Теплопроводность газобетона d500: коэффициент газоблока d500, d400, паропроницаемость газобетонных блоков, что лучше, таблица

Содержание

коэффициент газоблока d500, d400, паропроницаемость газобетонных блоков, что лучше, таблица

Для определения оптимальной толщины стен из газобетона, нужно точно знать требования, которым она должна соответствовать. Это требуется для того, чтобы защитить стены от низких и слишком высоких температурных показателей. Именно по этой причине при выборе газобетона стоит учитывать такой параметр, как теплопроводность.

Если вы строите несущую конструкцию, то на нее возложено удержание всех перекрытий, для этого важны показатели прочности. Чтобы определить все эти параметры, нужно выполнять необходимый расчет, который позволит оценить целесообразность применения рассматриваемого материала.

Содержание

  • 1 На что он влияет
  • 2 Показатели разных видов

На что он влияет

Газобетон – это строительный материал, который обладает пористой структурой и может похвастаться низкими показателями теплопроводности. Благодаря этому удается удерживать тепловую энергию в комнате. Одним из преимуществ рассматриваемого материала остается его легкий вес, благодаря чему удается выполнять все строительные работы быстро и просто. Здесь можно ознакомиться с плюсами и минусами газобетонных блоков. Тут перечислены отличия газобетона от пенобетона. Также читайте, что лучше: что лучше газобетон или шлакоблок или пенобетон.

Кроме этого, по сравнению со стенами, построенными из кирпича и бетона, в конструкцию из газобетона можно вбивать такие крепежные элементы, как гвозди и скобы.

Так как сегодня остается очень актуальным вопрос о сохранении тепла в доме, то нужно разобраться, что собой представляет термин «теплопроводности» и на что оказывает влияние?

Теплопроводность – это способность материала преобразовывать тепло и выполнять, а затем транспортировать его по всему дому.

Другими словами, если вы хотите, чтобы в доме постоянно сохранялось тепло в течение длительного времени, то нужно, чтобы показатель теплопроводности был минимальным. Для того чтоб вычислить рассматриваемой параметр, нужно измерить количество тепловой энергии, которое за 1 секунду может проходить через материал, толщиной 1 м и площадью 1 м2. Здесь можно прочитать о других технических характеристиках газобетонных блоков.

На видео рассказывается о теплопроводности газобетона:

Несмотря на то, что вы будет строить, нужно понимать, что газобетон – это очень действенный теплоизоляционный материал. Для того чтобы дом получился очень теплым, а все вычисления не были сравнены к нулю, необходимо соблюдать определенные правила:

  1. Дл соединения блоков необходимо задействовать специальный клей. Его стоит наносить на поверхность блока, а толщина слоя будет составлять несколько миллиметров.
  2. Когда шва образовались слишком толстыми, то они станут своеобразными мостиками холодами, в результате чего это слишком понизить качество газобетона.
  3. Во время строительства дома при умеренных условиях климата нужно позаботиться про утепление стен как снаружи, так и внутри.
  4. Когда вы выполняете расчет на прочность, то необходимо принимать во внимание дополнительную массу, которая будет образовываться при теплоизоляции стен.

Когда вы осуществляете выбор покрытия для строительства фасада на стенах из газобетона, то нужно всегда следовать одному правилу: каждый следующий слой обязан иметь больший коэффициент паропроницаемости по сравнению с предыдущим.

Как правило, может применяться несколько вариантов конструкций наружных стен из блоков:

  1. В один слой, с применением внешней штукатурки и армирующей сеткой. 
  2. В два слоя, с применением теплоизолятора и внешней штукатурки. 
  3. В два слоя, с отделкой кирпичом. 
  4. В три слоя, где необходимо позаботиться про монтаж вентилируемого фасада и использование теплоизолятора.

Если вы хотите обеспечить своей постройке уют и тепло, то недостаточно максимально увеличить толщину стены. Чаще всего применяют блоки Д600, марки В2,5 или же В3,5, толщина которых 300 мм.

Но не стоит полагаться на опыт других, а выбирать газобетонные блоки после того, как были выполнены все расчеты на определение прочность и теплопроводность. Тут можно посмотреть, какая должна быть толщина несущей стены из газобетона. Если вы только планируете строительство, то читайте, какой фундамент нужен для дома из газобетона.

Показатели разных видов

Несмотря на то, что газобетон – это очень прочное и надежное изделие, перед его выбором важно ознакомиться со всеми техническими характеристиками и подобрать вариант, который сочетается с условиями эксплуатации. Перед постройкой любого строения необходимо правильно выполнить расчет на прочность и определение некоторых теплотехнических показателей.

Однако произвести все эти манипуляции своими руками не всегда удается. Можно также нанять работников, которые смогут все сделать, но для этого нужно платить деньги, а не каждый рассчитывать на такие дополнительные расчеты. Здесь описаны размеры и вес газобетонных блоков.

В сложившейся ситуации необходимо учитывать примерные значения классов прочности и правильно выбрать толщину стены, учитывая назначение будущего строения.

На видео рассказывается о теплопроводности дерева и газобетона:

Многие производители советуют свои потребителям применять следующие виды газобетона:

  1. При строительстве одноэтажного дома в теплом климате, дач, гаражей можно использовать блоки с толщиной 200 мм. С учетом норм, представленная толщина применяться не может, а вот строительство дома из газобетона, параметр толщины у которых 300 мм.
  2. Когда нужно возвести подвальное помещение или цокольный этаж, то стоит задействовать блоки Д600, марка которых В3,5 с толщиной 300- 400 мм.
  3. Для межквартирных перегородок стоит применять газобетон Д500-Д600, марка которых В2,5 с параметром толщины 200-300 мм.
  4. Перегородки между комнатами можно построить с использованием таких же блоков, что и для стен, ограждающих квартиры. Единственное различие состоит в том, что их толщина должна быть 100-150 мм. При возведении стены в уже существующем доме необходимо позаботиться про звукоизоляцию, а не прочность.
  5. При строительстве нежилых комнатах стоит применять газобетон Д500. В этом случае расчет толщины материал должен быть выполнен с учетом возможных нагрузок, минимальное значение толщины будет составлять 300 мм.

Таблица 1 – Значение теплопроводности для различных видов газобетона

Марка по плотностиD300D400D500D600
Коэффициент теплопроводности в сухом состоянии, λ0[Вт/(м · ºС)]0,0720,0960,120,14
Коэффициент теплопроводности при влажности 4%, λА [Вт/(м · ºС)]0,0840,113
0,141
0,160

Газобетонные блоки сегодня набирают широкую популярность в области строительства. И это не удивительно, так как для него характерны такие свойства, как прочность, надежность и длительный срок службы. Но перед тем как производить процесс возведения дома, важно точно выполнить расчеты на прочность, а также определить показатель теплопроводности, при котором удастся сохранить тепло в доме в течение длительного времени. Возможно, вам также будет нужна информация о деревянных перекрытиях в доме из газобетона. Также читайте, чем штукатурить стены из газобетона внутри. По ссылке описано, какой клей для газобетона лучше.

Коэффициент теплопроводности газобетона: d400, d500, калькулятор теплопотерь

Человек во все времена стремился к бытовому комфорту, неотъемлемой частью которого является тёплое жилище. Обеспечить дом одним лишь отоплением всегда было сложно и дорого. Поиск стеновых материалов, аккумулирующих тепло, но не слишком быстро отдающих его в атмосферу, привёл к созданию ячеистых бетонов, и самым древним из них можно считать пенобетон.

Но настоящим прорывом XX века стал синтезный газобетон, приобретающий пористую структуру не за счёт воздействия ПАВ, а благодаря реакции алюминиевой пудры с щелочной средой. При такой технологии коэффициент теплопроводности газобетона уменьшается за счёт плотности, а прочность остаётся на высоте – в этом и есть главное достоинство материала.

Содержание

  1. Что такое коэффициент теплопроводности
  2. Тепловые особенности блоков
  3. Теплопроводность газобетона по плотности
  4. Теплопроводность газоблока в сравнении с другими материалами
  5. Физико-механические свойства газобетона
  6. Утепление газобетона – как снизить теплопроводность кладки
  7. Пенопластом
  8. Минеральной ватой
  9. Эковатой
  10. Теплой штукатуркой
  11. Заключение
  12. Калькулятор дома из газобетона

Что такое коэффициент теплопроводности

Существует точное определение, что представляет собой коэффициент теплопроводности, и приводится оно в своде правил 61.13330. Применяемая для его обозначения цифра с единицей измерения Вт/м*С, характеризует количество теплоты, которое материал способен передать за единицу времени и при равном единице температурном градиенте через единицу площади. Из всех теплофизических характеристик бетона, эта наиболее важна – во всяком случае, когда речь идёт об ограждающих конструкциях.

Нужно ли утеплять газоблок 400 мм

Подробнее

Тепловые особенности блоков

Чем меньше коэффициент теплопроводности, тем эффективнее материал сохраняет тепло. Эта характеристика напрямую зависит от плотности цементного камня, наличия в нём крупного наполнителя и его собственных свойств. Именно поэтому у бетона на гранитном щебне плотностью 2400 кг/м3, КТ составляет 1,510 Вт/м*С, а у бетона на поризованном заполнителе (керамзите, аглопорите) с минимальной плотностью 1200 кг/м3 — вполовину меньше: 0,7 Вт/м*С.

Виталий Кудряшов

Строитель
Автор портала full-houses.ru

Задать вопрос

Кроме количества пор в цементном камне и его заполнителе, на теплопроводность влияет ещё и его влажность, так как воздействие оказывают и свойства воды. Чем больше её процент, тем больше повышается и способность к передаче тепла, поэтому так важно уберегать газобетонные (да и любые другие) стены от намокания.

У конструкционно-теплоизоляционного газобетона в составе вообще нет крупного заполнителя, а песок или шлак перемолоты в муку. Поэтому даже при плотности 700 кг/м3, теплопроводность блоков не выше 0,192 Вт/м*С. Это значение ещё уменьшается параллельно со снижением объёмного веса (плотностью) камня, поэтому у блоков марки D300 показатель теплопроводности намного меньше (0,082 Вт/м*С).

Дом из бруса

23.49%

Дом из кирпича

17.51%

Бревенчатый дом

13.6%

Дом из газобетонных блоков

19.97%

Дом по канадской технологии

10.82%

Дом из оцилиндрованного бревна

3.44%

Монолитный дом

3.97%

Дом из пеноблоков

3.92%

Дом из сип-панелей

3.28%

Проголосовало: 3780

Теплопроводность газобетона по плотности

Ниже представлена таблица, в которой указаны показатели теплопроводности газобетона по маркам:

Марка газобетона по плотностиКоэффициент теплопроводности газоблока Вт/м*С
В сухом состоянииПри равновесной влажности 4%
D3000,0800,082
D4000,0950,100
D5000,1180,127
D6000,1370,150
D7000,1650,192
D8000,1820,215

Теплопроводность газоблока в сравнении с другими материалами

Голые цифры вряд ли о чём-то скажут человеку несведущему. Всё познаётся в сравнении, поэтому для наглядности предлагаем сравнить коэффициент теплопроводности газобетона с аналогичными характеристиками других материалов, применяемых для возведения стен домов.

Вид стенового материалаСредняя плотность (кг/м3)Теплопроводность (Вт/м*С)
Кирпич глиняный пустотелый12000,35
Кирпич силикатный18000,7
Керамоблок8200,19
Арболит6000,12
Газоблок5000,12
Пеноблок6000,14
Шлакоблок8000,5
Керамзитоблок8000,5
Сосна5000,15

Как видите, самый маленький коэффициент теплопроводности имеют газобетон и арболит, а соответственно, стены из них будут самые тёплые.

Физико-механические свойства газобетона

Кроме физико-технических свойств, к коим относятся теплопроводность, паропроницаемость и сорбционная влажность, у строительных материалов есть и физико-механические характеристики. Таковыми у ячеистых бетонов являются морозостойкость и класс прочности на сжатие, по показателям которых изделиям присваиваются марки.

  • Морозостойкостью (обозначается F) называют способность насыщенного водой камня выдерживать попеременное замораживание и оттаивание без потери массы и снижения прочности. Какое количество циклов выдержит испытуемый образец бетона, такая марка по морозостойкости ему и присваивается.
  • Минимально возможный показатель для ячеистых блоков – 15 циклов. Такое требование предъявляет ГОСТ к теплоизоляционно-конструкционному бетону, применяемому для возведения наружных стен зданий.
  • Для определения морозостойкости образцы погружают в воду на двое суток, после чего на 4 часа помещают в морозильную камеру. Затем вынимают, и дав пару часов постоять в тепле, снова замораживают. Проведя минимальное количество циклов (15), проверяют прочность. Если она не изменилась, продолжают испытание далее до тех пор, пока очередная проверка (через 25, 35, 50 и т. д. циклов) не зафиксирует прочностные изменения.

Представленные свойства материалов помогут определиться, что выбрать: шлакоблок или газоблок для дома.

Подробнее

  • Но главной характеристикой бетона, на основании которой определяется сфера его применения, является прочность на сжатие. Выражается она в мегапаскалях, и определяется как величина приложенной к образцу-кубику нагрузки, при которой он начинает разрушаться.
  • На основе испытаний бетону присваивается класс: обозначается он буквой В, а цифра рядом с ней показывает какая нагрузка может обеспечить образцу не менее 95% первоначальной прочности. Минимально допустимый класс прочности для газобетона, при котором из него можно возводить несущие стены – В1,5.

Если газобетон твердеет в естественных условиях, такой класс прочности будет только у блоков плотностью 600 кг/м3. При автоклавной обработке даже у блоков D300 прочность выше (не менее В2). А если учесть, что при такой плотности значительно снижается коэффициент теплопроводности, становится понятно, что именно этот материал даёт возможность получить самые теплоэффективные стены.

Развитие автоклавной технологии производства дало возможность значительно изменить классификацию ячеистых бетонов, которые при минимальной плотности получают достаточную для конструкционного использования прочность. В процессе синтезирования, под воздействием подаваемого под высоким давлением пара, в бетоне образуется более прочное вещество (гидросиликат кальция). Оно упрочняет структуру цементного камня, тем самым и обеспечивая ему отличные характеристики.

Утепление газобетона – как снизить теплопроводность кладки

Если говорить о теплопроводности самого газоблока, то она зависит от его плотности — то есть, количества в камне пор, заполненных воздухом. Чем их больше, тем ниже КТ — ведь воздух самый лучший утеплитель, и его присутствие меняет характеристики бетона.

При намокании камня воздух вытесянется водой — а она наоборот, лучше проводит тепло. Постоянное присутствие влаги может вообще свести к нулю теплоизоляционные свойчтва бетона, поэтому там, где высокая влажность воздуха обусловлена климатически, толщину внешних стен увеличивают.

  • На теплопроводность кладки оказывает влияние соответствующая характеристика кладочного раствора. Наиболее высокий коэффициент у ЦПС, поэтому в кладке на растворе швы становятся местами активных теплопотерь.
  • У цементного клея показатель теплопроводности ниже, так как в нём и вяжущее, и песок имеют тонкий помол. Его можно наносить тонким слоем – всего 2-3 мм против 10-12 мм в случае с обычным раствором (вот почему ЦПС рекомендуется применять только для кладки 1-го ряда).
  • Самым выгодным в плане теплопроводности является полиуретановый клей, у которого она даже ниже, чем у газобетона. Но применять ППУ клеи можно только для монтажа блоков 1 категории качества, так как здесь решающее значение имеет точность геометрии газоблоков.

Плотность ячеистого бетона оказывает решающее влияние на его прочность, поэтому маркируют готовые изделия именно по этому показателю.

Подробнее

  • Теплопроводность кладки в целом сильно снижается и за счёт присутствующих в ней железобетонных элементов. В многоэтажных зданиях таковыми являются все элементы несущего каркаса, в малоэтажных домах – это перемычки, колонны и армопояса.
  • Колонны в домах проектируются не так уж часто, а монолитные балки формируют так, чтобы снаружи они тоже были защищены слоем газобетона. Для этой цели опалубка собирается не из досок, а из газоблоков с U-образным сечением, внутрь которых и заливается тяжёлый бетон. Как вариант, неснимаемую опалубку для армопояса собирают их тонких перегородочных блоков, что значительно удешевляет данную конструкцию.
  • Если монолитные участки кладки ничем не защищены, да и сама она велась на цементно-песчаном растворе, газоблочные стены в силу своей теплотехнической однородности не будут обеспечивать такой же коэффициент теплопроводности, как монолитный газобетон. Соответственно, требуется дополнительное утепление — причём, характеристики утеплителя тоже должны приниматься в расчёт при определении толщины стены.

Остаётся только разобраться, чем лучше утеплять — и тут решающее значение имеет паропроницаемость теплоизоляционного материала.

Пенопластом

Вспененные пластики, к коим в строительном мире принято относить пенополистирол и пенополиуретан, с точки зрения теплоизоляционных свойств просто идеальны, потому что коэффициент теплопроводности у них в три зараза меньше, чем у самого газобетона.

Вид пенопластаТеплопроводность (Вт/м*С)Паропроницаемость (мг/м*ч*Па)
Беспрессовый пенополистирол, плотность 33 кг/м30,0310,013
Экструзионный пенополистирол, плотность 45 кг/м30,0360,013
Пенополиуретан плотностью 40 кг/м30,0290,050
  • Пенопласты практически водонепроницаемы, не содержат органики, а потому имеют длительный срок службы. И всё бы хорошо, эти материалы, особенно на полистирольной основе, имеют очень низкую паропропускную способность, что для газобетона составляет определённую проблему.
  • Правильное утепление, позволяющее вынести точку росы за пределы здания, производится только снаружи. Учитывая высокий коэффициент паропроницаемости газобетонной кладки, пар должен выйти с внешней стороны стен. Присутствие адгезионно смонтированного паронепроницаемого материала ведёт к тому, что пар запирается в толще стен: частично он возвращается назад, а часть конденсируется, повышая влажность ограждающих конструкций.
  • Допускать такого развития событий никак нельзя, поэтому пенопласты если и монтируют снаружи, то делают это не на этапе строительства дома, а спустя полгода или даже год после его окончания. Что это даёт? За это время довольно высокая тридцатипроцентная влажность, которая имеется у блоков в результате автоклавной обработки, да ещё подпитанная мокрыми процессами, сопровождающими кладку и внутреннюю отделку стен, снижается до нормативных 5-6%.
  • Кладка становится практически сухой, особенно если изнутри стены облицованы паронепроницаемыми материалами (керамическая плитка, цементная штукатурка, виниловые обои) или защищались пароизоляционными плёнками. В таком случае, пенопласт на фасаде будет отличным решением для утепления – нужно только правильно рассчитать толщину.
  • Если же изнутри стены отделывались, к примеру, гипсовой штукатуркой с бумажными обоями, или декоративной краской прямо по кладке, пар будет беспрепятственно заходить в толщу стен, не имея снаружи выхода (не поможет даже вентилируемый фасад).
  • Такая схема отделки запускает процесс вторичного увлажнения, источником которого является конденсационная влага. Отсюда и сырые стены, и плачущие окна, и плесень в углах, так что отделка в домах с ячеистобетонными стенами играет главную роль в создании комфортного микроклимата.

Конденсация паров начинается при температуре под утеплителем ниже +8 градусов. Чтобы не дать ей снижаться, при среднезимней температуре -8 градусов толщина утеплителя должна быть не менее 80 мм. При более холодном климате, для утепления газобетонных фасадов обычно используют ЭППС или ППУ толщиной 100-150 мм.

В системах вентилируемых фасадов использовать пенопласты не имеет смысла, так как пар в вентзазор практически не выходит. К тому же при пожаре такой утеплитель довольно быстро воспламеняется, образует много дыма и выделяет токсичные вещества, чему способствует проникающий в продухи кислород.

Минеральной ватой

Для защиты фасада от промерзания минеральная вата является лучшим выбором, потому что не горит и пропускает пар быстрее газобетона. Многие относятся к ней с предубеждением, памятуя об эмиссии волокон, способности к намоканию, усадке и небольшом сроке службы. Однако современные минваты имеют великолепные физические характеристики, да и от намокания атмосферной влагой защищены отделочным материалом. Соответственно, долговечность утеплителя адекватна сроку службы стен здания.

Общим термином «минвата» именуется несколько видов материала. Они различаются по типу применяемого сырья и имеют неодинаковые физические свойства. Предлагаем для начала ознакомиться с их характеристиками, которые и помогут сделать правильный выбор:

ХарактеристикаРазновидности минваты
КаменнаяШлаковатаСтекловата
Средний размер волокна (мкм)4-124-125-15
Колкостьнетестьесть
Гигроскопичность (% за 24 часа)0,951,91,7
Наличие связующих веществ %2,5-102,5-102,5-10
ГорючестьНГНГНГ
Вредные вещества при горениинезначительнозначительнонезначительно
Температура спекания (градусов Цельсия)1000300500
Коэффициент теплопроводности Вт/(м-С)0,035-0,0420,46-0,480,038-0,046
Коэффициент паропроницаемости (мг/м*ч*Па)0,49-0,600,3-0,370,25-0,35
Коэффициент звукопоглощения0,75-0,950,75-0,820,8-0,92
Вибростойкостьумереннаяслабаяслабая

Стекловату получают путём вытягивания тонких волокон из расплавленного стекла или кварцевого песка, которые благодаря связующим веществам прессуются в упругие и лёгкие по весу маты или плиты. Отличается от других видов минват по характерному жёлтому оттенку. Главным недостатном является хрупкость волокон, из-за которой материал и приобретает неприятную колкость.

Виталий Кудряшов

Строитель
Автор портала full-houses.ru

Задать вопрос

Шлаковата для утепления стен не подходит вообще, так как, кроме такой же как и у стекловаты колкости она имеет самый большой процент гигроскопичности и потери объёма, неэкологична и имеет более высокий коэффициент теплопроводности. Она предназначена для технических целей (утепления оборудования, трубопрводов).

А вот каменная вата, изготавливаемая из расплава горных пород (базальта, габбро, пироксена), просто идеально подходит для утепления отапливаемых зданий, в том числе газобетонных. У неё высокая паропроницаемость и низкая теплопроводность, она не горит и практически не дымит. С базальтовой ватой легко, а главное, безопасно, работать, так как волокна у неё неломкие, и не вызывают раздражения на коже и слизистых. Благодаря наиболее низкой гигроскопичности она лучше всего противостоит увлажнению, а потому и служить будет дольше.

Каменная вата подходит как для закладки в вентилируемые фасады, так и для тёплых штукатурных систем. Во втором случае главное – правильный подбор штукатурного состава, который не сведёт к нулю замечательные свойства утеплителя.

Эковатой

Некоторые люди путают тоже относят эковату к категории минват, но это неправильно Это совсем другой по составу материал — основой для его изготовления служит целлюлозное сырьё: лён, отходы древесной и сельскохозяйственной промышленности, вторично переработанная целлюлоза. Органика, как известно, подвержена биологическому разложению, привлекательна для грызунов, поэтому сырьё в процессе производства щедро сдабривается борной кислотой.

До недавних пор эковату выпускали только в виде рыхлого насыпного утеплителя, который годится разве что для засыпки на чердачное перекрытие или утепления подпольного пространства. Сегодня в продаже появилась эковата и в виде плит, формируемых за счёт использования в качестве вяжущего цементно-полимерного клея.

Физикотехнические характеристики этого материала ничуть не хуже, чем у минват и пенопластов, а паропроницаемость даже и выше, что для газобетонных стен очень важно. Эковата забирает влагу на себя и хорошо отдаёт её в атмосферу, что не даёт парам шанса конденсироваться. Однако при этом она может усаживаться и терять объём, и как результат, утрачивать свои теплоизоляционные свойства. Для стен отапливаемых зданий это не лучший вариант, поэтому проектировщики никогда его во внимание не принимают.

Арболит или газобетон — что лучше?». Разберём их достоинства и недостатки, и попытаемся выяснить, какой из этих материалов более удобен и выгоден для строительства.

Подробнее

Теплой штукатуркой

Определение «тёплая» штукатурка получила благодаря использованию в качестве наполнителя материалов с вспененной структурой, обладающими низким коэффициентом теплопроводности. К таковым относятся перлитовый, шлаковый или вермикулитовый песок, измельчённая пемза, гранулы пеностекла, древесноугольная или пенопластовая крошка. Благодаря их присутствию в штукатурке, на фасаде получается не только тёплое, но весьма эстетичное покрытие с зернистой фактурой. Фактически, это декоративная штукатурка, относящаяся к категории камешковых, которая может использоваться как для наружных работ, так и для интерьерных.

Эффект утепления такая штукатурка обеспечивает по тому же принципу, что и другие утеплители (да и тот же газобетон), потому что при высыхании смеси образуюется слой с наполненными воздухом порами. У данного утеплителя масса преимуществ: смесь легко и быстро наносится, легко сцепляется с основанием, не требует тщательного выравнивания, и, создавая бесшовное покрытие, ликвидирует мостики холода в кладке.

Тёплые штукатурки выпускаются в сером и белом цвете, который задаётся цветом вяжущего вещества, может колероваться в массе или окрашиваться поверхностно. Недостаток один – довольно высокая цена. Но учитывая, что вы получаете не только теплоизоляционное покрытие, но и декоративное, стоимость материала вполне оправдана.

Достоинством такого утеплителя является коэффициент теплопроводности не более 0,068 Вт/м С, что в 11-12 раз ниже, чем у обычной штукатурки. А главное, паропроницаемость у тёплых штукатурных покрытий составляет не менее 0,25 мг/м*ч*Па, что даёт возможность им пропускать пары так же хорошо, как и газобетон, обходясь без внутренних пароизоляционных покрытий.

В холодных регионах с большими ветровыми нагрузками, тёплые штукатурки использются комплексно, и наносятся поверх плитного утеплителя.

Заключение

Современные технологии, позволившие человеку создать не только тёплый искусственный камень, но и эффективные долговечные утеплители, дают возможность строить дома, требующие минимум затрат на отопление. Однако составлять многослойные конструкции необходимо с умом, учитывая свойства каждого применяемого материала. Ориентироваться при этом нужно не только на теплопроводность, но и на паропроницаемость, структурируя пирог стены таким образом, чтобы КП повышался от слоя к слою, в направлении из помещения к улице.

Калькулятор дома из газобетона

Ваши пожелания:

Плита + ростверк

Цокольный этаж

Газобетон

Металлическая

Натуральная

Гибкая

Штукатурка

Кирпич

Плитка

Инженерия

Отделка

Итого по проекту

В указанную стоимость входят следующие виды работ:

с учётом материалов, их доставки и аренды спец техники

* — Цена ориентировочная и не является публичной офертой. Актуальные цены могут быть указаны только в смете по строительству дома.

Вы можете задать свой вопрос нашему автору:

Microsoft Word — КЕЗБАН ОЗЛУТАС-PhD Thesis

%PDF-1. 5 % 1 0 объект > эндообъект 5 0 объект > эндообъект 2 0 объект > транслировать приложение/pdf

  • Noushin
  • Microsoft Word — КЕЗБАН ОЗЛУТАС — докторская диссертация — Поведение пенобетона сверхнизкой плотности
  • 2015-04-28T13:32:10+01:00PScript5.dll Версия 5.2.22015-04-28T13:32:10+01:00Acrobat Distiller 11.0 (Windows)uuid:f9a8feb9-cb42-4712-98a5-c1391a06c13duuid:27359177 c052-417e-818e-70e52b484ff5 конечный поток эндообъект 3 0 объект >
    эндообъект 4 0 объект > эндообъект 6 0 объект > эндообъект 7 0 объект > эндообъект 8 0 объект > эндообъект 90 объект > эндообъект 10 0 объект > эндообъект 11 0 объект > эндообъект 12 0 объект > эндообъект 13 0 объект > эндообъект 14 0 объект > эндообъект 15 0 объект > эндообъект 16 0 объект > эндообъект 17 0 объект > эндообъект 18 0 объект > эндообъект 19 0 объект > эндообъект 20 0 объект > эндообъект 21 0 объект > эндообъект 22 0 объект > эндообъект 23 0 объект > эндообъект 24 0 объект > эндообъект 25 0 объект > эндообъект 26 0 объект > эндообъект 27 0 объект > эндообъект 28 0 объект > эндообъект 29 0 объект > эндообъект 30 0 объект > эндообъект 31 0 объект > эндообъект 32 0 объект > эндообъект 33 0 объект > эндообъект 34 0 объект > эндообъект 35 0 объект > эндообъект 36 0 объект > эндообъект 37 0 объект > эндообъект 38 0 объект > эндообъект 390 объект > /XОбъект > >> /Анноты [329 0 R] /Родитель 10 0 Р /MediaBox [0 0 595 842] >> эндообъект 40 0 объект > эндообъект 41 0 объект > эндообъект 42 0 объект > эндообъект 43 0 объект > эндообъект 44 0 объект > эндообъект 45 0 объект > эндообъект 46 0 объект > эндообъект 47 0 объект > эндообъект 48 0 объект > эндообъект 49 0 объект > эндообъект 50 0 объект > эндообъект 51 0 объект > эндообъект 52 0 объект > эндообъект 53 0 объект > эндообъект 54 0 объект > эндообъект 55 0 объект > эндообъект 56 0 объект > эндообъект 57 0 объект > эндообъект 58 0 объект > эндообъект 590 объект > эндообъект 60 0 объект > эндообъект 61 0 объект > эндообъект 62 0 объект > эндообъект 63 0 объект > эндообъект 64 0 объект > эндообъект 65 0 объект > эндообъект 66 0 объект > эндообъект 67 0 объект > эндообъект 68 0 объект > эндообъект 69 0 объект > эндообъект 70 0 объект > эндообъект 71 0 объект > эндообъект 72 0 объект > эндообъект 73 0 объект > эндообъект 74 0 объект > эндообъект 75 0 объект > эндообъект 76 0 объект > эндообъект 77 0 объект > эндообъект 78 0 объект > эндообъект 79 0 объект > эндообъект 80 0 объект > эндообъект 81 0 объект > эндообъект 82 0 объект > эндообъект 83 0 объект > эндообъект 84 0 объект > эндообъект 85 0 объект > эндообъект 86 0 объект > эндообъект 87 0 объект > эндообъект 88 0 объект > эндообъект 890 объект > эндообъект 90 0 объект > эндообъект 91 0 объект > эндообъект 92 0 объект > эндообъект 93 0 объект > эндообъект 94 0 объект > эндообъект 95 0 объект > эндообъект 96 0 объект > эндообъект 97 0 объект > эндообъект 98 0 объект > эндообъект 99 0 объект > эндообъект 100 0 объект > эндообъект 101 0 объект > эндообъект 102 0 объект > эндообъект 103 0 объект > эндообъект 104 0 объект > эндообъект 105 0 объект > эндообъект 106 0 объект > эндообъект 107 0 объект > эндообъект 108 0 объект > эндообъект 109 0 объект > эндообъект 110 0 объект > эндообъект 111 0 объект > эндообъект 112 0 объект > эндообъект 113 0 объект > эндообъект 114 0 объект > эндообъект 115 0 объект > эндообъект 116 0 объект > эндообъект 117 0 объект > эндообъект 118 0 объект > эндообъект 1190 объект > эндообъект 120 0 объект > эндообъект 121 0 объект > эндообъект 122 0 объект > эндообъект 123 0 объект > эндообъект 124 0 объект > эндообъект 125 0 объект > эндообъект 126 0 объект > эндообъект 127 0 объект > эндообъект 128 0 объект > эндообъект 129 0 объект > эндообъект 130 0 объект > эндообъект 131 0 объект > эндообъект 132 0 объект > эндообъект 133 0 объект > эндообъект 134 0 объект > эндообъект 135 0 объект > эндообъект 136 0 объект > эндообъект 137 0 объект > эндообъект 138 0 объект > эндообъект 139 0 объект > эндообъект 140 0 объект > эндообъект 141 0 объект > эндообъект 142 0 объект > эндообъект 143 0 объект > эндообъект 144 0 объект > эндообъект 145 0 объект > эндообъект 146 0 объект > эндообъект 147 0 объект > эндообъект 148 0 объект > эндообъект 1490 объект > эндообъект 150 0 объект > эндообъект 151 0 объект > эндообъект 152 0 объект > эндообъект 153 0 объект > эндообъект 154 0 объект > эндообъект 155 0 объект > эндообъект 156 0 объект > эндообъект 157 0 объект > эндообъект 158 0 объект > эндообъект 159 0 объект > эндообъект 160 0 объект > эндообъект 161 0 объект > эндообъект 162 0 объект > эндообъект 163 0 объект > эндообъект 164 0 объект > эндообъект 165 0 объект > эндообъект 166 0 объект > эндообъект 167 0 объект > эндообъект 168 0 объект > эндообъект 169 0 объект > эндообъект 170 0 объект > эндообъект 171 0 объект > эндообъект 172 0 объект > эндообъект 173 0 объект > эндообъект 174 0 объект > эндообъект 175 0 объект > эндообъект 176 0 объект > эндообъект 177 0 объект > эндообъект 178 0 объект > эндообъект 1790 объект > эндообъект 180 0 объект > эндообъект 181 0 объект > эндообъект 182 0 объект > эндообъект 183 0 объект > эндообъект 184 0 объект > эндообъект 185 0 объект > эндообъект 186 0 объект > эндообъект 187 0 объект > эндообъект 188 0 объект > эндообъект 189 0 объект > эндообъект 190 0 объект > эндообъект 191 0 объект > эндообъект 192 0 объект > эндообъект 193 0 объект > эндообъект 194 0 объект > эндообъект 195 0 объект > эндообъект 196 0 объект > эндообъект 197 0 объект > эндообъект 198 0 объект > эндообъект 199 0 объект > эндообъект 200 0 объект > эндообъект 201 0 объект > эндообъект 202 0 объект > эндообъект 203 0 объект > эндообъект 204 0 объект > эндообъект 205 0 объект > эндообъект 206 0 объект > эндообъект 207 0 объект > эндообъект 208 0 объект > эндообъект 2090 объект > эндообъект 210 0 объект > эндообъект 211 0 объект > эндообъект 212 0 объект > эндообъект 213 0 объект > эндообъект 214 0 объект > эндообъект 215 0 объект > эндообъект 216 0 объект > эндообъект 217 0 объект > эндообъект 218 0 объект > эндообъект 219 0 объект > эндообъект 220 0 объект > эндообъект 221 0 объект > эндообъект 222 0 объект > эндообъект 223 0 объект > эндообъект 224 0 объект > эндообъект 225 0 объект > эндообъект 226 0 объект > эндообъект 227 0 объект > эндообъект 228 0 объект > эндообъект 229 0 объект > эндообъект 230 0 объект > эндообъект 231 0 объект > эндообъект 232 0 объект > эндообъект 233 0 объект > эндообъект 234 0 объект > эндообъект 235 0 объект > эндообъект 236 0 объект > эндообъект 237 0 объект > эндообъект 238 0 объект > эндообъект 2390 объект > эндообъект 240 0 объект > эндообъект 241 0 объект > эндообъект 242 0 объект > эндообъект 243 0 объект > эндообъект 244 0 объект > эндообъект 245 0 объект > эндообъект 246 0 объект > эндообъект 247 0 объект > эндообъект 248 0 объект > эндообъект 249 0 объект > эндообъект 250 0 объект > эндообъект 251 0 объект > эндообъект 252 0 объект > эндообъект 253 0 объект > эндообъект 254 0 объект > эндообъект 255 0 объект > эндообъект 256 0 объект > эндообъект 257 0 объект > эндообъект 258 0 объект > эндообъект 259 0 объект > эндообъект 260 0 объект > эндообъект 261 0 объект > эндообъект 262 0 объект > эндообъект 263 0 объект > эндообъект 264 0 объект > эндообъект 265 0 объект > эндообъект 266 0 объект > эндообъект 267 0 объект > эндообъект 268 0 объект > эндообъект 2690 объект > эндообъект 270 0 объект > эндообъект 271 0 объект > эндообъект 272 0 объект > эндообъект 273 0 объект > эндообъект 274 0 объект > эндообъект 275 0 объект > эндообъект 276 0 объект > эндообъект 277 0 объект > эндообъект 278 0 объект > эндообъект 279 0 объект > эндообъект 280 0 объект > эндообъект 281 0 объект > эндообъект 282 0 объект > эндообъект 283 0 объект > эндообъект 284 0 объект > эндообъект 285 0 объект > эндообъект 286 0 объект > эндообъект 287 0 объект > эндообъект 288 0 объект > эндообъект 289 0 объект > эндообъект 290 0 объект > эндообъект 291 0 объект > эндообъект 292 0 объект > эндообъект 293 0 объект > эндообъект 294 0 объект > эндообъект 295 0 объект > эндообъект 296 0 объект > эндообъект 297 0 объект > эндообъект 298 0 объект > эндообъект 299 0 объект > эндообъект 300 0 объект > эндообъект 301 0 объект > эндообъект 302 0 объект > эндообъект 303 0 объект > эндообъект 304 0 объект > эндообъект 305 0 объект > эндообъект 306 0 объект > эндообъект 307 0 объект > эндообъект 308 0 объект > эндообъект 309 0 объект > эндообъект 310 0 объект > эндообъект 311 0 объект > эндообъект 312 0 объект > эндообъект 313 0 объект > эндообъект 314 0 объект > эндообъект 315 0 объект > эндообъект 316 0 объект > эндообъект 317 0 объект > эндообъект 318 0 объект > эндообъект 319yȪ#m’ηp/yT quеvd17a,כƁK]eV49@eC~ecf>gSvL. ~(Q>Y$8g~،��:?1&a»E|,\\jUqLzL[EkҢ8dGAXOtP!wʲ/FOH.O(|HOL5e&apn$ClZ?D$[~ ƍ$_b#i4kRhCt`/}6Q8n7e͑Rԋn %Uusk*r6(DW֥K:?jNNZ4쳢eSI;Vʰn#9yFGՔb#ed4PQi8E30zǔN # Ŕ:u (#DkBzĺNzkkʷ

    Вестник МГСУ

    

    Влияние пен, имеющих разную степень расширения, на структурообразование теплоизоляционного пенобетона
    $authors_cite=»;?>
    • Винокурова Ольга Васильевна. — Ангарское управление строительства

    • Баранова Альбина А. — Ангарский государственный технический университет (АГТУ)

    DOI: 10.22227/1997-0935.2022.1.50-59 Страницы: 50-59 Введение. В статье рассмотрено влияние пен различного происхождения и степени расширения на структурообразование теплоизоляционного пенобетона. Исследование направлено на решение проблемы условий гидратации вяжущего в межпоровом пространстве пенобетонной смеси и сохранения его стабильности. Цель состоит в том, чтобы разработать экономически эффективную композицию. Материалы и методы. Для анализа процесса структурообразования были изготовлены образцы пенобетона марок средней плотности Д300 и Д500 с использованием обычного портландцемента. Природа поверхностно-активного вещества пены, его коэффициент расширения и водоцементное отношение раствора являются переменными факторами, определяющими параметры структуры материала. Прочность пенобетона использовали для оценки условий гидратации цемента. Прочность определяли по ГОСТ 10180. Параметры макроструктуры измеряли с помощью оптического микроскопа Levenhuk и программы LevenhukLite. Полученные результаты. Установлено, что наиболее полно гидратация в межпоровом пространстве смеси реализуется при использовании белкового пенообразователя, обладающего низким коэффициентом пенообразования. Пенобетон, полученный таким образом, имеет закрытые поры, диаметр которых колеблется в небольшом диапазоне значений, а толщина перегородок превышает максимальный размер зерна цемента. Увеличение коэффициента расширения пены и низкое значение водоцементного отношения раствора приводят к неравномерному распределению воздуха в смеси и уменьшению толщины межпоровой перегородки. При этом структура пенобетона «рыхлая»; он представляет собой конгломераты сообщающихся между собой пор. Выводы. Поскольку геометрия макроструктуры материала оказывает существенное влияние на процесс теплообмена и прочность, для производства теплоизоляционного пенобетона с использованием стандартного портландцемента без повторного использования предпочтителен белковый пенообразователь, отличающийся низкой кратностью пены. шлифовка. В противном случае пена с более высоким коэффициентом расширения пены требует увеличения удельной поверхности связующего.
    • пенобетон;
    • пенообразователь;
    • степень расширения пены;
    • конструкция;
    • водоцементное отношение;
    • диаметр пор;
    • толщина перегородки;
    Ссылка
    1. Лукпанов Р.Э., Дюсембинов Д.С., Утепов Э.Б., Базарбаев Д.О., Цыгулев Д.В., Енкебаев С. Б. и другие. Однородное распределение пор в пенобетоне при двухступенчатом пенообразовании. Журнал гражданского строительства. 2021; 103(3):10313. DOI: 10.34910/МСЕ.103.13
    2. Винокурова О.В., Баранова А.А. Целесообразность использования пластификаторов для производства теплоизоляционного пенобетона. Известия университетов. Инвестиции. Строительство. Недвижимость. 2021, 11(3): 432-439. DOI: 10.21285/2227-2917-2021-3-432-439 (рус.).
    3. Фенёй Б., Питуа О., Руссель Н. Влияние поверхностно-активных веществ на предел текучести цементного теста. Исследования цемента и бетона. 2017; 100:32-39. DOI: 10.1016/j.cemconres.2017.04.015
    4. Волженский А.В., Буров Ю.С., Колокольников В.С. Минеральные вяжущие. Москва, Стройиздат, 1979; 476. (рус.).
    5. Липилин А.Б., Коренюгина Н.В., Векслер М.В. Селективная дезинтеграторная активация портландцемента (SDAP). Строительные материалы. 2007 г.; 7:74-76. (рус.).
    6. Ким Д. Влияние поправки на гранулометрический состав цемента на набор прочности бетона. Достижения в области материаловедения и инженерии. 2018; 2018:1-6. DOI: 10.1155/2018/1763524
    7. Хашим М., Тантрэй М. Сравнительное исследование характеристик белковых и синтетических пенообразователей, используемых в пенобетоне. Тематические исследования в области строительных материалов. 2021; 14:e00524. DOI: 10.1016/j.cscm.2021.e00524
    8. Chung S-Y., Lehmann C., Abd Elrahman M., Stephan D. Характеристики пор и их влияние на свойства материала пенобетона, оцененные с использованием изображений микро-КТ и численных подходов. Прикладные науки. 2017; 7(6):550. DOI: 10.3390/приложение7060550
    9. Цао Дж., Сюй Р., Чжан Н., Чжан Л., Цзи С. Характеристика пористой структуры микробного пенобетона и ее влияние на свойства. Журнал технических наук и обзора технологий. 2021; 14(3):158-166. DOI: 10.25103/jstr.143.18
    10. Мухамедиев Ш. А., Васькина В.А. Эмульсии и пены: состав, приготовление, стабильность. Масла и жиры. 2008 г.; 10:22-26. (рус.).
    11. Сычев М.М. Затвердевание вяжущих. Ленинград: Стройиздат, 1974; 80. (рус.).
    12. Liu Z., Zhao K., Hu C., Tang Y. Влияние водоцементного отношения на пористую структуру и прочность пенобетона. Достижения в области материаловедения и инженерии. 2016; 2016:1-9. DOI: 10.1155/2016/9520294
    13. Стольников В.В. Воздухововлекающие добавки в гидробетон. Ленинград, Госэнергоиздат, 1953; 168. (рус.).
    14. Шахова Л.Д., Черноситова Е.С., Гончаров Л.Д. Сравнение расчетных и экспериментальных значений теплопроводности пенобетона. Строительные материалы. 2007 г.; 8:36-37. (рус.).
    15. Величко Е.Г., Калгин А.А., Комар А.Г., Смирнов М.В. Технологические аспекты синтеза структуры и свойств пенобетона. Строительные материалы, оборудование, технологии XXI века. 2005 г.; 3(74):68-71. (рус.).
    16. Чен Г., Ли Ф., Цзин П., Гэн Дж., Си З. Влияние пористой структуры на теплопроводность и механические свойства автоклавного ячеистого бетона. Материалы. 2021; 14(2):339. DOI: 10.3390/ma14020339
    17. Курочкина К.А., Сулейманова Л.А., Коломацкий А.С. Пористость автоклавного газобетона и пенобетона: происхождение пористости и размер пор. Журнал гражданского строительства. 2021; 6(106):10606. DOI: 10.34910/MCE.106.6
    18. Гонг Дж., Чжу Л., Ли Дж., Ши Д. Влияние дыма кремнезема и нанокремнезема на механические и усадочные свойства пенобетона для конструкционного применения. Достижения в области материаловедения и инженерии. 2020; 2020:1-10. DOI: 10.1155/2020/3963089
    19. Рассохин А.С., Пономарев А.Н., Фиговский О.Л. Кремнеземные пары разных видов для высокопрочных мелкозернистых бетонов. Журнал гражданского строительства. 2018; 2(78):151-160. DOI: 10.18720/MCE.78.12
    20. Стещенко А. Б., Кудяков А.И. Пенобетон на цементной основе с алюмосиликатными микросферами для монолитного строительства. Журнал гражданского строительства. 2018; 8(84):86-96. DOI: 10.18720/MCE.84.9
    21. Лесовик В.С., Глаголев Е.С., Воронов В.В., Загороднюк Л.Х., Федюк Р.С., Баранов А.В. и другие. Характеристики долговечности пенобетона на вяжущих композитах. Журнал гражданского строительства. 2020; 8(100):10003. DOI: 10.18720/MCE.100.3
    22. Falliano D., Restuccia L., Ferro G., Gugliandolo E. Стратегии повышения прочности на сжатие сверхлегкого пенобетона. Структурная целостность Procedia. 2020; 28:1673-1678. DOI: 10.1016/j.prostr.2020.10.141
    23. Стещенко А.Б., Худяков А.И. Раннее структурообразование пенобетонной смеси с модифицирующей добавкой. Журнал гражданского строительства. 2015 г.; 2:56-62. DOI: 10.5862/MCE.54.6 (рус.).
    24. Баранова А., Рябков И. Исследование теплопроводности неавтоклавного пенобетона на основе микрокремнезема.

    LEAVE A REPLY

    Ваш адрес email не будет опубликован. Обязательные поля помечены *