Газобетонные блоки теплопроводность: Коэффициент теплопроводности газобетона — глоссарий компании Xella
Коэффициент теплопроводности газоблока — сравнение д400, д500, д600
Чтобы правильно выбрать разновидность поризованных строительных материалов, важно понимать, что такое теплопроводность газоблока, на что влияет данная характеристика и от каких факторов она зависит. Именно этот вопрос мы поднимаем в нашем материале. Но для начала разберемся, что такое газобетонные блоки и как их производят.
Способ изготовления и структура газоблоков
Само название «газобетон» в какой-то степени отражает особенность материала. Каждый такой блок включает в себя твердые плотные структуры (бетон), перемежающиеся с сотами, заполненными воздухом (газом).
Достигают подобного результата за счет смешивания жидкого бетона с известью и алюминиевой пудрой. При добавлении последних двух ингредиентов происходит химическая реакция с выделением водорода и эффектом вспенивания. После сушки в автоклаве пузырьки пены застывают, образуя пористую структуру.
Воздух, сохранившийся в порах, отдает тепло медленнее, чем бетон, обеспечивая комфортный климат в помещении с такими стенами. Поэтому коэффициент теплопроводности газоблока, то есть, его функции передачи тепла по направлению к более холодной среде от более тепло, зависит от количества ячеек, или, иными словами, от плотности материала. Чем выше этот показатель, тем ниже способность строительных блоков удерживать тепло.
Марки газоблоков и их теплопроводность
Все газобетонные и газосиликатные блоки маркируются литерой D и определенным числом, которое отображает их плотность. В настоящее время отечественная промышленность предлагает следующие разновидности изделий, отличающиеся друг от друга плотностью, теплопроводностью, прочностью и назначением:
- D300-D400. Это блоки с большим количеством пор и, соответственно, с низкой плотностью. Стандартная теплопроводность газоблока Д400 составляет примерно 0,096 Вт/м °C. То есть, это – теплый, но за счет высокой пористости достаточно хрупкий стройматериал, предназначенный, преимущественно, для наружной теплоизоляции стен из кирпича, дерева, керамзитных блоков и других материалов;
- D500.
Такие изделия имеют большую плотность и меньшее количество воздушных ячеек, чем предыдущая марка. Они достаточно теплые и при этом менее хрупкие, поэтому их можно применять в возведении объектов бытового и технического назначения. Средняя теплопроводность газоблока Д500 достигает показателя в 0,112 Вт/м °C. Это дает возможность использовать его в строительстве бань, сараев, гаражей и тому подобных построек;
- D600. Это – еще более плотные и прочные ячеистые блочные материалы с малым количеством включений, содержащих газ. Сравнительно высокая теплопроводность газоблока D600 в 0,141 Вт/м °C с лихвой компенсируется хорошей прочностью, что позволяет широко использовать его в частном домостроении. Если вы строите дом высотой в один-два этажа, газобетонные блоки этой категории подойдут оптимально. Конечно, при условии последующего утепления.
Существуют также изделия с еще более высоким коэффициентом отдачи тепла — D900, D1000, D1200. Основная сфера их применения – высотное капитальное строительство, поэтому для обывателя они не представляют особого интереса.
Приведенные выше показатели – это эталонные свойства газоблоков при нулевой влажности. Повышение ее уровня автоматически повышает и теплопроводность материалов. Так, например, при влажности в 5% коэффициент теплопроводности газоблока D500 возрастает от 0,112 до 0,147 Вт/м °C. То есть, во влажной среде такие блоки будут отдавать тепло и охлаждать помещения даже интенсивнее, чем более плотные D600. Этот момент важно иметь ввиду, выбирая строительные и теплоизоляционные материалы и технологии с учетом климатических особенностей местности, в которой строится здание.
Сравнение материалов с точки зрения толщины стен
Толщина несущей стены – показатель, имеющий определяющее значение еще на стадии проектирования будущего объекта. И здесь газобетон выигрывает у многих строительных материалов.
Для обеспечения комфортного микроклимата с оптимальной температурой и влажностью воздуха в регулярно отапливаемом доме в средней полосе России достаточно стены толщиной в 0,4 м – при использовании марки D500. При этом любые другие материалы предполагают необходимость сооружения более толстых стен:
- пенобетон или дерево – 0,5 м;
- керамзитобетон – 0,9 м;
- керамический кирпич – 1,7 м.
Для понимания разницы достаточно прикинуть разницу в нагрузке на фундамент от газобетонной стены толщиной в 40 см и из полнотелого кирпича толщиной более чем в полтора метра. Как видите, сравнение теплопроводности газоблока и кирпича позволяет сэкономить время и средства при обустройстве фундамента. А кроме того, способность хорошо удерживать тепло предъявляет гораздо более сдержанные требования к теплоизоляции и внутреннему обогреву помещений. То же самое относится и к другим строительным материалам.
Варианты утепления стен из газобетона
Наружная изоляция, помимо непосредственно утепления, преследует и ряд иных целей, в частности:
- улучшение звукоизоляции стен;
- продление срока службы блоков, а значит, и долговечности всего строения;
- придание фасадам более эстетичного и привлекательного облика, поскольку при всех своих достоинствах газоблок не обладает каким-либо эффектным внешним видом.
Оптимальным вариантом защиты стен из газобетона многие специалисты называют технологию вентилируемых фасадов. Она предохраняет стены от прямого попадания воды и при этом обеспечивает свободную циркуляцию воздуха, создавая своеобразную тепловую прослойку. Защищенные вентфасадами дома становятся более теплыми, сухими, комфортными и привлекательными снаружи.
Кроме того, традиционными способами газоблоки утепляют с помощью пенопласта или пеноплекса, плитного или вспененного полистирола и других подобных материалов. Также подойдет минеральная либо каменная вата. Выбирать вид теплоизоляции целесообразно в зависимости от климата и с учетом финансовых возможностей. Конечно, предварительно уточнив, какая теплопроводность у газоблока той марки, которую вы приобрели для строительства, и произведя хотя бы приблизительные расчеты.
Теплопроводность газобетона, технические характеристики, способы определения
Низкий коэффициент теплопроводности считается главным преимуществом газобетона наряду с легкостью, хорошей морозостойкостью и прочностью на сжатие. Его обеспечивает высокая (до 85 %) пористость структуры и закрытость ячеек, благодаря этому свойству материал успешно совмещает конструкционные и утепляющие функции и является оптимальным при строительстве энергосберегающих домов.
Факторы влияния и методы определения
Теплопроводность газоблока отражает его способность к передаче тепла от более нагретых частей к холодным в ходе движения молекул. В численном выражении данная характеристика измеряется в Вт/м·°C. Низкое значение у автоклавных газо- и пенобетона (не более 0,12-0,14 у востребованных марок D500 и D600) свидетельствует о хороших энергосберегающих свойствах, что позволяет сократить затраты на обогрев зданий в зимнее время и на кондиционирование – в летнее.
Все изготавливаемые изделия проходят обязательный контроль, подтверждающий данный коэффициент опытным путем, соответствующая информация указывается в сертификате продукции и является ориентиром при расчете толщины стен и перекрытий.
Метод проверки теплопроводности регламентирован требованиями ГОСТ 7076, его суть заключается в подаче стационарного теплового потока через блоки в перпендикулярном направлении и последующем измерении его плотности и температуры лицевой поверхности и граней образца.
Результаты сертификации продукции принято разделять на 2 группы, отражающих значения в сухом состоянии и при определенной влажности. Также теплопроводность напрямую зависит от состава и плотности. Ориентировочные показатели для самых востребованных в частном строительстве марок приведены ниже:
Коэффициент, Вт/м·°C | Марка газоблоков | |||
D300 | D400 | D500 | D600 | |
В сухом состоянии | 0,072 | 0,096 | 0,12 | 0,14 |
При влажности 4 % | 0,084 | 0,113 | 0,141 | 0,16 |
Теплопроводность снижается при поглощениях ячейками влаги, материал нуждается в защите от внутреннего пара и конденсатов и внешних осадков. У изделий, изготовленных на золе, при равной прочности она на несколько единиц меньше, чем у чисто песчаных (0,1 Вт/м·°C у марки D500, 0,13 у D600), но в первую очередь способность к удерживанию тепла зависит от их плотности и условий эксплуатации. Для сравнения – у незащищенных газобетонных стен, подвергаемым стандартным влажностным нагрузкам в пределах 60%, коэффициент повышается почти в два раза. По этой же причине помимо данной характеристики (отклонения не должны отходить на ± 20 %) в ходе выпуска блоков контролируется показатель отпускной влажности, допустимый нормами максимум не превышает 25-30 %.
Сравнение теплопроводности
В строительстве этот коэффициент учитывают прежде при выборе кладочных материалов для возведения стен, потребность в утеплителе. Ориентировочные значения для самых востребованных из них приведены в таблице:
Наименование | Диапазон плотности, кг/м3 | Теплопроводность, Вт/м·°C |
Автоклавные газоблоки | 280-1000 | 0,07-0,21 |
Пенобетон | 300-1250 | 0,12-0,35 |
Плотный красный кирпич | 1700-2100 | 0,67 |
Дерево (на примере соснового бруса) | 500 | 0,18 |
То же, пористый | 1500 | 0,44 |
Клинкер | 1800-2000 | 0,8-1,6 |
Облицовочные марки | 1800 | 0,93 |
Кирпич строительный | 800-1500 | 0,23-0,3 |
Силикатный сплошной | 1000-2200 | 0,5-1,3 |
То же, с тех.![]() | 0,7 | |
Силикатный щелевой | 0,4 |
На практике на теплопроводность стен оказывает влияние не только тип газоблоков, но и наличие и вид используемого соединительного раствора. Результаты сравнения для разных кладок приведены ниже:
Вид стены | Диапазон плотности, кг/м3 | Теплопроводность, Вт/м·°C |
Газобетонные блоки, монтируемые на клей | 630-820 | 0,26-0,34 |
То же, при использовании газосиликатных теплоизоляционных плит | 540 | 0,24 |
Керамический сплошной кирпич на цементно-перлитовом растворе | 1600 | 0,47 |
То же, на ЦПС | 1800 | 0,56 |
То же, на цементно-шлаковом составе | 1700 | 0,52 |
Керамический пустотный кирпич на ЦПР | 1000-1400 | 0,35-0,47 |
Малоразмерные кладочные изделия | 1730 | 0,8 |
Пустотелые стеновые | 1220-1460 | 0,5-0,65 |
Силикатный 11-ти пустотный кирпич на ЦПС | 1500 | 0,64 |
То же, 14-ти пустотный | 1400 | 0,52 |
Результаты сравнения выявляют однозначное преимущество пористых материалов перед плотными и сплошными в плане способностей к энергосбережению.
Китай производитель газобетонных блоков, газобетонный блок, поставщик автоклавного газобетона
Дом Производители/Поставщики
Подробнее
Список продуктов
Выбранные поставщики, которые могут вам понравиться
Машина для производства газобетонных блоков в автоклаве (STM4. 2)
Свяжитесь сейчас
Настенные облицовочные блоки с хорошей производительностью
Свяжитесь сейчас
Запасные части для ковшового бурения стенных корпусных блоков Ws20
Свяжитесь сейчас
Бетонная форма машины для производства блоков с ISO / CE для продажи Машина для производства кирпича для продажи Оборудование для производства кирпича Машина для производства кирпича Производство бетонных блоков
Линия по производству легких бетонных блоков с автоклавной обработкой Alc Panel
Свяжитесь сейчас
EPP Водонепроницаемость Большие пенопластовые блоки для образовательных игр для детей, играющих в игрушки, строительные стены, мягкое ограждение, защита
Свяжитесь сейчас
Бетонный ножевой блок Midtown
Связаться с предприятием
Влияние равновесного содержания влаги на изоляционные характеристики автоклавных газобетонных блоков
[1]
ЧЖОУ Чуньин, Вэй Цзянсюн, Ю Цицзюнь. Характеристики водопоглощения автоклавного газобетона, Журнал Уханьского технологического университета [J], 2007, 4(29).), 22-26.
[2] Чжу Юмей, Лю Цзяпин. Анализ состояния энергосбережения ограждающих конструкций домов в Сиане [J]. Жилищное дело[J], 2005(10): 29-31.
[3] Гао Чао, РЕН Найсин. Решите проблемы энергосбережения из оболочки здания [J]. Сычуаньская архитектура, 2007, 27 (9).): 57258.
[4]
ФАНЬ Хунву, ЛИ Деронг, ВАН Цзилинь. Исследование по улучшению тепловых характеристик бетонных пустотелых блоков [J]. Бетон и цементные изделия, 2007 (1): 61263.
[5] ЯНЬ Вэньчжоу, ХУЙ Яньтао. Технико-экономический анализ легкой конструкции LB[J]. Журнал Сианьского университета архитектуры и технологий (издание естественных наук), 2005 г., 37 (2): 239.2242.
[6]
HUANG Dayu, WANG Xiaolu, YANG Ruiliang и др. Численное моделирование и анализ характеристик теплопередачи наружной изолированной пустотелой кирпичной стены при периодических граничных условиях [J]. Журнал инженерной теплофизики. 2009, 30(5): 814-816.
[7] Гао Цинлун, Ян Лю, ЛЮ Цзяпин, Фэн Я. Исследования по оптимизации коэффициента теплопередачи наружной стены жилого дома[J]. Сычуаньская строительная наука. 2009, 35(2), 245-248.
[8] ШАН Цзяньли, Ян Гуан, ФАН Фэйфэй. Влияние оптимального состава пористого материала на характеристики теплопередачи композитной стены[J]. Журнал Сианьского университета архитектуры и технологий (издание Natural Science). 2009 г., 41(2), 126-130.
[9]
Ли Янь, Гао Менли и др.