трехслойного армирования велико по сравнению с 1 или 2 слоями. Это контрастирует со всеми результатами по армированию песчаных грунтов армированием песчаными подушками или армированным песчаным слоем. Кроме того, это вызвано уменьшением пластических точек, образующихся между слоями в напорном грунте. Таким образом, он отражает благоприятное влияние армирования на повышение несущей способности одного ленточного фундамента вблизи котлована. Кроме того, при использовании трехслойного армирования конечная несущая способность одного ленточного фундамента эквивалентна b / B = 5 то же самое для основания на неармированной ровной поверхности. Эти изменения в конечной несущей способности фундамента с земляными работами можно уточнить, увеличивая пассивное давление грунта с увеличением отступа от земляных работ. Дальнейшее пассивное давление приводит к более глубокой и широкой зоне разрушения, что увеличивает несущую способность.
Результат на рис. 10 показывает, что BCR увеличивается за счет увеличения армирования слоя, а результаты конечных элементов показывают, что коэффициент несущей способности одного ленточного фундамента увеличивается за счет использования стены из шпунта. В результате повышается устойчивость армированного рыхлого песка вблизи выемочного песка за счет применения трех слоев армирования и использования шпунтовой стенки. Окончательная несущая способность ленточного фундамента увеличивается за счет увеличения отступа между фундаментом и стенкой из шпунта b/B, а влияние глубоких земляных работ уменьшается.
Как показано на рис. 10, вблизи котлована и в контакте с ним увеличение армирующих слоев увеличивает конечную несущую способность фундамента. В случае контакта с ямой конечная несущая способность увеличивается примерно на 38% с одним армирующим слоем. Кроме того, при использовании двух армирующих слоев конечная грузоподъемность увеличилась примерно на 73%, а при размещении трех армирующих слоев значение несущей способности увеличивается. Конечная загрузка увеличивается примерно на 204%. Поэтому, чтобы использовать максимальные характеристики армирующего слоя, рекомендуется использовать три слоя георешетки, соприкасающиеся с ямой. Причиной этого является создание высокотвердых плит, в которых рыхлый песчаный грунт на нашем расстоянии между ними уплотняется за счет прироста плотности и снижения коэффициента пористости зернистого грунта. А причина этого в том, что, размещая армирующий слой главных и действующих напряжений между твердыми плитами, в которых будут перестраиваться частицы грунта, повысится относительная плотность армированного зернового грунта и снизится его пористость и плотность грунта. . Силы трения между частицами почвы будут увеличиваться, следовательно, сопротивление почвы сильно возрастет.
Как видно на рис. 11, увеличение количества армирующих слоев вызывает большую жесткость, среди которых размещаются слои рыхлого песка, что приводит к увеличению количества. Наименьшее количество точек на расстоянии от края ямы может достичь пластического состояния, но в контакте с ямой количество пластических точек больше и разрушение грунта произошло под действием растягивающих напряжений, поэтому увеличиваются армирующие слои. оказывает очень положительное влияние на конечную грузоподъемность. И зависит от соотношения глубины H/B. Когда величина коэффициента отступа достигает b/B = 0–5, количество армирующих слоев равно трем, а после этого значения b/B > 5 требуется один армирующий слой.
Если проектировщик хочет спроектировать ленточный фундамент, примыкающий к котловану, с использованием трех армирующих слоев, и расположить ленточный фундамент на расстоянии от котлована, то конечная грузоподъемность равна конечной грузоподъемности фундамента на том же неармированном грунте и, пренебрегая затронутой глубиной ямы, он может разместить полосу ленты на определенном расстоянии от стороны ямы, в зависимости от глубины ямы. Для отношения глубин H/B = 1 соответствующее расстояние равно b = 2B, для H/B = 2 соответствующее расстояние равно b = 5B, а для отношения глубин H/B = 3 , расстояние Подходящее равно b = 6B. Для примера рассмотрим отношение глубины котлована Н/В = 3, нормируемую конечную грузоподъемность без применения георешетки и без учета влияния глубины котлована по рис. 9примерно равна 50. Для достижения этой несущей способности при использовании трех армирующих слоев, согласно рис. 9, ленточный фундамент должен располагаться на расстоянии b = 6B. Как и полагается, учитывая глубину котлована, ленточный фундамент следует располагать на большем расстоянии от котлована.
4.4. Влияние угла трения, ? произошло в угле трения,
Φ ′, почвы до 39,4°. Результаты представлены на рис. 12–14.На рис. 12 две кривые показывают, что в неармированных грунтах конечная грузоподъемность увеличивается при увеличении эффективного угла трения с 32,2° до 39,4°. Как и в случае с рыхлым песком, конечная грузоподъемность плотного песка увеличивается за счет увеличения отступа. В пределах отступа 8 B конечная несущая способность основания на неармированном плотном песчаном грунте такая же, как и у основания на ровной поверхности.
Согласно рис. 13, для грунтов, армированных геосинтетической арматурой, предельная несущая способность ленточного фундамента будет увеличиваться за счет увеличения угла трения. Это уточняется по критерию Hardening Soil Model. Исходя из этого критерия, за счет увеличения эффективного угла трения Φ ′ грунта пластическая объемная деформация должна быть малой, напряжения, возникающие между пластовыми массивами грунта, перераспределяются, а за счет поднятия слоев георешетки, зацепления и площади контакта между грунтами и геосинтетические слои увеличиваются. Таким образом, создавалось сопротивление большим горизонтальным напряжениям сдвига и смещениям грунта, создаваемым в грунте под фундаментом, и они передавались через слои георешетки на большую массу грунта. Таким образом, клин разрушения расширяется и увеличивает сопротивление трению по плоскостям разрушения (Эль Савваф и Назир, 2012).
Нормальные изменения BCR, измеренные с помощью численного моделирования по сравнению с геосинтетическими слоями, представлены на рис. 14. Отмечается, что BCR еще больше увеличивается с увеличением количества геосинтетических слоев плотных песчаных грунтов. Кривые показывают значительное увеличение BCR за счет увеличения количества геосинтетических слоев до N = 3, после чего скорость улучшения нагрузки становится намного меньше. На расстоянии, превышающем ширину основания шпунтовой стены более чем в 3 раза, несущая способность основания с трехслойной георешеткой увеличивается на 85% по сравнению с неармированным песчаным грунтом.
4.5. Влияние осадки
Оценивается эффективность армирования при осадке фундамента. На рисунке 4 представлен метод расчета, определяемый кривой нагрузки-оседлости. В таблице 4 представлены изменения конечной несущей способности и осадки фундамента для b / B = 0 и Φ ′=32,2°.
Soil | Bearing Capacity (Pu/γB) | Settlement ratio (S/B%) | ||
---|---|---|---|---|
Unreinforced | 15.30 | 1.38 | ||
1-слойная арматура | 15,75 | 1.1 | » colname=»c2″> | 1.5 |
3-layer reinforcement | 26.00 | 2.19 |
According to Table 4, foundation settlement increases with reinforcing, however, using трехслойное армирование представляется логичным при увеличении конечной грузоподъемности и учете допустимых величин осадки. Что касается других мест, нет необходимости использовать армирование для увеличения осадки основания и снижения конечной несущей способности. Например, несущая способность грунтового основания с тремя слоями армирования выше по сравнению с неармированным грунтом. Однако при трехслойном армировании осадка увеличивалась в результате растяжения грунта, заключенного между слоями георешетки. Оценка песчаного грунта проводится для более плотного грунта с большим диапазоном угла трения ( Φ ′=39,4°), а результаты приведены в таблице 5.
Soil type | Bearing Capacity (Pu/γB) | Settlement ratio (S/B%) |
---|---|---|
Unreinforced | 20.09 | 0.75 |
1-layer reinforcement | 22.00 | 1.00 |
2-layer reinforcement | 25.00 | 1. |
3-слойная арматура | 27,14 | 1,50 |
При сравнении Таблиц 4 и 5 видно, что эти два вида почв имеют схожие результаты. Следовательно, очень выгодно использовать арматуру в песчаных грунтах с большим углом трения из-за повышенной конечной несущей способности. На рисунке 15 показано изменение расчетного коэффициента S/B по отношению к опорным местам b/B. При удалении фундамента от котлована происходит уменьшение воздействия грунта. Тем не менее, влияние земляных работ на характеристики фундамента очевидно при b/B = 5, и тогда воздействие можно считать постоянным. Кроме того, замечено, что усиление грунта в плотных песках оказывает большее влияние на характеристики фундамента вблизи котлована.
4.6. Влияние внутреннего ленточного фундамента
В этом разделе рассматривается влияние внутреннего ленточного фундамента, а также влияние удлинения и соединения арматуры под этими двумя ленточными фундаментами на устойчивость и конечную несущую способность зернового грунта. В этой части ширина близко расположенных ленточных фундаментов одинакова, а (D) — расстояние между двумя соседними ленточными фундаментами, а заглубление фундаментов равно нулю. Одинаковая внешняя нагрузка одинакова на два соседних ленточных фундамента. Сначала рассматриваются примыкающие ленточные фундаменты на неармированном сыпучем грунте. В этом разделе I f (Коэффициент интерференции), коэффициент интерференции определяется следующим образом:
$${I}_{f}=\frac{{P}_{u(int-re)}}{ {P}_{u(single-unre)}} \left(2\right)$$
, где Pu (int−re) – конечная несущая способность замкового фундамента на основе армированного гранулированного грунта и Pu (одинарный-унре) – конечная несущая способность одинарного фундамента на неармированном зернистом грунте.
Параметры, используемые в этом разделе, таковы, что расстояние от отступа котлована b/B = 0 и в случае неармированного и армированного грунта со сплошными армирующими слоями N = 1,2,3 и отношение разной глубины глубины H/B = 3. Также в этом разделе длина георешетки была увеличена за счет перемещения расстояния (D) между двумя сторонами полосы, например, L/B = 5,6,7,8,9, 10. Считают отношение расстояний между футами к ширине подошв D/B и принимают расстояние (D) равным расстоянию от контейнера до контейнера бортов. Когда фундаменты не влияют друг на друга, коэффициент интерференции будет равен единице.
По результатам рисунков (16) и (17) размещение фундаментов вплотную друг к другу увеличивает несущую способность и их эффективность. Согласно рисункам с (16) по (19), они показывают, что при малых значениях отношения расстояний между соседними фундаментами и на армированном грунте несущая способность обусловлена воздействием скользких клиньев и переносом некоторых нагрузок арматурой. Увеличилось, и это увеличение в вооруженном режиме существенно в трех слоях георешетки. По мере увеличения глубины котлована и увеличения количества сплошных армирующих слоев повышается и эффективность смежных фундаментов. Эффективность смежных ленточных фундаментов по отношению несущей способности к расстоянию (D = 3B) имеет тенденцию к увеличению; Таким образом, чтобы этот диапазон можно было считать расстоянием между двумя точками в одинарной ширине (((B 1 + В 2 ) /2) + Г). За счет увеличения расстояния между ленточными фундаментами снижается несущая способность и их влияние друг на друга. В результате наличия сплошной арматуры увеличивается конечная несущая способность связанных между собой ленточных фундаментов, а ее величина увеличивается на большее расстояние фундаментов (D), и коэффициент взаимовлияния ( I f ) увеличивается более чем на единицу. Для определения длины сплошного армирующего слоя с учетом коэффициента взаимовлияния фундаментов, полосы и оптимального количества армирующих слоев равно трем (N = 3) можно использовать форму (17). Если проектировщик хочет рассчитать длину армирующих слоев, длину армирующего слоя можно получить, вычитая значение коэффициента интерференции из рис.
16 и используя результаты рис. 17.
Основной причиной повышения конечной несущей способности смежных ленточных фундаментов является то, что при увеличении расстояния между фундаментами до такой степени, что поверхность взаимодействия разрыва не оказывает большого влияния, коэффициент взаимодействия уменьшается и в тесных условиях отдельные армированные устанавливаются условия основания. В случае коэффициента интерференции ( I f ), в связи с тем, что на близких расстояниях фундаментов поверхность разрыва прилегающей упорной зоны фундамента проходит через активную зону нужного фундамента, а количество точек пластика на участке между ленточными фундаментами уменьшается. По мере удаления ленточных фундаментов от уровня разрыва прилегающей упорной зоны соседнего фундамента постепенно удаляется активная полоса нужной полосы, и в результате пластические точки в области между примыкающих ленточных фундаментов, сила сопротивления зацепляющихся клиньев и сопротивление усиливающего трения приводят к увеличению коэффициента интерференции лент основания, опирающихся на рыхлый армированный сыпучий грунт ( I f ), как показано на рисунках (18) и (19).
Из рисунков (16) и (17) видно, что коэффициент взаимовлияния ленточных фундаментов на армированном сыпучем грунте зависит от расстояния между фундаментами, количества и длины сплошных армирующих слоев. Для рыхлых песчаных грунтов георешетка армируется тремя слоями и для глубины котлована Н = 3В. Коэффициент интерференции находится в пределах от 4,10 до 5,55 для расстояний между фундаментами D= (1–3) B. Длина георешетки в этих случаях составляет около L = (5–10) B. Кроме того, эти цифры демонстрируют, что при соотношении расстояний, превышающем 6-кратную ширину фундамента (D > 6B), эффектом интерференции можно пренебречь, и каждый из ленточных фундаментов ведет себя как единый фундамент.
Если общее уравнение нагрузки включает коэффициент взаимодействия ( I f ), его модифицированную форму для поверхностного основания ленточного основания, опирающегося на несвязный сыпучий грунт (c = 0) и глубину ленточный фундамент ( D f = 0) будет записан с использованием модифицированного уравнения Терзаги (Terzaghi, 1943) следующим образом:
$$\frac{{P}_{u}}{\gamma B } = \ frac {1} {2} {N} _ {\ gamma} {I} _ {\ gamma s} {I} _ {\ gamma d} {I} _ {\ gamma i} {I} _ { \gamma g}{I}_{\gamma b} {I}_{f} \left(3\right)$$
Относительно уравнения. (3), N γ is the load capacity coefficient, I γs is the foundation shape coefficient, I γd is the foundation depth factor, I γi — коэффициент наклонной нагрузки, I γg — коэффициент уклона грунта, I γb — коэффициент отступа, I\circ \right)}{10}=\frac{90}{10}=9 \left(4\right)$$
На основе этого исследования поправочный коэффициент отступа (I γb ) для окончательной несущей способности поверхностного основания, расположенного на гребне карьера с отступом (b), можно получить с помощью рис. 9 и рис. 13. Эти рисунки показали, что при увеличении b/B до порогового значения (b/B) c , конечная несущая способность основания равна несущей способности основания, расположенного на горизонтальной поверхности. Значения коэффициента снижения (I γb ), являющееся функцией b/B и φ, где β = 90º.