Газобетон теплопроводность таблица: расчет стены, сравнение с другими материалами, характеристики

Содержание

расчет стены, сравнение с другими материалами, характеристики

В течение многих десятилетий и даже веков в строительстве отдавалось предпочтение кирпичу, как самому износоустойчивому, прочному и долговечному кладочному материалу. Никто и не оспаривает его достоинств, но при строительстве малоэтажного жилья совсем другие приоритеты. Вряд ли кому-то нужна «крепость» в прямом смысле слова. Главное, чтобы ограждающие конструкции как можно лучше сопротивлялись теплопередаче, с чем успешно справляются ячеистые бетоны. Коэффициент теплопроводности газобетона позволяет строить теплые комфортные частные дома без дополнительного утепления. При этом стены получаются достаточно прочные и долговечные со сроком эксплуатации от 100 лет и выше, срок эксплуатации до первого ремонта от 50 лет.

Активное использование газоблоков в отечественном строительстве началось с середины 20 века, после того, как в Европе смогли создать бетонные панели с плотностью, сниженной до 300 кг/м³. При этом в нашей стране была наработана прогрессивная научно-техническая база по производству и применению газобетона. С началом перестройки была даже принята программа по созданию систем эффективного строительства из автоклавных ячеистых бетонов, и увеличения объёмов их производства путём строительства новых заводов-изготовителей.

В то время выпускали блоки только плотностью 600-700 кг/м³, но девиз программы гласил, что при 7-кратном увеличении количества выпускаемой продукции нужно стремиться к 2-х кратному снижению плотности, что автоматически влекло и снижение теплопроводности газоблока.

С развалом Советского Союза и закрытия многих производственных площадок весь опыт наших инженеров остался на бумаге. Уже в 2000х годах начинают открываться на территории России коммерческие производства с патентами и оборудованием западных компаний. Их число продолжает расти, а это значит, что продукция пользуется спросом и качество построенного из газобетона жилья оказалось на высоте. Именно поэтому теплопроводность и другие характеристики газоблока так интересуют потенциальных застройщиков.

Технология его производства несколько схожа с получением силикатного кирпича: компоненты те же — только к цементу, песку и извести добавляются ещё ингредиенты, провоцирующие процесс порообразования. Это алюминиевая пыль или паста, а также сульфат и гидроксид натрия, взаимодействие которых запускает химическую реакцию с высвобождающимся кислородом.

При этом блоки не подвергаются прессованию, так как требуется получить не максимально плотные, а наоборот, воздухонаполненные изделия. Созревание бетона происходит в автоклавах – камерах, где он в течение 12 часов обрабатывается подаваемым под давлением высокотемпературным паром. Это обеспечивает ускоренное твердение камня и более высокую, чем при естественной гидратации прочность.

Мнение эксперта
Виталий Кудряшов

строитель, начинающий автор

На заметку: В процессе автоклавирования в бетоне образуется новый минерал под названием тоберморит (силикат кальция), который встречается в составе камня базальтовых пород и портландцементе. При реакции с водой он принимает участие в связывании цемента, что позволяет получить более высокую прочность.

По этой причине преимущество на стороне автоклавного газобетона, и обсуждая его характеристики, мы по умолчанию будем вести речь именно о нём.

Представляем таблицу с перечнем положительных свойств газобетона и его недостатков:

Достоинства Недостатки
Низкий коэффициент теплопроводности газоблока. Зависит от марки изделия по плотности, но в среднем составляет 0,14 Вт/м*С, что втрое меньше, чем у керамзитобетона и в 6 раз – чем у полнотелого кирпича. Применяемость. Характеристики, безусловно являющиеся достоинствами материала, можно рассматривать и как недостатки. В частности, из-за относительно невысокой прочности ограничена применяемость поризованного бетона в многоэтажном строительстве. Здесь их используют только для заполнения пролётов несущих каркасов из железобетона.
Теплоемкость газобетона. Цифра характеризует количество тепла, необходимого, чтобы нагреть материал на 1 градус. При условии влажности, не превышающей 5-6%, теплоемкость газобетона d400 составляет не более 1,10 кДж/кг, в абсолютно сухом состоянии — до 0,84, как и у кирпича. Повышенная чувствительность к влаге. Наличие открытых пор делает камень гигроскопичным, а это требует принятия мер для защиты стен от воздействия паров и насыщения водой. Этот недостаток легко нивелируется за счёт правильного структурирования стенового пирога.
Сопротивление теплопередаче газобетона d500 (среднее значение). Чем выше цифра, тем лучше слои материала сопротивляются отдаче тепла. Составляет 2,67 м²*С/Вт при толщине стены 300 мм. Для примера, у кирпичной стены в два кирпича эта цифра составляет всего 1,09 м²*С/Вт. Трещиностойкость. Газобетон – материал довольно хрупкий, и сильно реагирует на перепады температуры и влажности. В результате возникающих напряжений появляются трещины, которые хоть и не ослабляют прочность кладки, но портят её внешний вид. Именно поэтому для ячеистобетонной кладки предусматривают наружное утепление – а не потому, что
теплоизоляционные свойства газобетона
не позволяют без него обойтись. Примечание: Однако трещины могут появляться и из-за недостаточно жёсткого основания. Поэтому фундаменты для газобетонных домов всегда нужно проектировать в монолите.
Геометрия блоков на самом высоком уровне. Погрешности в параметрах составляют не более 2 мм, что позволяет производить монтаж на тонкий слой клея. При наличии у блоков пазогребневых соединений, вертикальные клеевые швы и вовсе отсутствуют. Морозостойкость. Чем ниже прочность бетонного камня, тем меньше циклов заморозки и оттайки он выдерживает. Газобетон D600 соответствует классу прочности В2,5, что обеспечивает только 25 циклов. Но это распространяется только на незащищённый от увлажнения материал — а в таких условиях даже и кирпич не всегда служит дольше.
Трудоёмкость и скорость возведения стен. Благодаря малому весу и крупному формату блоков, в процессе кладки не приходится пользоваться грузоподъёмными механизмами. Работа продвигается быстро, 1 м² кладки в час – это в 4 раза быстрее, чем с использованием кирпича. Ограничения по выбору материалов для утепления и внешней отделки. Чтобы дать пару беспрепятственно проходить через кладку, не конденсируясь в её толще, коэффициент паропроницаемости каждого следующего слоя в направлении от стены к улице должен быть более высоким.
Экологичность. Больше всего поборников экологичности волнует радиоактивность материала, которая в общепринятой норме составляет 370 Бк/кг. Фон газобетона далеко не дотягивает до этой цифры и составляет чуть больше 50 Бк/кг. У того же кирпича в зависимости от вида глины он варьируется в пределах 126-840 Бк/кг. Необходимость в специальном крепеже. Стены из пористого бетона имеют слабую устойчивость к вырывающим нагрузкам. По этой причине повесить тяжёлый предмет на обычные дюбель-гвозди невозможно. Нужны более дорогие спиральные, распорные или забивные дюбели.
Огнестойкость. Поризованный бетон имеет класс пожарной устойчивости К0 – как не представляющий опасности. Показатель REI (предел огнестойкости) составляет 4 часа при толщине стен более 20 см. Именно столько времени они выдержат воздействие открытого огня без деформации. При этом газобетон не выделяет токсичных веществ. Слабая адгезия. Очень гладкая поверхность блоков снижает сцепляемость бетона со штукатуркой. Делать насечки бучардой, как в случае с тяжёлым бетоном, здесь нежелательно, проще всего использовать грунтовки с кварцевым наполнителем.
Затраты на фундамент. Достаточно высокие, если учесть, что кладка из ячеистого материала чувствительна к подвижкам основания, и надо обязательно заливать монолит. Но высокое сопротивление теплопередаче газобетона позволяет уменьшать толщину стен — а это реальная экономия на количестве бетона.  
Затраты на кладочный материал. Несмотря на то, что клеевая смесь обходится вдвое дороже аналогичного количества обычного ЦПС, за счёт более низкого расхода (в 5-6 раз) получается немалая экономия.  
Простота обработки. С газобетонными блоками легко работать, так как их можно пилить и штробировать ручным инструментом. Камню несложно придать нужную форму, что позволяет быстро изготовить доборный элемент и выкладывать стены радиусной формы.  
Стоимость. Всё, конечно, относительно. Однако по цене кубометр газобетонных блоков в три раза дешевле кирпича и более чем в 5 раз – пиломатериала.  

Перечень недостатков не так велик по сравнению с количеством преимуществ, да и те не столь существенны, чтобы быть помехой для постройки прочного, долговечного, а главное — тёплого жилого дома.

Коэффициент теплопроводности газобетонных блоков, как и любого другого материала, характеризует его возможность проводить тепло. Численно он выражается плотностью теплового потока при определённом температурном градиенте. Способность удерживать тепло зависит от влияния таких факторов, как:

  1. степень паропроницаемости;
  2. плотность материала;
  3. способность усваивать тепло;
  4. коэффициент водопоглощения.

Последнее особенно хорошо видно в представленной ниже таблице:

Марка газобетона по плотности Теплопроводность газоблока в сухом состоянии (Вт/м*С) Коэффициент теплопроводности газобетона при влажности до 6% (ВТ/м*С) Теплоемкость газобетона (Вт/м²*С) за 24 часа Паропроницаемость (мг/м ч Па)
d400 0,09 0,14 3,12 0,23
d500 0,11 0,16 3,12 0,20
d600 0,12 0,18 3,91 0,17
D700 0,14 0,19 3,91 0,16

Как видите, чем более плотная у бетонного камня структура, тем меньше он пропускает пара и больше тепла. Поэтому, выбирая материал для строительства дома, не стоит стремиться покупать блоки с запасом прочности без необходимости.

Теплопроводность газобетонного блока во многом обусловлена структурой материала, который более чем на 80% состоит из заполненных воздухом пор. Воздух является лучшим утеплителем, благодаря его присутствию меняется характеристика бетонного камня. Влажность воздуха тоже оказывает влияние на показатели теплопроводности – они будут тем ниже, чем суше климат.

Мнение эксперта
Виталий Кудряшов

строитель, начинающий автор

Примечание: При стабильно высокой влажности всё преимущество пористого материала может быть сведено к нулю, и его способность пропускать тепло станет такой же, как у кирпича. Поэтому в районах с климатически обусловленной высокой влажностью внешние ограждающие конструкции увеличивают в толщине.

  • Очень важно предварительно сделать теплотехнический расчет стены из газобетона – чтобы в итоге проживание в доме не оказалось некомфортным. При этом обязательно учитывают параметры применяемых для кладки блоков, округляя итоги в большую сторону до ближайшего показателя толщины.
  • Теплопроводность готовой стены может отличаться от теплопроводности газобетона d400, если, к примеру, блоки смонтировали не на клею, и на растворе. Затвердевшая пескоцементная стяжка имеет коэффициент теплопроводности 0,76 Вт/м*С – и это при расчётном коэффициенте газобетона этой марки 0,12 Вт/м*С!
  • Разница очевидна, и не надо быть великим специалистом, чтобы понять, что тепло будет уходить если не через блоки, то через их стыки. Вывод напрашивается сам: чем тоньше слой, тем лучше. А это возможно только при использовании тонкослойных клеёв.

Это же касается и армирующего пояса из тяжёлого бетона. Чтобы он не оказался одним большим мостом холода, монтировать его лучше по несъёмной опалубке. Её роль исполняют газобетонные U-блоки, внутрь которых укладывается арматура и производится уже заливка обычного бетона.

Низкая теплопроводность газобетонных блоков даёт возможность получить экономию не только за счёт уменьшенной толщины стен и ширины фундамента, но и снизить расходы на эксплуатацию дома. Ведь для поддержания комфортной температуры в помещениях будет тратиться гораздо меньше электричества или газа.

Как этого добиться, мы расскажем чуть позже, а пока предлагаем оценить теплопроводность газоблока в сравнении с другими материалами:

Характеристика Газобетон Пенобетон Керамзитобетон Полистиролбетон Пустотелый кирпич Керамоблок Древесина
Плотность кг/м³ 300-600 400-700 850-1800 350-550 1400-1700 400-1000 500
Теплопроводность Вт/м*С 0,08-0,14 0,14-0,22 0,38-0,08 0,1-0,14 0,5 0,18-0,28 0,14

Как видите, теплопроводность газобетона в сравнении с группой популярных теплоэффективных материалов стен соответствует показателю древесины. Из кладочных материалов конкурировать с ним могут только пенобетон и полистиролбетон.

Если теплопроводность газобетона в большинстве случаев обеспечивает комфорт проживания в доме, зачем тогда утеплять стены? Выше уже было сказано, что поризованный материал необходимо защитить от перепадов температур и влажности. Но это лишь один аспект, второй заключается в стремлении снизить расходы на отопление помещений.

Для дачного дома, который в зимнее время практически не эксплуатируется, толщины стен в 200 мм более чем достаточно. Что касается жилья постоянного проживания, то имеет смысл сделать стены более толстыми. Теплопроводность газоблока 30 см будет при аналогичной плотности такой же, но уменьшится количество теплопотерь.

По этой причине, особенно в холодных регионах, для возведения стен берут более толстые блоки. Теплопотери дома из газобетона 375 мм снижаются ещё на треть, и стены получаются гораздо теплее тех нормативов, что применяются в официальном строительстве. При плотности 400 кг/м³ теплопроводность такой кладки составит 0,08 Вт/м*С, а сопротивление передаче тепла установится на уровне 3,26 м²*С/Вт.

Мнение эксперта
Виталий Кудряшов

строитель, начинающий автор

Примечание: Чтобы получить точные цифры, необходимо произвести теплотехнический расчет газобетонной стены, с учётом среднезимних температур, характерных для данной местности. Приобретая типовой, или заказывая индивидуальный проект для будущего дома, заказчик вместе с рабочей документацией получает и такой расчёт.

Однако в частном строительстве многие предпочитают обходиться без проектирования. Для самостоятельного расчёта можно использовать онлайн калькулятор теплопотерь дома из газобетона.

Вот когда газобетонные стены однозначно нуждаются в утеплении:

  1. При плотности блоков d500 и выше.
  2. При толщине стены менее 30 см.
  3. Когда газоблоками производится заполнение пролётов железобетонного каркаса.
  4. Когда кладка производится не на клей, а на раствор.
  5. При использовании неавтоклавных изделий более низкого качества.

В таком случае, автоматически возникает вопрос: чем утеплять?

В силу ячеистой структуры газобетон называют дышащим материалом, в среднем, его коэффициент паропроницаемости составляет 0,20 мг/м*ч*Па (это в 3,5 раза выше, чем у дерева поперёк волокон).

  • Чтобы пар не задерживался в толще бетона и не конденсировался в нём, утеплитель должен иметь ещё больший показатель паропроницаемости. У пенопласта, даже невысокой плотности, этот коэффициент намного ниже – порядка 0,023 мг/м*ч*Па, то есть пар он практически не пропускает.
  • Если утеплить ячеистобетонные стены пенопластом снаружи, сырость и грибок вам будут обеспечены. Уж если и использовать пенопласт в качестве утеплителя, то только изнутри. Там он будет препятствовать попаданию пара в стены, но для этого нужно, чтобы все стыки между плитами были хорошо герметизированы, и использовалась пароизоляционная плёнка.
  • Толщина утеплителя для блоков D400 толщиной 300 мм должна быть не менее 100 мм. Но если при этом стены не будут утеплены снаружи, влажность кладки с нормативных 6% увеличится до 12%.

Это значит, что в итоге теплопроводность газоблока окажется выше расчётной, ухудшив теплоэффективность стен в целом.

Минвата – самый надёжный и подходящий по паропроницаемости вариант, её показатели в зависимости от плотности варьируются в пределах 0,30-0,60 мг/м*ч*Па. Это выше, чем у газобетона, поэтому для пара этот утеплитель не создаёт никаких препон.

Здесь важно, чтобы сама минвата не аккумулировала в себе влагу и не отсыревала. Поэтому, поверх неё монтируют паропроницаемую мембрану с ещё большей степенью проходимости. Так же, если для наружной отделки будет использоваться навесной материал или кирпич, для хорошей вентиляции предусматривают технологический зазор.

Если же по утеплителю будет выполняться штукатурка, то её коэффициент паропроницаемости должен быть выше, чем у минваты. При толщине плит в 50 мм, влажность газобетона может достигать 7%. Это хоть и незначительно, но превышает норму, поэтому лучше всего в расчёт закладывать утеплитель толщиной 100 мм.

Эковатой называют рыхлый целлюлозный утеплитель, обработанный для биологической стойкости борной кислотой. У него аналогичный минеральной вате коэффициент паропроницаемости и теоретически он подходит для наружного утепления ячеистобетонных стен.

Мнение эксперта
Виталий Кудряшов

строитель, начинающий автор

Внимание: На практике же любой насыпной материал неудобен для утепления стен, так как имеет способность самоуплотняться, в результате чего в теплоизоляционной прослойке образуются пустоты. Эковата сильнее минваты подвержена сорбционному увлажнению, поэтому проектировщиками в качестве материала для утепления стен она вообще не рассматривается.

Существует такое понятие, как тёплая штукатурка, которая получила своё название за счёт применения в качестве крупного заполнителя гранул перлита или пеностекла – материалов, которые сами по себе являются утеплителем. Если вы взяли для строительства дома блоки толщиной 375 мм, можно прекрасно обойтись теплоизоляционной штукатуркой, используя её и внутри, и снаружи.

Для внутренних работ применяют составы на основе цемента, гипса или извести с более низкой паропроницаемостью. Фасадные штукатурки имеют цементно-карбонатно-перлитовый состав с коэффициентом паропроницаемости 0,17 мг/м*ч*Па. Это немного меньше, чем у газобетона, но учитывая его толщину и наличие почти непроницаемого слоя штукатурки внутри, стена будет работать как надо.

Вопрос, как правильно утеплять дом из газобетона, является одним из самых важных, потому что от выбора теплоизоляционного материала зависит и долговечность конструкций, и комфорт эксплуатации жилья в целом. Надеемся, что представленная здесь информация окажется полезной, хотя окончательное решение, конечно же, остаётся за вами.

Теплопроводность газобетона: коэффициент теплопроводности

Газобетон, теплопроводность

Газобетон, теплопроводность

Газобетон и изделия из него получили популярность, благодаря высоким показателям свойств и качеств, одним из которых является теплопроводность. Материал обладает высокой способностью к сохранению тепла, которая обусловлена особой структурой, составом и технологией производства изделий.

Давайте разберемся: теплопроводность газобетона — отчего конкретно она зависит? Какими преимуществами будет обладать строение, возведенное из данного материала? И почему тысячи застройщиков, несмотря на высокую конкуренцию, отдают предпочтение именно изделиям из газобетона, опираясь, в первую очередь, на показатель теплопроводности?

Содержание статьи

Краткая характеристика газобетона

Газобетон является разновидностью ячеистого бетона, и отличается от схожих стеновых материалов составом сырья и методом порообразования. Несмотря на схожесть его с аналогами, показатели теплопроводности и иных свойств, иногда существенно отличаются.

Для того, чтобы понять, что именно способно оказывать влияние на изменения числовых показателей характеристик, следует рассмотреть предварительно индивидуальные особенности материала.

Газобетон

Газобетон

Обзор основных свойств и качеств

Воспользуемся таблицей.

Основные характеристики газобетона:

Наименование характеристикиСреднее ее значение
Морозостойкость35-150
Марка прочностиДля неавтоклава – от В1,5, в соответствии с ГОСТ21520-89; для автоклавного газобетона, в среднем — В3,5
УсадкаОт 0,3 мм/м2
Минимальная рекомендуемая толщина стеныОт 0,4 м
ТеплопроводностьОт 0,09
Экологичность2
ПожароопасностьНе горит

Характеристики достаточно конкурентные. Однако все они колеблются в определенных пределах и, как уже было сказано, зависят от некоторых условий. В таблице указаны средние и минимальные значения.

Теплопроводность газобетонного блока в 0,09, характерна исключительно для теплоизоляционных изделий в сухом виде. А как она будет изменяться с повышением плотности, мы рассмотрим ниже.

Классификация и сфера применения

Учитывая тему данной статьи, актуальным будет разобраться, какие же существуют виды материала. Ведь теплопроводность газобетонных блоков зависит от многих факторов.

В соответствии со способом твердения, газобетонный блок может быть:

  1. Автоклавным;
  2. Неавтоклавным.
Автоклавный и неавтоклавный газобетон

Автоклавный и неавтоклавный газобетон

Обратите внимание! Автоклавный газобетон еще также называют газобетоном синтезного твердения. Отличается он тем, что на заключительном этапе производства его обрабатывают в специальном оборудовании – автоклаве, при воздействии высокой температуры и давления. Как следствие, изделия обладают более высокими характеристиками, в том числе и более качественным соотношением плотности и теплопроводности. Но об этом поговорим позже.

Неавтоклавные изделия, или газобетон гидратационного твердения, достигают технической прочности естественным способом. Требования к нему, в соответствии с ГОСТ, несколько ниже. Сравним показатели данных видов газобетона при помощи таблицы.

Сравнение автоклавного и неавтоклавного газобетона:

Наименование показателяЗначение для автоклавного газобетонаЗначение для неавтоклавного газобетона
Прочность, маркаВ2,5-5В1,5-2,5
Морозостойкость35-15015-35
Паропроницаемость0,20,18
Теплопроводность эксплуатационная0,096-0,1550,17-0,25
ОгнестойкостьНе горитНе горит
Рекомендуемая минимальная толщина стены, метрыОт 0,4От 0,65
ДолговечностьДо 200 летДо 50 лет

Как видно, газобетон синтезного твердения во многом опережает своего конкурента — неавтоклава, и это касается практически всех характеристик. Следует отметить, что цена на последний также значительно ниже, и изготовление его возможно произвести своими руками.

Характеристика газобетона разной плотности

Характеристика газобетона разной плотности

Также газобетон разделяют в зависимости от плотности.

В соответствии с этим, материал может быть:

  1. Теплоизоляционным. Такие изделия отличаются низкой плотность (до 400) и теплопроводностью. Используются они в качестве материала для утепления, так как никаких существенных нагрузок блок выдержать не способен.
  2. Конструкционно-теплоизоляционный газобетон обладает более высокой плотностью. Числовой показатель варьируется от 400 до 800. Однако коэффициент теплопроводности газобетонных блоков также вырастает. Используется материал при возведении стен и перегородок.
  3. Конструкционный газобетон – наиболее прочный из всех. Плотность его равна 900-1200. Может выдержать значительные нагрузки, однако при этом, стены требуют дополнительного утепления, так как способность к сохранению температуры у таких блоков достаточно низкая.
Отличия газобетона разной плотности

Отличия газобетона разной плотности

Помимо вышеуказанных классификаций, существуют и иные, связанные с особенностью состава и внешнего вида изделий. Рассмотрим кратко.

В зависимости от типа вяжущего, газобетон бывает:

  • На цементном вяжущем;
  • На известковом;
  • На шлаковом;
  • На зольном;
  • На смешанном.

Это указывает на то, что содержание основного компонента варьируется в пределах от 15 до 50%.

В соответствии с типом кремнеземистого компонента:

  1. На песке;
  2. На золе;
  3. На иных вторичных продуктах промышленности.

Также хотелось бы отметить классификацию, основанную на геометрии блока.

Газобетон может быть:

  1. Первой категории точности;
  2. Второй категории точности;
  3. Третьей категории точности.

Категория указывает на возможные геометрические отклонения, максимальные значения которых продиктованы ГОСТ.

Важно! Блоки первой категории – самые ровные, отклонения по размеру не должны превышать 1,5 мм. Укладывают их на клей с минимальной толщиной слоя. И заметьте, что для теплотехники стен в целом это оказывает значительное влияние!

Вторая категория имеет большие отклонения: до 2-х мм – по размеру, до 3-х – по диагонали.

Блоки третьей категории обычно используются при возведении хозяйственных построек. Повышенные отклонения диктуют необходимость возведения стен с использованием раствора со значительно большей толщиной шва. Это увеличивает мостики холода и теплопроводность помещения.

Обратите внимание! Блоки различной категории отличаются между собой только геометрическими отклонениями. Различий в технических характеристиках существенных нет. Теплопроводность, прочность, морозостойкость и иные показатели будут идентичными. Отличаться они могут только ввиду сравнения изделий различных производителей.

Понятие теплопроводности и ее значение

Теплопроводность – это способность материала к сохранению температуры. Например, если коэффициент ее высок, то в холодное время года, затраты на отопление помещения значительно возрастут, так как тепло будет быстро выходить наружу — и здание, соответственно, будет быстро остывать.

Давайте разберемся, насколько практичным является использование газобетона в качестве материала для утепления либо возведения стен в данном случае.

Что такое теплопроводность

Что такое теплопроводность

Показатели теплопроводности газобетона. Зависимость коэффициента теплопроводности от технико-механических показателей

Коэффициент теплопроводности газобетона продиктован ГОСТ 25485-89. Бетоны ячеистые. Технические условия. Как уже упоминалось, данный показатель напрямую зависит от плотности изделий и, более того, от типа кремнеземистого компонента. Рассмотрим таблицу.

Зависимость теплопроводности от плотности газобетона и типа кремнеземистого компонента:

Вид газобетонаМарка прочностиКоэффициент теплопроводности газобетона, изготовленного на золеКоэффициент теплопроводности газобетона, изготовленного на песке
Теплоизоляционный3000,080,08
4000,090,1
Конструкционно-теплоизоляционный5000,10,12
6000,130,14
7000,150,15
8000,180,21
9000,200,24
Конструкционный10000,230,29
11000,260,34
12000,290,38

Вывод напрашивается сам собой: чем больше плотность, тем выше и показатель теплопроводности.

График зависимости теплопроводности от плотности

График зависимости теплопроводности от плотности

  • В соответствии с ГОСТ, производителем должен быть учтен тот факт, что теплопроводность изделий не должна превышать вышеуказанных показаний более чем на 20%.
  • Также в таблице видно, что газобетон, изготовленный на золе, более способен к сохранению температуры.
  • Возьмем, к примеру, блоки газозолобетонные d=600: коэффициент теплопроводности у них равен значению в 0,13. А у блоков той же плотности, но изготовленных на песке, данный показатель — на 0,1 выше
  • Немаловажным фактом является то, что теплопроводность блока значительно ухудшается при его увлажненности. А так как газобетон впитывает влагу достаточно сильно, стоит обратить внимания на подобные изменения.
  • Например, коэффициент теплопроводности газобетона d500 равен 0,12, но это – при стандартных условиях измерения. При эксплуатационной влажности, этот показатель увеличивается минимум на 0,2.
Теплопроводность газобетона d500

Теплопроводность газобетона d500

То есть, чем выше влажность, тем выше и коэффициент теплопроводности. В соответствии с ГОСТ, отпускная влажность газобетонных изделий не должна превышать показателя в 25%, при производстве изделий на песке, и 30% — на основе золы и иных вторичных продуктов промышленности.

Отдельно стоит обратить внимание на такой материал как монолитный газобетон. Он также может быть разной плотности, и обладать различным коэффициентом теплопроводности. Во многом это зависит от марки используемого при изготовлении цемента, пористости и соотношения компонентов.

Его активно используют при:

  • Устройстве стяжки. Монолитные полы из газобетона прочны, материал прост в обращении. Нередко с его помощью производят подготовку основания под теплый пол.
  • Для изоляции кровли. При этом применяют материал меньшей плотности.

Это, разумеется, не все возможные сферы применения материала, их существует достаточно большое количество. Фактом остается то, что популярность газобетона растет с каждым годом все больше, именно благодаря соотношениям плотности и теплопроводности, высоким показателям морозостойкости и других эксплуатационных характеристик.

Сравнение способности газобетона к сохранению тепла с различными стеновыми материалами

А теперь давайте сравним показатели теплопроводности газобетона с другими стеновыми изделиями, а также проанализируем соотношение плотности к данной характеристике. Достоин ли газобетон находиться в лидерах?

Сравнение физико-технических показателей газобетона и других стеновых материалов:

Наименование материалаПлотность кг/м3Коэффициент теплопроводности
Газобетон600-8000,18-0,28
Силикатный кирпич1700-19500,85-1,16
Арболит400-8500,08-0,18
Шлакобетон900-14000,2-0,58
Пенобетон400-12000,14-0,39
Керамзитобетон900-12000,5-0,7
Кирпич пустотелый1500-19000,56-0,95

Фактически выходит, если сравнивать вышеперечисленные материалы и газобетон, теплопроводность его несколько превышает лишь аналогичный показатель у арболита и пенобетона. Остальные стеновые материалы остаются далеко позади.

Сравнение теплопроводности материалов

Сравнение теплопроводности материалов

 

Сравнение газобетона

Сравнение газобетона

Как уже говорилось, газобетон низкой плотности используют в качестве материала для утеплителя. Давайте сравним теперь обоснованность его применения.

Теплопроводность материалов, предназначенных для утепления, в сравнении с теплоизоляционным газобетоном:

Наименование материалаКоэффициент теплопроводности, м2*С/Вт
Газобетон теплоизоляционный, Д300От 0,08
Эковата0,014
Изовер0,044
Пенопласт0,037
Керамзит0,16
Стекловата0,033-0,05
Минеральная вата0,045-0,07
Теплопроводность строительных материалов

Теплопроводность строительных материалов

Даже в качестве теплоизоляционного материала, газобетон может быть достойным конкурентом.

Часто выбирая утеплитель, застройщики задаются вопросом: керамзит или газобетон, что лучше? Ответить однозначно достаточно сложно. В первую очередь, следует обратить внимание на приоритеты в показателях. Оба материала – легкие, недорогие и способны сохранять тепло.

Однако, если учитывать данные, указанные в таблице, то теплоизоляционный газобетон все же выигрывает в последнем показателе. А выбор, остается за вами.

Расчет оптимальной толщины стены

Рекомендуемая минимальная толщина стены из газобетона, как мы уже выяснили, составляет 400 мм. Однако для разных регионов, этот показатель может значительно отличаться. В местах, где температура воздуха более низкая, стена должна быть значительно толще, при сохранении оптимальной температуры.

Давайте разберемся, как же правильно посчитать нужную толщину стены, с учетом всех необходимых факторов, в том числе требований СНиП 23-02-2003 Тепловая защита зданий, СП 23-101-2004 Проектирование тепловой защиты зданий.

Для начала рассмотрим, каким будет показатель теплопроводности, в соответствии со СНиП, при условиях изготовления с использованием различного кремнеземистого компонента и кладки готовых изделий на различные растворы.

Расчетные коэффициенты теплопроводности в условиях эксплуатации при возведении стен с использованием раствора и клея и соответствующие условия эксплуатации А-В:

Вид блокаМарка плотностиКоэффициент теплопроводности, при условии укладки на известково- песчаный раствор (условия эксплуатации А-В).Коэффициент теплопроводности, при условии укладки на цементно-песчаный раствор

(условия эксплуатации А-В).

Коэффициент теплопроводности, при условии укладки изделий на клей

(условия эксплуатации А-В).

Газобетон, изготовленный из кварцевого пескаД5000,25-0,30,24-0,280,18-0,23
Д6000,27-0,320,26-0,310,22-0,26
Д7000,35-0,40,34-0,390,27-0,31
ГазозолобетонД5000,28-0,330,27-0,320,19-0,25
Д6000,31-0,370,3-0,360,25-0,31
Д7000,39-0,450,38-0,440,3-0,36

Далее, для проведения расчетов необходимо определить, к какой зоне влажности относится ваш регион. Для этого можно воспользоваться картой зон влажности и следующей таблицей:

Влажностный режим регионов:

РежимВлажность воздуха при температуре до 12 градусовВлажность воздуха при температуре от 12 до 24 градусовВлажность воздуха при температуре более 24 градусов
Влажный – 1Более 75От 60 до 75От 50 до 60
Нормальный -2От 60 до 75От 50 до 60От 40 до 50
Сухой -3Менее 60Менее 50Менее 40

Теперь следует заглянуть в СНиП 23-02-2003 и определить, к каким условиям эксплуатации ограждающих конструкций относится регион в зависимости от влажности.

Карта зон влажности, фото

Карта зон влажности, фото

Эксплуатационные условия конструкций А, Б в зависимости от влажностного режима в регионе:

Режим влажностиУсловия эксплуатации во влажной зонеУсловия эксплуатации в нормальной зонеУсловия эксплуатации в сухой зоне
Влажный – 1БББ
Нормальный – 2ББА
Сухой — 3БАА

Теперь стоит вернуться в таблице 6, в которой мы сможем найти нужный для себя показатель.

  • Например, предположим, что наш регион – Смоленск. Его территория относится к зоне нормальной влажности – 2, влажность в помещении – тоже нормальная, значит, в этом случае, для региона характерны условия В.
  • Теперь переходим к расчетам. Нам потребуется значение нормируемого сопротивления теплоотдаче. Для Москвы это – 3,29.
  • Возводить мы будет стену из блоков плотностью Д500, укладку производить – на клей. Находим в таблице 6 необходимое значение. В данном случае оно равно – 0,23.
  • Теперь определяем толщину стены, для чего перемножаем коэффициент теплопроводности и показатель сопротивления теплоотдаче: 3.29*0.23=0,7567 метра.
  • То есть, для того, чтобы не нарушить нормы СНиП, толщина стены, при вышеописанных условиях, должна составлять 0,76 метра!

Так почему же все производители в один голос заявляют, что толщина стены может быть от 400 мм, а на практике выходит по-другому? Все просто!

Во-первых, теплопроводность газоблока в условиях эксплуатации – повышается, так как изменяется влажность, во-вторых, изготовителями, при подсчетах показателей для рекламы продукции, не учитываются мостики холода и иные определяющие факторы. Теоретически, толщина стены может быть и тоньше, но, чтобы сохранить нужное значение теплопроводности, необходимо будет компенсировать разницу при утеплении конструкции.

Газобетонные блоки теплопроводность: вариант утепления, схема

Газобетонные блоки теплопроводность: вариант утепления, схема

Видео в этой статье расскажет подробнее о методах утепления газобетона, и сохранения оптимального показателя качества теплопроводности

Обзор основных достоинств и недостатков строений, возведенных из газобетона

Итак, мы выяснили, что коэффициент теплопроводности газобетона достаточно хорош, относительно других материалов, предназначенных, в первую очередь, для возведения стен. Однако это не может являться единственным аргументом при выборе изделий.

Давайте кратко рассмотрим, какими же еще сильными сторонами обладают газоблоки:

  1. Изделия — легкие, что значительно сократит нагрузку на фундамент;
  2. Как уже упоминалось выше, материал прост в обращении, он легко пилится, режется, шлифуется;
  3. Состав газоблока – немаловажный аспект. Он не содержит ядовитых и вредных для окружающих веществ, а, значит, является экологически чистым;
  4. Газобетон не горит и не поддерживает огня. При возгорании может в течение нескольких часов находиться под воздействием высокой температуры;
  5. Высокие показатели морозостойкости. Изделия могут выдержать до 150 циклов размораживания и оттаивания;
  6. Паропроницаемость обеспечит максимально комфортный микроклимат;
  7. Звукоизоляционные характеристики – также достаточно неплохие. Стены из газобетона смогут оградить пребывающих в помещении от посторонних шумов извне;
  8. Доступность и распространенность материала среди производителей. Это – тоже значительный плюс. Практически в любом регионе можно найти изготовителя или дилера, находящегося по близости. Это поможет сэкономить на доставке;
  9. Вариативность выбора размеров;
  10. Еще одно весомое преимущество – возможность самостоятельного изготовления изделий. Для желающих сэкономить или просто попробовать свои силы – отличный шанс;

Основными недостатками являются:

  1. Высокое водопоглощение материала. В этом случае, пористость является отрицательной стороной в особенности, при отрицательных температурах воздуха. В это время, влага может кристаллизироваться и разрушительно воздействовать на структуру блока.
  2. Хрупкость изделий. Это достаточно заметно при проведении работ и транспортировке.
  3. Усадка здания имеет место быть достаточно часто и, в следствие этого, а также некоторых других факторов, могут появиться трещины.
  4. Необходимость поиска и приобретения специального крепежа, а при желании закрепить особо тяжелых предметы, необходимость планирования и укрепления узлов фиксации.

Метод испытания теплопроводности изделий

Метод контроля теплопроводности осуществляется в соответствии с ГОСТ 7076, а отбор проб – в соответствии с ГОСТ 10180. Документы содержат всю информацию о порядке отбора проб, их испытаний и протоколировании результатов.

Суть метода заключается в следующем: создается стационарный тепловой поток, который проходит через образец выбранной толщины. Направление его – перпендикулярно наибольшим граням образца. В результате производят измерение плотности этого потока тепла, а также температуру лицевых граней образца и его толщину.

Необходимое количество образцов, подлежащих испытанию, должно быть указано в сертификате на материал. Если же такое указание отсутствует, испытания проводятся на образцах в количестве пяти штук.

Прибор для измерения теплопроводности твердых тел

Прибор для измерения теплопроводности твердых тел

Краткая инструкция о порядке проведения испытания выглядит так:

  • Производят подготовку образцов и необходимого оборудования, согласно технической документации;
  • Образец помещают в прибор, предварительно градуированный;
  • Каждые 300 секунд производят измерения сигналов тепломера и датчика температуры;
  • После установления стационарного теплового потока, толщина образца подлежит измерению;
  • Заключительным этапом является определение массы образца.

Основные итоги

От показателя теплопроводности стенового материала зависят расходы на утепление помещения при строительстве, а в будущем — и величина расходов на отопление. Ведь данная характеристика отвечает за способность здания к сохранению температуры.

Газобетон обладает завидным числовым показателем в сравнении с другими материалами для стен — но, все же, совсем без утепления все равно не обойтись. Теплопроводность зависит от иных показателей качеств, таких, например, как плотность, или влажность. А это значит, что при возведении здания, данный факт должен быть обязательно учтен.

Помимо вышеуказанного, газоблок наделен большим количеством сильных сторон, поэтому если ваш выбор пал на него, то вы не прогадали. Материал позволит возвести практичное, долговечное строение — а теплопроводность газобетонных блоков при этом, является крайне важной характеристикой.

от чего зависит и какой коэффициент

Индустрия строительства сегодня обеспечена многочисленными высокотехнологичными материалами, имеющими выдающиеся свойства. Одним из них является ячеистый бетон. Одна из разновидностей — газобетон. Производители гарантируют материалу высокие эксплуатационные характеристики. Например, обеспечивать сбережение комфортного внутреннего теплового режима зданий или передачу лишнего тепла за его пределы. Постоянное удорожание энергоресурсов делает все более актуальным фактором строительства снижение теплопроводности материалов.

Что такое теплопроводность?

Стены зданий предназначены стабилизировать комфортную температуру внутри помещений. Высокая теплопроводность стен холодной порой года будет быстро передавать тепло отопления наружу. Стоимость потребленных энергоресурсов вырастет, однако, жилое строение будет по-прежнему холодным. По этой же причине жаркие дни станут причиной внешнего нагрева стен. Материал передаст тепло внутрь строения, потребовав непременного охлаждения воздуха. Газобетону присущи иные свойства.

Само название подтверждает, что объем материала равномерно заполнен порами. Примерно 85% тела блоков — пустоты. Они заполнены воздухом, именно поэтому изделия имеют незначительный вес. По этому параметру продукция объединяет качества дерева, камня. Как известно «запертый» воздух является плохим проводником тепла. Значит, структура материала обладает ярко выраженной низкой теплопроводностью.

Показатель имеет наименьшую величину среди используемых стеновых материалов. Термин «теплопроводность» определяет способность передавать тепло внутри материала от одной более нагретой части объема к другой менее нагретой за счет теплового движение молекул. Измерение производится в Вт/(м °С). Показатель имеет название — коэффициент теплопроводности.

Фактически речь идет о количестве теплоты, которая передается через грань образца объемом 1 м. куб. за установленное время (например, 1 час) при формировании разности температур в 1 градус на противоположных сторонах. Технология изготовления газобетона задает макроструктурное качество, характеристики плотности, влажности материала. Именно от этих параметров зависит теплопроводность продукции.

Вернуться к оглавлению

Зависимость от плотности

Влияние плотности на теплопроводность.

Теплопроводность изделий формируется плотностью их материала. Чем они плотнее, тем быстрее передают холод (тепло) через свой объем. Стены из разных материалов, которые одинаково препятствуют теплопотерям, имеют разную толщину. Для сравнения: стены кирпичная шириной 210 см, из блоков газобетона сечением 44 см, из листов пенополистирола толщиной 12 см имеют практически равные показатели теплопропускания.

Сравнение стандартных величин теплопроводности кирпича — 0,35 Вт/(м °С) с газобетоном марки D400 — 0,10 Вт/(м °С) показывают, что условная кирпичная стена выпускает тепло из постройки быстрее, примерно от 3 до 4 раз. Одна из особенностей газоблоков в том, чем большую плотность он имеет, тем быстрее сооружение охлаждается. Есть обратная связь. Важно выдержать оптимум при выборе марки блоков, чтобы дом стал долговечным, теплым.

Вернуться к оглавлению

Зависимость от влажности

Влияние влажности на теплопроводность газобетона.

Формирование из блоков наружных стен сооружений предполагает взаимодействие, в первую очередь, с переменчивой влажностью окружающей среды. Хотя гигроскопичность материала достаточно низкая, однако, его структура все же подвержена впитыванию влаги. Реальные теплоизоляционные свойства изделий становятся несколько ниже, чем в стандартных условиях измерений. Величина равновесной эксплуатационной влажности наружных газобетонных стен может составлять до 10%. Поэтому, например, стандартный коэффициент теплопроводности, равный 0,12 Вт/(м °С) для блоков марки D500 в стандартных условиях, отличается от величины в условиях эксплуатационной влажности на 0,2 Вт/(м °С) и больше. Однако, это не много по сравнению, к примеру, с пустотелым строительным кирпичом, для которого в аналогичных условиях величина данного показателя ухудшается на 70-90%.

Вернуться к оглавлению

Зависимость от качества макроструктуры

Данная разновидность блоков отличается от пенобетонных тем, что содержит характерные вытянутые пустоты неправильной формы. Такому образованию их формы материал обязан выходу газа в процессе отвердения. Газ выходит через образовавшиеся в порах трещинки, а значит, есть обратная сторона вопроса — подверженность продукции поглощению влаги.

Структуризацию материала определяют технологии изготовления. Определяющим фактором являются размеры внутренних пустот. Теплосберегающие свойства материала тем выше, чем больше пустотелых сфер в материале, а также чем меньших они размеров.

Вернуться к оглавлению

Коэффициент теплопроводности марки D500

Газоблоки данной марки классифицируются как конструкционно-теплоизоляционный материал. Величина показателя продукции в среднем равна 0,12 Вт/(м °С). Теплоизоляционные свойства стен, состоящих из уложенных блоков, могут достигать до 0,28 Вт/(м °С), что уже приближает их к кирпичу. Вместе с тем в соответствии с современными строительными нормами (к примеру, СТО 501-52-01-2007, ГОСТ 31360-2007 для РФ) газоблоки марок от D500 и выше могут быть использованы для кладки самонесущих стен высотой более 3-х этажей.

Вернуться к оглавлению

Коэффициент теплопроводности марки D600

Дом из газобетонных блоков сохраняет комфортную температуру в помещениях, как в зимний, так и в летнее время.

Данные изделия также являются конструкционно-теплоизоляционными. Средняя величина показателя для продукции составляет около 0,14 Вт/(м °С). Расчетные теплоизоляционные характеристики стен, состоящих из изделий марки D600, могут достигать до 0,31 Вт/(м °С). Для минимизации теплопотерь требуется точное выполнение рекомендаций по гидроизоляции материала от влаги воздуха, атмосферных осадков.

К сожалению, не только газоблоки составляют тело стен. Мостики передачи тепла создаются армопоясами, бетонными перемычками (поясами), кладочными швами. Последние резко понижают теплоизоляционные качества конструкции стен в целом.

Использование при монтаже специальных клеев снижает теплопроводность стен по сравнению с кладкой на цементные растворы. Вместе с тем повышение точности изготовления единиц продукции при одновременном увеличении их стандартных размеров позволяет сократить количество мостиков холода.

Вернуться к оглавлению

Заключение

За газобетоном настоящее и будущее жилищного строительства ввиду совершенствования норм, требований теплосбережения, роста цен на энергоносители. Простота возведения стен, отсутствие необходимости проводить дополнительное утепление, малые значения теплопроводности автоклавного газобетона позволяют существенно удешевить конструкцию сооружений.

Однако специфика строения пустот в газоблоках способствует впитыванию материалом влаги, поэтому их гидроизоляция обязательна. Конкретная климатическая зона строительства формирует индивидуальный подход как к выбору марки газоблоков, расчету толщины стен зданий, так и определяет их реальную теплопроводность.

Теплопроводность газобетона и газобетонных блоков

На протяжении долгих лет строители отдавали предпочтение кирпичу как долговечному, прочному материалу, устойчивому к износу. Современный рынок предлагает ряд альтернативных материалов, среди которых ячеистые бетоны, обладающие большим количеством преимуществ. Одним из важных плюсов газобетона является теплопроводность, которая подразумевает способность материала сохранять тепло внутри помещения.

Способность строительного материала к удержанию тепла зависит от многих факторов, среди которых плотность, характеристика взаимодействия с влагой, расположенность к теплоусвоению и паропроходимость.

Теплопроводность газобетона обусловлена его структурой. Любой ячеистый бетон на 85% состоит из пузырьков воздуха, который создает своеобразную прослойку при взведении стен здания и оказывается отличным утеплителем. В сравнении с пенобетоном газоблок оказывается более подвержен воздействию влаги, что сказывается на его теплопроводности. Поэтому при проведении строительных работ необходимо осуществить гидроизоляцию используемых изделий и будущей постройки.


От чего зависит теплопроводность газобетонных блоков?

На теплопроводность газобетона влияет влажность воздуха. В сухом климате его показатели будут более располагающими, но в иных условиях способность ячеистых бетонов к пропусканию тепла практически схожи с теми, которые демонстрирует кирпич. Каждый регион имеет индивидуальные климатические и погодные особенности, которые предполагают использование тех или иных материалов. В случае с областями, где наблюдается высокая влажность воздуха, прибегают к эксплуатации изделий с большей толщиной, а любое строительство требует проведения предварительных расчетов для того, чтобы полученная в финале теплопроводность газобетона не сказалась на пригодности дома к эксплуатации и комфорте проживания в нем.

Осуществление расчетов предполагает учет толщины газоблоков, возможность их эффективного утепления и обустройство потенциальной системы отопления.

Теплопроводность газобетона, используемого при возведении стен, может зависеть от качества клеевого раствора, так как места смыкания блоков являются возможными причинами проникания холода. Также сказывается и наличие армопоясов. Использование обычного бетона приведет к тому, что дом будет сильно промерзать, поэтому строители используют железобетонные армированные пояса для увеличения теплопроводности газобетонных блоков. Необходимость использования этих деталей сказывается на финансовых затратах на строительство.


Зависимость теплопроводности от плотности

Коэффициент теплопроводности газобетона напрямую зависит от плотности материала. Чем плотнее его структура, тем выше способность к удержанию тепла. При этом наблюдается специфичная зависимость теплоизоляции от прочности материала: чем менее прочен газобетон, тем лучше он удерживает тепло. Выбирая марку материала, стоит ориентироваться и на эту особенность, и при строительстве дома выбирать газобетон марки D500- D600.


Преимущества теплопроводности газобетона

Низкий коэффициент теплопроводности материала позволяет серьезно сэкономить на системе отопления и электроэнергии, затрачиваемой на поддержание комфортной температуре в помещении. Стены дома из газобетона помогают поддерживать приятный микроклимат, сохраняя тепло зимой, а жарким летом создавая приятную прохладу благодаря тому, что они не пропускают тепло извне.

Экономичность в использовании газобетона заключается еще в том, что нет необходимости в затратах на дополнительную теплоизоляцию. В случае необходимости повышения теплоизоляции можно облицевать фасады здания кирпичом, сделав более привлекательным его внешний вид и увеличив его способность к сохранению тепла.

Купить газобетонные блоки высокого качества и по выгодным ценам можно на сайте компании «УниверсалСнаб».

Теплопроводность газобетона, технические характеристики, способы определения

Низкий коэффициент теплопроводности считается главным преимуществом газобетона наряду с легкостью, хорошей морозостойкостью и прочностью на сжатие. Его обеспечивает высокая (до 85 %) пористость структуры и закрытость ячеек, благодаря этому свойству материал успешно совмещает конструкционные и утепляющие функции и является оптимальным при строительстве энергосберегающих домов.

Факторы влияния и методы определения

Теплопроводность газоблока отражает его способность к передаче тепла от более нагретых частей к холодным в ходе движения молекул. В численном выражении данная характеристика измеряется в Вт/м·°C. Низкое значение у автоклавных газо- и пенобетона (не более 0,12-0,14 у востребованных марок D500 и D600) свидетельствует о хороших энергосберегающих свойствах, что позволяет сократить затраты на обогрев зданий в зимнее время и на кондиционирование – в летнее.

Все изготавливаемые изделия проходят обязательный контроль, подтверждающий данный коэффициент опытным путем, соответствующая информация указывается в сертификате продукции и является ориентиром при расчете толщины стен и перекрытий.

Метод проверки теплопроводности регламентирован требованиями ГОСТ 7076, его суть заключается в подаче стационарного теплового потока через блоки в перпендикулярном направлении и последующем измерении его плотности и температуры лицевой поверхности и граней образца.

Результаты сертификации продукции принято разделять на 2 группы, отражающих значения в сухом состоянии и при определенной влажности. Также теплопроводность напрямую зависит от состава и плотности. Ориентировочные показатели для самых востребованных в частном строительстве марок приведены ниже:

Коэффициент, Вт/м·°CМарка газоблоков
D300D400D500D600
В сухом состоянии0,0720,0960,120,14
При влажности 4 %0,0840,1130,1410,16

Теплопроводность снижается при поглощениях ячейками влаги, материал нуждается в защите от внутреннего пара и конденсатов и внешних осадков. У изделий, изготовленных на золе, при равной прочности она на несколько единиц меньше, чем у чисто песчаных (0,1 Вт/м·°C у марки D500, 0,13 у D600), но в первую очередь способность к удерживанию тепла зависит от их плотности и условий эксплуатации. Для сравнения – у незащищенных газобетонных стен, подвергаемым стандартным влажностным нагрузкам в пределах 60%, коэффициент повышается почти в два раза. По этой же причине помимо данной характеристики (отклонения не должны отходить на ± 20 %) в ходе выпуска блоков контролируется показатель отпускной влажности, допустимый нормами максимум не превышает 25-30 %.

Сравнение теплопроводности

В строительстве этот коэффициент учитывают прежде при выборе кладочных материалов для возведения стен, потребность в утеплителе. Ориентировочные значения для самых востребованных из них приведены в таблице:

НаименованиеДиапазон плотности, кг/м3Теплопроводность, Вт/м·°C
Автоклавные газоблоки280-10000,07-0,21
Пенобетон300-12500,12-0,35
Плотный красный кирпич1700-21000,67
Дерево (на примере соснового бруса)5000,18
То же, пористый15000,44
Клинкер1800-20000,8-1,6
Облицовочные марки18000,93
Кирпич строительный800-15000,23-0,3
Силикатный сплошной1000-22000,5-1,3
То же, с тех.пустотами0,7
Силикатный щелевой0,4

На практике на теплопроводность стен оказывает влияние не только тип газоблоков, но и наличие и вид используемого соединительного раствора. Результаты сравнения для разных кладок приведены ниже:

Вид стеныДиапазон плотности, кг/м3Теплопроводность, Вт/м·°C
Газобетонные блоки, монтируемые на клей630-8200,26-0,34
То же, при использовании газосиликатных теплоизоляционных плит5400,24
Керамический сплошной кирпич на цементно-перлитовом растворе16000,47
То же, на ЦПС18000,56
То же, на цементно-шлаковом составе17000,52
Керамический пустотный кирпич на ЦПР1000-14000,35-0,47
Малоразмерные кладочные изделия17300,8
Пустотелые стеновые1220-14600,5-0,65
Силикатный 11-ти пустотный кирпич на ЦПС15000,64
То же, 14-ти пустотный14000,52

Результаты сравнения выявляют однозначное преимущество пористых материалов перед плотными и сплошными в плане способностей к энергосбережению. По этой причине и автоклавные газоблоки, и прошедший обычную сушку пенобетон выигрывают у кирпича при условии кладки их на тонкий шов облегченного раствора с близким показателями теплопроводности. Монтаж на ЦПС нивелирует это преимущество и приводит к образованию в стенах мостиков холода, то есть к потребности в наружном утеплении. Пенобетон в сравнении с газобетоном уступает в равномерности структуры (и как следствие – чуть хуже держит тепло), но при равной плотности их коэффициенты теплопередачи практически не отличаются.


 

Характеристики газобетонов. Насколько теплый газобетон?

В середине 20 века, когда шло увеличение рынка строительных материалов, был выделен большой класс конструкционных теплоизоляционных материалов (КТИ). Как предполагалось, эти материалы с одной стороны  обладают высокой несущей способностью, чтобы строить из них здания, но с другой стороны конструкции из них обладают достаточным сопротивлением теплопередач. Тогда в класс КТИ входили кирпич, легкие бетоны и большинство бетонов на пористых заполнителях. Уже в 90х годах 20 века после ужесточения нормирования теплофизических характеристик класс КТИ значительно уменьшился. Теперь в нем, кроме автоклавного газобетона с плотностью до 500 кг/м³ находятся лучшие образцы крупноформатной керамики, керамзитобетона.

ХарактеристикаМатериал
АГБ D300АГБ D400АГБ D500ПСБ  D350ПСБ  D400Пенобетон  D500Пенобетон  D600КБ 650 кг/ куб.мКерамика 10,8 -14 НФ 800 кг/м³
Класс по прочности при сжатииВ2В2,5В3,5В1В1-В1,5В1,5-В2В2,5М75-М100
Возможная кладка на клейда, допуски размером <± 1ммнет, допуски размеров больше 1,5-3 мм
Расчетное сопротивление кладки сжатию, МПа0,81,01,40,50,5-0,60,5-0,60,6-0,81,01,4- 2,0
Усадка кладки при высыхании0,4 мм/м≈1 мм/м1-3 мм/м0,3 мм/м0
Пожарно-технические показателиНГ/КОГ1НГ/КО
Требуемая внутренняя отделкаПеретирка слоем 3 -5 ммШтукатурка слоем от 20 ммШтукатурка слоем от 10 мм
Расчетная теплопроводность материала / кладки, Вт/ (м*К)0,088/ 0,090,117/ 0,120,147/ 0,150,12 / 0,130,13 / 0,140,16 /0,170,18 / 0,190,21/ 0,25/0,22
Сопротивление теплопередаче слоя кладки толщиной, мм
3003,382,622,162,472,301,921,741,361,52
4004,443,442,833,243,022,512,261,761,98
5005,534,263,494,003,733,102,792,162,43
МорозостойкостьF50F50F50F35-F75F50-F75F25-F50F25-F50F50F50

Если сравнивать КТИ в современных условиях, то нельзя не отметить, что прочность автоклавного газобетона достаточно высока, расчетное сопротивление кладки аналогично кладки крупноформатной керамики. Теплопроводность газобетона также вне конкуренции.

Касаемо требований к отделке, то КТИ достаточно схожи для отделки их простой перетиркой без штукатурки. Стоит учесть и усадку КТИ. Для автоклавного газобетона 4 мм/м.

Насколько газобетон теплый?

Есть теплопроводность газобетона в сухом состоянии и при эксплуатационной влажности. В нашем климате влажность газобетона составляет от 3 до 5%, и эта влажность зависит от построенной конструкции. Расчетная теплопроводность назначается 4 – 5 %. Выше в таблице даны значения теплопроводности по ГОСТу 31359-2007.

МатериалТеплопроводность в сухом состоянии (λ0). Вт/м*КТеплопроводность при равновесной влажности (λа/б), Вт/м*К
Пенополистирол обычных марок0,0350,038-0,04
Минвата0,040,044-0,06
АГБ D4000,0960,11-0,12
АГБ D5000,1200,14-0,15
Сосна, ель0,1400,18-0,22

т.е. 300 мм D400 равны 100 – 150 мм пенопласта (ППС) или минваты по теплозащитным свойствам.

Сравним теплопроводность с другими популярными материалами.

Еще в советские годы 200 мм D600 были аналогичны 200 мм бруса, таким образом, газобетон равнялся по теплозащитным свойствам дерево. В настоящее время газобетон превзошёл в 1,5-2 раза дерево.

Принятая кладка в 2,5 керамического кирпича равняется 100 мм D400.

 

Влияние термического отверждения на устойчивость раствора и коэффициент теплопроводности пенобетона на основе твердых промышленных отходов

3.1 Влияние температуры отверждения на стабильность раствора пенобетона

На рисунке 1 показано изменение скорости объемного расширения образцов в зависимости от температуры отверждения. Очевидно, что степень объемного расширения двух вяжущих материалов резко возросла при высоких температурах отверждения. Для цементного материала A350 степень объемного расширения составляла 64.71% и 99,35% соответственно при температуре ниже 45 ° C и 70 ° C; для вяжущего материала A500 степень объемного расширения составляла 48,99% и 39,90% соответственно при двух температурах. Быстрый рост степени объемного расширения можно объяснить следующим образом.

Оба вяжущих материала выделяют большое количество ОН- в воде, создавая щелочную среду. В этих условиях паста из алюминиевого порошка выделяет газ в результате химической реакции. Многочисленные пузырьки газа независимы и равномерно распределены.Когда пузырьки только что образуются, суспензия находится в жидком состоянии и подвергается конвективной теплопередаче, так как ее температура отличается от температуры окружающей среды. После нагревания пузырьки становятся все более нестабильными. Источник газа начинает быстро расширяться, когда давление газа превышает предельное напряжение сдвига суспензии (сумма вязкого сопротивления и гидростатического давления) [22, 23].

Температура влияет на теплопроводность жидкости. С повышением температуры броуновское движение жидкости усиливается, и вязкость пленки жидкости сначала увеличивается, а затем уменьшается.Продолжающийся рост температуры приведет к уменьшению толщины пузырьковой пленки. По мере того как вода конденсируется на цементном материале, собственный вес материала постепенно увеличивается. Когда собственный вес превысит сумму давления в порах и силы вязкости на поверхности пузырьков, поры будут раздавлены, пузырьки схлопнутся [24], и пузырьки перестанут существовать. Вот почему A500 имел меньшую скорость расширения объема, чем A350 при температуре 70 ° C.

Рисунок 1. Изменение скорости объемного расширения в зависимости от температуры отверждения

Чтобы дополнительно раскрыть влияние температуры на стабильность суспензии, температура суспензии была измерена с помощью термопары в каждой форме, и изменение этой температуры во времени представлено на рисунке 2. Можно видеть, что температура суспензии A350 сначала снизилась, а затем затем увеличилась при температуре отверждения 20 ℃. Это связано с тем, что вяжущий материал A350 имеет небольшую SSA и низкую растворимость в начальной фазе.Вначале стальной шлак (SS) и доменный шлак (BFS) гидратируются с медленной скоростью, и лишь несколько минералов присоединяются к гидратации. Таким образом, в растворе мало содержания ОН- и Са2 +. По сравнению с A500 вяжущий материал A350 длительное время остается в жидком состоянии. Между тем, суспензия A350 будет охлаждаться, поскольку ее тепло течет в относительно прохладную среду. По мере продолжения гидратации выделяется все больше и больше тепла, повышая температуру суспензии.

На Рисунке 2 также видно, что A500 гидратировался быстрее, чем A350 в первые 20 минут.Гидратация — это экзотермический процесс реакции. На начальном этапе выделяется большое количество тепла из-за концентрированного образования эттрингитов. Многочисленные частицы микронного размера обволакивают пену и участвуют в гидратации стенок пенопласта. Для сравнения, суспензия с коротким начальным временем схватывания может сдерживать и фиксировать пузырьки, а также сохранять поры стабильными. В процессе вспенивания в такой суспензии остается больше газа, несмотря на реакцию гидратации [25, 26].

Скорость гидратации A350 относительно низкая.Паста из алюминиевого порошка высвободила огромное количество водорода до того, как пузырьки покроются гидратированным твердым слоем. Газоудерживающая способность суспензии настолько низкая, что пузыри всплывают вверх. Молекулы в маленьких пузырьках с высоким внутренним давлением мигрируют через пленку жидкости к соседним большим пузырькам с низким внутренним давлением. В результате маленькие пузырьки сливаются в большие и выходят из раствора (рис. 3). Из-за низкой скорости гидратации суспензия A350 более горячая, чем суспензия A500 на более поздней стадии.Таким образом, можно сделать вывод, что разрывы пузырьков при низких температурах в основном являются результатом диффузии газа и сочетания пузырьков.

Рис. 2. Изменение скорости объемного расширения в зависимости от температуры отверждения

Рисунок 3. Выход пузырьков при температуре ниже 20 ℃

При температуре отверждения 45 ° C (рис. 4) как A350, так и A500 гидратировались во время вспенивания, и оба обладали хорошим газоудерживающим эффектом. Скорость объемного расширения двух суспензий составляла соответственно 252% и 295%, что намного выше, чем при температуре ниже 20 ° C.При этой температуре отверждения первые 15 минут являются периодом индукции гидратации вяжущего материала [27]. A500 гидратируется быстрее, чем A350. При гидратации выделяется много тепла, которое передается суспензии. Между тем пузыри образуются в первые 15 минут. Когда температура жидкости увеличивается за короткое время, скорость пузырьков суспензии начинает набирать обороты. В конце концов, раствор может быстрее растворять реагенты и продукты реакции при высоких температурах.Сильная растворяющая способность способствует реакции гидратации, приводя к увеличению добычи газа в единицу времени и количества газа в суспензии.

Рисунок 4. Изменение температуры суспензии ниже 45 ℃

На рис. 5 показано изменение во времени температуры суспензии ниже 70 ℃. Как показано на Рисунке 4, стабильность суспензии в основном определяется комбинированным эффектом термической стабильности пузырьков и скорости гидратации. A500 гидратируется быстрее, чем A350. На ранней стадии суспензия A500 быстро переходит из жидкого состояния в пластичное, и теплопроводность текучей среды становится твердой теплопроводностью.Пузырь схлопывается под собственным весом суспензии и истончением стенок пузыря (рис. 6). Обрушение создает множество пустот на поверхности жидкого раствора, расширяя зону тепловой конвекции. На более позднем этапе суспензия A500 продолжает расти. При повышении температуры эффект Марангони ослабевает из-за теплопроводности жидкости и расширения газа, и пленка жидкости становится менее вязкой и менее прочной, что приводит к снижению устойчивости пузырька. В то же время пластификация суспензии ускоряется, а пузырьки сливаются и быстрее разрываются под действием собственного веса.Следовательно, можно считать, что схлопывание пузырька при высоких температурах является комбинированным результатом температуры и давления.

Рисунок 5. Изменение температуры суспензии ниже 70 ℃

Рисунок 6. Обрушение пузыря

3.2 Влияние температуры застывания на газобетон TCC

После трех дней отверждения образцы были подвергнуты измерению ТСС методом плоских полос и измерению пористости методом проникновения ртути.Результаты измерений показаны в Таблице 2 и на Рисунке 7. Можно видеть, что TCC газобетона уменьшалась с ростом температуры отверждения (за исключением схлопывания пузырьков). Причина заключается в том, что термическое отверждение превращает нестабильную трехфазную суспензию газ-жидкость-твердое тело в стабильную двухфазную систему газ-твердое тело, превращая пузырьки в поры. Когда диаметр пор меньше 4 мм, на общие характеристики теплопередачи в основном не влияет конвективная теплопередача или лучистая теплопередача.Поскольку TCC воздуха (0,026 Вт / (м · k)) намного меньше, чем у обычного бетона (1,4 Вт / (м · k)), большая часть тепла газобетона передается твердой теплопроводностью после образование пор. Есть два пути для передачи тепла в пустотах: четверть окружности и менее четверти окружности (рис. 8). Твердый TCC зависит от пористости материала. Чем выше пористость, тем длиннее путь теплопередачи и больше потери энергии. Таким образом, термическое отверждение способствует образованию пористой структуры и снижает TCC цементирующего материала.

Таблица 2. Пористость и ОКУ пенобетона при различных температурах отверждения

Номер

Температура отверждения ()

Пористость (%)

TCC (Вт / м · K)

A350

20

48,65

0.157

A350

45

66,27

0,094

A350

70

73,18

0,086

A500

20

59,71

0,131

A500

45

78.65

0,071

A500

70

83,5

0,117

Рис. 7. Изменение ТСС при нормальной температуре в зависимости от температуры отверждения

Рисунок 8. Пути теплопередачи в твердом корпусе

Приведенный выше анализ показывает, что термическое отверждение влияет на пористость материала и, следовательно, на ТСС материала.Согласно модели Максвелла [28, 29], TCC линейно коррелирует с пористостью:

$ λ = (2λ1 + λ2 + 2V (λ2-λ1) λ1) / (2λ1 + λ2-V (λ2-λ1)) $

, где λ 1 — ТСС непрерывной фазы; λ 2 — ТСС дисперсной фазы; λ — КТК материала; V — пористость. Значения этих параметров при последующем анализе остаются прежними.

В нашем тесте была измерена линейная зависимость между TCC и пористостью. Результаты (Рисунок 9) показывают, что TCC коррелирует с пористостью для газобетона, изготовленного из стального шлака (SS), доменного шлака (BFS) и гипса FGD, но коэффициент детерминации R2 = 0.954. Причина в том, что модель Максвелла характеризует теплопроводность материала, образованного однородными и независимыми сферами, неравномерно распределенными в матрице, а ТСС газобетона, в отличие от других двухфазных композитов, не только шарниров. на TCC его твердой и газовой фаз, а также на относительное содержание, морфологию, распределение и взаимодействие пор (которые образуются из пузырьков). Конечно, пористость является основным фактором, влияющим на КТК ячеистого бетона [30, 31].Для газобетона межпористое расстояние сокращается с ростом пористости. В этом случае стенки пор будут соприкасаться друг с другом, и поры могут даже соединиться. Взаимодействие между порами создает цепочку теплопроводности вдоль теплового потока.

Рисунок 9. Кривая зависимости ТСС и пористости

В то время как модель Максвелла не учитывает влияние формы пузырьков на TCC, Hasselman et al. улучшена модель Максвелла с учетом того, как размер дисперсных сфер (n = 3) влияет на теплопроводность материала.Результирующая модель Хассельмана [32] может быть выражена как:

$ λ = λ1 ([λ2 (1 + 2α) +2 λ1] + 2V [λ2 (1-α) — λ1]) / ([λ2 (1 + 2α) +2 λ1] -2V [λ2 (1- α) — λ1]) $

где, α — размерный коэффициент сферической дисперсной фазы. Этот коэффициент отрицательно коррелирует с размером сферы. Согласно модели Хассельмана, ТСС газобетона зависит от пористости и формы пор, в то время как температура отверждения ограничивает образование и распределение пор.

Затем была проведена сканирующая электронная микроскопия образцов с одинаковым увеличением при разных температурах.Результаты (рис. 10) показывают, что рост температуры вызвал расширение диаметра пор, истончение стенок пор и однородность диаметра пор в пенобетоне.

Рис. 10. СЭМ-изображения микроструктуры пенобетона при различных температурах

3.3 Анализ механизма газобетона на основе ISW

Приведенные выше результаты показывают, что бетон, изготовленный из стального шлака (SS), доменного шлака (BFS) и гипса FGD, имеет более высокую температуру вспенивания, чем обычный портланд-бетон, что может быть связано с продуктами гидратации его вяжущего материала.Согласно результатам SEM на ячеистом бетоне A350 (Рисунок 11), небольшое количество эттрингитов и геля C-S-H образовалось при температуре отверждения 20 ° C, но продукты не кристаллизовались, оставив несколько выпуклостей на изображении SEM; особой морфологии практически не было продуктов гидратации. При температуре отверждения 45 ° C игольчатые выходы эттрингита были очень очевидны, промежутки были покрыты мелкими эттрингитами, а гель образовывал кластеры и запутывался с эттрингитами. При температуре отверждения 70 ° C кристаллы эттрингита становились все толще и толще.С повышением температуры окружающей среды кремний (алюминий) -кислородный тетраэдр с большей скоростью диссоциировал от доменного шлака (BFS) в системе. Между тем, стальной шлак (SS) гидратируется быстрее, делая раствор более подщелачивающимся. Это приводит к образованию огромного количества эттрингитов. Таким образом, на порах и на поверхности частиц можно наблюдать большое количество агломерированного геля. Это означает, что у обычного портландцемента механизм гидратации отличается от механизма гидратации вяжущего материала на основе стального шлака (SS), доменного шлака (BFS) и гипса FGD.Обычный портландцемент может быстро гидратироваться, образуя большое количество силиката трикальция, силиката дикальция и алюмината алюминия на ранней стадии, а пенобетон, изготовленный из цемента, имеет хороший эффект удержания газа при нормальной температуре. Напротив, вяжущий материал на основе стального шлака (SS), доменного шлака (BFS) и гипса FGD медленно гидратируется при нормальной температуре, что подавляет задержку газа в пенобетоне, что затрудняет его вспенивание; основные продукты гидратации материала включают эттрингит и гель C-S-H.

Рис. 11. Результаты SEM на A350 при различных температурах отверждения

.

Тепловая эффективность — автоклавный газобетон Aercon AAC

Чтобы сравнить внешнюю стену AERCON с традиционными методами возведения стен (каркас из деревянных каркасов и бетонная кладка), Центр солнечной энергии Флориды определил эквивалентные значения R для стены AERCON. Данные о погоде для Орландо, Флорида, разработанные в базе данных «Типичный метеорологический год» (TMY 1981), послужили основой для определения внешних условий. Чтобы отделить эффект ориентации стенок, предполагалось, что на внешних поверхностях стен будет присутствовать только диффузное излучение.

Исследование включало расчеты для шести условий: средние зимние и летние дни, зимние и летние пиковые дни, а также сезоны охлаждения и нагрева. В исследовании сравнивалась стена AERCON толщиной 8 дюймов как с традиционной деревянной каркасной стеной, так и с блочной стеной CMU. Типичные исследованные сечения стенок показаны на рисунке A. Расчетные статические значения R и U без учета теплового массового воздействия показаны в таблице 1.

Результаты исследования, включающие тепловые массовые эффекты, показаны в таблице 2.Они представляют собой значение изоляции, которое необходимо добавить либо к стене с деревянным каркасом, либо к стене блока CMU для достижения эквивалентной тепловой системы. Например, в обычный летний день 8-дюймовая стена AERCON работает как стена с деревянным каркасом, изолированная стекловолоконной изоляцией R-20.4, или как 8-дюймовая блочная стена CMU, изолированная жесткой изоляцией R-8.6. Это означает, что к стене каркаса из деревянных каркасов потребуется добавить почти 6 дюймов ватной изоляции и более 2 дюймов жесткой полистирольной изоляции к стене блока CMU, чтобы сравняться с характеристиками стены AERCON, как показано на рисунке B!

Следует отметить, что одно из упрощающих предположений, сделанных для этого исследования, заключалось в том, что на внешних поверхностях стен будет присутствовать только диффузное излучение, т.е.е. на стены не попадал прямой солнечный свет. Если бы исследование было расширено и включило эффекты прямого излучения, результаты показали бы, что стена AERCON будет работать еще лучше!

.

Воздух — теплопроводность

Теплопроводность — это свойство материала, которое описывает способность проводить тепло . Теплопроводность может быть определена как

« количество тепла, передаваемого через единицу толщины материала — в направлении, нормальном к поверхности единицы площади — из-за единичного температурного градиента в условиях устойчивого состояния».

Самыми распространенными единицами измерения теплопроводности являются Вт / (м · К) в системе СИ и БТЕ / (ч фут ° F) в британской системе мер.

Табличные значения и преобразование единиц теплопроводности приведены под рисунками.

Онлайн-калькулятор теплопроводности воздуха

Калькулятор, представленный ниже, можно использовать для расчета теплопроводности воздуха при заданных температуре и давлении.
Выходная проводимость выражается в мВт / (м · К), британских тепловых единицах (IT) / (ч фут · ° F) и ккал (IT) / (ч · м · K).

См. Также другие свойства Air при меняющейся температуре и давлении: Плотность и удельный вес при переменной температуре, Плотность при переменном давлении, Коэффициенты диффузии газов в воздухе, Число Прандтля, Удельная теплоемкость при различной температуре и Удельная теплоемкость при переменное давление, температуропроводность, свойства в условиях равновесия газ-жидкость и теплофизические свойства воздуха при стандартных условиях, а также состав и молекулярная масса,
, а также теплопроводность аммиака, бутана, диоксида углерода, этана, этилена, водорода, метана , азот, пропан и вода.

См. Также Калькулятор теплопроводности

Вернуться к началу

Вернуться к началу


Вернуться к началу

Теплопроводность воздуха при атмосферном давлении и температурах в ° C:

0,02 71,35
Температура Теплопроводность
[° C] [мВт / м K] [ккал (IT) / (hm K)] [BTU (IT) / (ч фут ° F)]
-190 7.82 0,00672 0,00452
-150 11,69 0,01005 0,00675
-100 16,20 0,01393 0,00936
-75 18,34 0,01060
-50 20,41 0,01755 0,01179
-25 22,41 0.01927 0,01295
-15 23,20 0,01995 0,01340
-10 23,59 0,02028 0,01363
-5 23,97 0,0201361
0 24,36 0,02094 0,01407
5 24,74 0,02127 0,01429
10 25.12 0,02160 0,01451
15 25,50 0,02192 0,01473
20 25,87 0,02225 0,01495
25 26,24 9007
30 26,62 0,02289 0,01538
40 27,35 0,02352 0.01580
50 28.08 0,02415 0,01623
60 28,80 0,02477 0,01664
80 30,23 0,02599 0,01746 10052 0,02548 0,01746 31,62 0,02719 0,01827
125 33,33 0,02866 0,01926
150 35.00 0,03010 0,02022
175 36,64 0,03151 0,02117
200 38,25 0,03289 0,02210
225 39,83
300 44,41 0,03819 0,02566
412 50,92 0,04378 0.02942
500 55,79 0,04797 0,03224
600 61,14 0,05257 0,03533
700 66,32 0,05702 0,03832 0,05702 0,03832
0,06135 0,04122
900 76,26 0,06557 0,04406
1000 81.08 0,06971 0,04685
1100 85,83 0,07380 0,04959

Наверх
Теплопроводность воздуха при атмосферном давлении и температурах в ° F:

40 0,01911
Температура Теплопроводность
[° F] [британских тепловых единиц (IT) / (час футов ° F)] [ккал (IT) / (hm K)] [мВт / м · К]
-300 0.00484 0,00720 8,37
-200 0,00788 0,01172 13,63
-100 0,01068 0,01589 18,48
-50 0,0170086 20,77
-20 0,01277 0,01901 22,10
0 0,01328 0.01976 22,98
10 0,01353 0,02013 23,41
20 0,01378 0,02050 23,84
30 0,01402 0,0208749
0,01427 0,02123 24,70
50 0,01451 0,02160 25,12
60 0.01476 0,02196 25,54
70 0,01500 0,02232 25,95
80 0,01524 0,02267 26,37
100 0,01571
100 0,01571
120 0,01618 0,02408 28,00
140 0,01664 0,02477 28.80
160 0,01710 0,02545 29,60
180 0,01755 0,02612 30,38
200 0,01800 0,02679 31,16
0,02679 31,16 0,02843 33,07
300 0,02018 0,03003 34,93
350 0.02123 0,03160 36,75
400 0,02226 0,03313 38,53
450 0,02327 0,03463 40,28
500 0,02426
500 0,02426
600 0,02620 0,03898 45,34
700 0,02807 0.04177 48,58
800 0,02990 0,04449 51,74
1000 0,03342 0,04973 57,84
1200 0,03680 0,054,69 1400 0,04007 0,05963 69,35
1600 0,04325 0,06436 74.85
1800 0,04635 0,06898 80,23
2000 0,04941 0,07353 85,51

Преобразование единиц теплопроводности:

тепловая единица (международная) / (фут-час, градус Фаренгейта) [Btu (IT) / (ft h ° F], британская тепловая единица (международная) / (дюйм-час, градус Фаренгейта) [BTU (IT) / (в h ° F]) , британская тепловая единица (международная) * дюйм / (квадратный фут * час * градус Фаренгейта) [(британские тепловые единицы (IT) дюйм) / (фут² час ° F)], килокалория / (метр час градус Цельсия) [ккал / (mh ° C)], джоуль / (сантиметр второй градус кельвина) [Дж / (см · с · K)], ватт / (метр градус кельвина) [Вт / (м ° C)],

  • 1 БТЕ (IT) / (фут ч ° F) = 1/12 Btu (IT) / (в ч ° F) = 0.08333 британских тепловых единиц (IT) / (в ч ° F) = 12 Btu (IT) в / (фут 2 ч ° F) = 1,488 ккал / (мч ° C) = 0,01731 Дж / (см · с · K) = 1,731 Вт / (м · К)
  • 1 британская тепловая единица (IT) / (в час · ° F) = 12 британских тепловых единиц (IT) / (фут · час · ° F) = 144 британских тепловых единицы (IT) · дюйм / (фут 2 час · ° F) = 17,858 ккал / (м · ч ° C) = 0,20769 Дж / (см · с · K) = 20,769 Вт / (м · K)
  • 1 (британских тепловых единиц (IT) дюйм) / (фут² час ° F) = 0,08333 британских тепловых единиц (IT) / ( фут ч ° F) = 0,00694 британских тепловых единиц (IT) / (в час ° F) = 0,12401 ккал / (мч ° C) = 0,001442 Дж / (см · с · K) = 0,1442 Вт / (м · K)
  • 1 Дж / ( см · с · K) = 100 Вт / (м · K) = 57,789 БТЕ (IT) / (фут · ч · ° F) = 4.8149 БТЕ (IT) / (в час ° F) = 693,35 (БТЕ (IT) дюйм) / (фут² час ° F) = 85,984 ккал / (мч ° C)
  • 1 ккал / (мч ° C) = 0,6720 БТЕ (IT) / (фут · ч ° F) = 0,05600 Btu (IT) / (в час · ° F) = 8,0636 (Btu (IT) дюйм) / (фут 2 час · ° F) = 0,01163 Дж / (см · с · K ) = 1,163 Вт / (м · К)
  • 1 Вт / (м · К) = 0,01 Дж / (см · с · К) = 0,5779 БТЕ (IT) / (фут · ч · ° F) = 0,04815 БТЕ (IT) / (дюйм · ч ° F) = 6,9335 (британских тепловых единиц (IT) дюйм) / (фут² ч ° F) = 0,85984 ккал / (мч ° C)

К началу

.

list_of_thermal_conductivities

В физике теплопроводность , k, является интенсивным свойством материала, которое указывает на его способность проводить тепло.

Рекомендуемые дополнительные знания

Он определяется как количество тепла, Q , переданное во времени t через толщину L в направлении, нормальном к поверхности площадью A , из-за разницы температур Δ T , в установившемся режиме и когда теплопередача зависит только от температурного градиента.

теплопроводность = расход тепла × расстояние / (площадь × разница температур)

Этот список составляет данные для меньшего списка, представленного в разделе «Теплопроводность».

Материал Теплопроводность

(Вт · м −1 · K −1 )

Температура

(К)

Электропроводность при 293 К

(Ом -1 · м -1 )

Примечания
Алмаз, чистый синтетический i 2 000- i 2 500 i 293 (боковой) i 10 −16 — (баллистический) i 10 8+ (> 99.9% 12 С)
Алмаз нечистый ad 1,000 а 273 i ~ 10 −16 Тип I (98,1% драгоценных алмазов)

(C + 0,1% N)

Серебро, чистое d 406 — f 418 — agi 429 аги 300 г 61,35 — i 63,01 × 10 6 Наивысшая электрическая проводимость любого металла
Медь чистая d 385 — f 386 — e 390 — gi 401 egi 293 г 59.17 — i 59,59 × 10 6 IACS pure = 1,7 × 10 -8 Ом • м

= 58,82 × 10 6 Ом -1 • м -1

Золото чистое d 314 — fgi 318 gi 300 i 45,17 — г 45,45 × 10 6
Алюминий чистый d 205 — f 220 — egi 237 egi 293 г 37.45 — i 37,74 × 10 6
Латунь dg 109 — f 119 — f 151 — g 159 г 296 г 12,82 — г 21,74 × 10 6 (Cu + (37-15)% Zn)
Железо чистое f 71,8 — d 79,5 — a 80,2 — gi 80,4 аги 300 г 9.901 — i 10,41 × 10 6
Чугун из 55 (Fe + (2-4)% C + (1-3)% Si)
Углеродистая сталь f 36 — d 50,2 — f 54 (Fe + (1,5-0,5)% C)
бронза ( f (25% Sn) 26) г 42 — г 50 г 296 г 5.882 — г 7,143 × 10 6 (Cu + 11% Sn)
Свинец чистый d 34,7 — f 35 — gi 35,3 gi 300 i 4.808 — г 4.854 × 10 6
Титан чистый f 15,6 — gi 21,9 gi 300 г 1,852 — i 2.381 × 10 6
Нержавеющая сталь a 14 — fgl 25 a 273 — г 296 г 1,389 — г 1,429 × 10 6 (Fe + 18% Cr + 8% Ni)
Титановый сплав г 5,8 г 296 г 0,595 × 10 6 (Ti + 6% Al + 4% V)
Гранит b 1.73 — б 3,98 (72% SiO 2 + 14% Al 2 O 3 + 4% K 2 O и т. Д.)
Мрамор б 2,07 — б 2,94 Преимущественно CaCO 3
Термопаста на серебряной основе i 2 — i 3
Песчаник b 1.83 — б 2,90 ~ 95-71% SiO 2
Лед d 1,6 — e 2,1 — a 2,2 e 293 — a 273
Известняк б 1,26 — б 1,33 Преимущественно CaCO 3
Бетон д 0.8 — и 1,28 e 293 ~ 61-67% CaO
Стекло d 0,8- e 0,93 ( г (96% SiO 2 ) 1,2-1,4) e (g) 293 10 −14 (г) 10 −12 -10 −10 Оксиды железа
Пластмассы, армированные волокном г 0,23 — г 0,7 — e 1.06 g 296 — e 293 г 10 −15 г 10 0 10-40% GF или CF
Почва в 0,17 — в 1,13
Вода из 0,6 из 293 5 × (Чистый) i 10 −6 — (Сладкий) i 10 −3 ± 1 — (Морской) i 1 (NaCl + MgCl 2 + CaCl 2 )
Полимеры высокой плотности г 0.33 — г 0,52 г 296 г 10 −16 г 10 2
глицерин e 0,29 e 293
Дерево, +> = 12% воды h 0,09091 — a 0,16 — h 0,21 — e 0,4 a 298 — e 293 h Видовые вариации
Полимеры низкой плотности г 0.04 — e 0,16 — e 0,25 — г 0,33 g 296 — e 293 г 10 −17 г 10 0
Резина (92%) а 0,16 а 303 ~ 10 −13
Спирты ИЛИ масла e 0,1 — e 0,21 e 293
Древесина, высушенная в духовке д 0.04 — ч 0,07692 — г 0,12 — ч 0,17 h Кедр — h Гикори
Снег, сухой г 0,11
Пробка d 0,04 — e 0,07 e 293
Стекловолокно ИЛИ пена ИЛИ шерсть и 0.03 — d 0,04 — e 0,045 e 293
Пенополистирол ad 0,033 — ( г (только PS) 0,1 — 0,13) a 98- a 298- (г) 296 (г) −14 — (г) 10 0 (PS + Air + CO 2 + C n H 2n + x )
Воздух д 0.024 — e 0,025 — a 0,0262 д 273- д 293- а 300 (N + 21% O + 0,93% Ar + 0,04% CO 2 )

(1 атм)

Кислород чистый d 0,0238 — i 0,02658 d 293 — i 300 (O 2 ) (1 атм)
Азот чистый d 0,0234 — i 0.02583 — а 0,026 d 293 — ai 300 (N 2 ) (1 атм)
Кремнеземный аэрогель a 0,003- i 0,004- k 0,008- k 0,017- i 0,03 а 98 — а 298 Пеностекло
Материал Теплопроводность

(Вт · м −1 · K −1 )

Температура

(К)

Электропроводность при 293 К

(Ом -1 · м -1 )

Примечания

Ссылки

a CRC Справочник по химии и физике (для доступа к данным требуется подписка)
b Институт мрамора
c Почвенные журналы
d Государственный университет Джорджии — Гиперфизика
e Термодатчики Hukseflux
f Engineers Edge
г GoodFellow
h Физические свойства и влажность древесины
i Другие списки в ссылках Википедии (эту таблицу нельзя цитировать, чистые элементы взяты из ссылок на данные о химических элементах, в противном случае на связанной странице в таблице должны быть указаны соответствующие ссылки)
j Ясность требует, чтобы эта буква не использовалась в ссылке
k Тепловые свойства — кремнеземные аэрогели
l [1] Справочник по машинному оборудованию — свойства материалов p404]

Калькулятор теплопроводности

Зависимость теплопроводности воздуха от температуры можно найти на сайте инженерной службы пожарной безопасности Джеймса Иерарди.

См. Также

.

LEAVE A REPLY

Ваш адрес email не будет опубликован. Обязательные поля помечены *