Допустимая нагрузка на плиту перекрытия в кирпичном доме: Нагрузка на плиту перекрытия пустотную в кирпичном доме

Содержание

Сколько может выдержать плита перекрытия?

Максимальная нагрузка на пустотные плиты перекрытия может быть рассчитана даже тем, кто никогда ранее не сталкивался со строительством и подобными задачами в целом. Здесь работает простая арифметика, на требующая глубоких знаний ни в строительстве, ни в высшей математике.

В первую очередь необходимо определить, с какой плитой мы имеет дело.

Блок: 1/9 | Кол-во символов: 368
Источник: https://shtyknozh.ru/nagruzka-na-plitu-perekrytija/

Хранение строительных материалов

При производстве ремонта используют сухие смеси (М:300, пескобетон, штукатурки, наливные полы и т.д.). Как правило, это мешки с весом 30-50 кг.

Материалов требуется много и часто их хранят в одном месте, например складируют друг на друга. Так удобно строителям — площадь остается свободной и есть простор для работы. Этого никогда нельзя допускать.

В момент доставки мало кто задумывается о несущей возможности плиты перекрытия, а зря.

Все дома имеют запас прочности — он зависит от типа дома, конструктивного решения и возраста постройки. Ниже я привожу виды несущих плит.

В каждом случае нужно делать просчет допустимой нагрузки на плиту перекрытия. Важно просчитать все по формуле и учесть индивидуальные характеристики (возможные прогибы, целостность арматуры, износ и т.д.).

Чтобы не вдаваться в сложные расчеты привожу усредненные данные для типовых домов.

Для типового домостроения применяют плиты перекрытия с нагрузкой до 400 кг/кв.м. В крупнопанельных домах (поздние версии) допустимая нагрузка — 600 кг/кв.м.

Эти величины включают в себя как постоянные (перегородки, стяжка), так и временные (мебель, человек) нагрузки. Нельзя допускать перегруз — это приведет к обрушению. 18 мешков наливного пола — это уже 800 кг.

Конструкции дома не должны работать на износ, поэтому не нагружайте плиту перекрытия своего дома.

Горе-строители могут настаивать и спорить — им удобно сразу завести все черновые материалы. На первый взгляд это кажется логичным — происходит экономия на доставках, но экономия должна быть рациональной.

В своих проектах я разделяю доставки материалов по весу и всегда слежу, чтобы нагрузки распределялись равномерно на плиту перекрытия. Т.е. я не разрешаю строить «горы» из строительных смесей.

так нельзя

Блок: 2/4 | Кол-во символов: 1780
Источник: http://trustload.com/%D0%B4%D0%BE%D0%BF%D1%83%D1%81%D1%82%D0%B8%D0%BC%D0%B0%D1%8F-%D0%BD%D0%B0%D0%B3%D1%80%D1%83%D0%B7%D0%BA%D0%B0-%D0%BD%D0%B0-%D0%BF%D0%BB%D0%B8%D1%82%D1%83-%D0%BF%D0%B5%D1%80%D0%B5%D0%BA%D1%80%D1%8B/

Особенности

Пустотная плита перекрытия изготавливается из прочного бетона в совокупности со стальной арматурой высокого качества, которая может быть предварительно напряжена. Данная конструкция имеет форму прямоугольника, она оснащена сквозными воздушными круглыми камерами. Данная особенность определяет легкость пустотелых плит, поэтому они могут снижать общую нагрузку на фундамент и стенки. Их перемещение с использованием техники не доставляет дискомфорта, так как для этого имеются специальные петли.

Конструкция пустотелых плит более легкая, нежели у полнотелых, но при этом их прочность и надежность находится на высоком уровне. Присутствие полостей воздуха в данном изделии способствует тепло- и звукоизоляции.

Изготовление плит данного вида осуществляется двумя путями:

  • безопалубочным, который подразумевает применение вибрационных трамбовок;
  • заливанием стационарных опалубок из металла бетонной смесью, после чего залитую конструкцию отправляют на виброуплотнение и обработку теплом.

Благодаря наличию полостей в форме цилиндра улучшаются такие эксплуатационные возможности плит:

  • увеличение прочности;
  • улучшение теплоизоляции;
  • облегчение процедуры прокладывания коммуникаций инженерами;
  • уменьшение влияния внешних звуков.

Блок: 2/8 | Кол-во символов: 2471
Источник: http://www.stroy-podskazka.ru/perekrytiya/vse-o-pustotnyh-plitah/

Виды пустотных панелей перекрытия

Панели с продольными полостями применяют при сооружении перекрытий в жилых зданиях, а также строениях промышленного назначения.

Железобетонные панели отличаются по следующим признакам:

  • размерам пустот;
  • форме полостей;
  • наружным габаритам.

В зависимости от размера поперечного сечения пустот железобетонная продукция классифицируется следующим образом:

  • изделия с каналами цилиндрической формы диаметром 15,9 см. Панели маркируются обозначением 1ПК, 1 ПКТ, 1 ПКК, 4ПК, ПБ;
  • продукция с кругами полостями диаметром 14 см, произведенная из тяжелых марок бетонной смеси, обозначается 2ПК, 2ПКТ, 2ПКК;
  • пустотелые панели с каналами диаметром 12,7 см. Они маркируются обозначением 3ПК, 3ПКТ и 3ПКК;
  • круглопустотные панели с уменьшенным до 11,4 см диаметром полости. Применяются для малоэтажного строительства и обозначаются 7ПК.

Виды плит и конструкция перекрытия

Панели для межэтажных оснований отличаются формой продольных отверстий, которая может быть выполнены в виде различных фигур

:

  • круга;
  • эллипса;
  • восьмигранника.

По согласованию с заказчиком стандарт допускает выпуск продукции с отверстиями, форма которых отличается от указанных. Каналы могут иметь вытянутую или грушеобразную форму.

Круглопустотная продукция отличается также габаритами:

  • длиной, которая составляет 2,4–12 м;
  • шириной, находящейся в интервале 1м3,6 м;
  • толщиной, составляющей 16–30 см.

По требованию потребителя предприятие-изготовитель может выпускать нестандартную продукцию, отличающуюся размерами.

Основные характеристики пустотных панелей перекрытий

Плиты с полостями пользуются популярностью в строительной отрасли благодаря своим эксплуатационным характеристикам.

Расчет на продавливание плиты межэтажного перекрытия

Главные моменты:

  • расширенный типоразмерный ряд продукции. Габариты могут подбираться для каждого объекта индивидуально, в зависимости от расстояния между стенами;
  • уменьшенная масса облегченной продукции (от 0,8 до 8,6 т). Масса варьируется в зависимости от плотности бетона и размеров;
  • допустимая нагрузка на плиту перекрытия, равная 3–12,5 кПа. Это главный эксплуатационный параметр, определяющий несущую способность изделий;
  • марка бетонного раствора, который применялся для заливки панелей. Для изготовления подойдут бетонные составы с маркировкой от М200 до М400;
  • стандартный интервал между продольными осями полостей, составляющий 13,9-23,3 см. Расстояние определяется типоразмером и толщиной продукции;
  • марка и тип применяемой арматуры. В зависимости от типоразмера изделия, используются стальные прутки в напряженном или ненапряженном состоянии.

Подбирая изделия, нужно учитывать их вес, который должен соответствовать прочностным характеристикам фундамента.

Блок: 2/6 | Кол-во символов: 2690
Источник: https://pobetony.expert/raschet/nagruzka-na-plitu-perekrytiya

Материалы и конструкционные находки

Вес, который может выдержать плита перекрытия напрямую зависит от марки цемента, из которого она сделана.

Изготавливаются плиты перекрытия из бетона на основе цемента марки М300 или М400. Маркировка в строительстве — это не просто буквы и цифры. Это закодированная информация. К примеру, цемент марки М400 способен выдержать нагрузку до 400 кг на 1 куб.см в секунду.

Но не следует путать понятия «способен выдержать» и «будет выдерживать всегда». Эти самые 400 кг/куб.см/сек — нагрузка, которую изделие из цемента М400 выдержит какое-то время, а не постоянно.

Цемент М300 представляет из себя смесь на основе М400. Изделия из него выносят меньшие одномоментные нагрузки, зато они более пластичны и выдерживают прогибы, не проламываясь.

Армирование придает бетону высокую несущую способность. Пустотная плита армируется нержавеющей сталью класса АIII или АIV. У этой стали высокие антикоррозийные свойства и устойчивость к температурным перепадам от — 40˚ до + 50˚, что очень важно для нашей страны.

При производстве современных железобетонных изделий применяется натяжное армирование. Часть арматуры предварительно натягивают в форме, затем устанавливают арматурную сетку, которая передает напряжение от натянутых элементов на все тело пустотной плиты. После этого в форму заливают бетон. Как только он затвердеет и обретет нужную прочность, натяжные элементы обрезают.

Такое армирование позволяет железобетонным плитам выдержать большие нагрузки, не провисая и не прогибаясь. На торцах, которые опираются на несущие стены, используется двойное армирование. Благодаря этому торцы не «проминаются» под собственным весом и легко выдерживают нагрузку от верхних несущих стен.

Блок: 3/9 | Кол-во символов: 1711
Источник: https://1popotolku.ru/perekrytie/skolko-vyderzhivaet-plita-perekrytiya. html

Оплатить три доставки вместо одной — дешевле чем восстанавливать дом

При завозе строительных материалов нельзя допускать халатности и складывать все в одной точке. Профессиональные строители это знают, а дилетанты загрузят все в лифт и застрянут в лучшем случае.

Заранее просчитайте какие материалы потребуются и определите временные рамки для доставок.

Блок: 3/4 | Кол-во символов: 360
Источник: http://trustload.com/%D0%B4%D0%BE%D0%BF%D1%83%D1%81%D1%82%D0%B8%D0%BC%D0%B0%D1%8F-%D0%BD%D0%B0%D0%B3%D1%80%D1%83%D0%B7%D0%BA%D0%B0-%D0%BD%D0%B0-%D0%BF%D0%BB%D0%B8%D1%82%D1%83-%D0%BF%D0%B5%D1%80%D0%B5%D0%BA%D1%80%D1%8B/

Преимущества и слабые стороны плит с полостями

Плиты перекрытия с полостями

Пустотелые плиты популярны благодаря комплексу достоинств:

  • небольшому весу. При равных размерах они обладают высокой прочностью и успешно конкурируют с цельными панелями, которые имеют большой вес, соответственно увеличивая воздействие на стены и фундамент строения;
  • уменьшенной цене. По сравнению с цельными аналогами, для изготовления пустотелых изделий требуется уменьшенное количество бетонного раствора, что позволяет обеспечить снижение сметной стоимости строительных работ;
  • способности поглощать шумы и теплоизолировать помещение. Это достигается за счет конструктивных особенностей, связанных с наличием в бетонном массиве продольных каналов;
  • повышенному качеству промышленно изготовленной продукции. Особенности конструкции, размеры и вес не позволяют кустарно изготавливать панели;
  • возможности ускоренного монтажа. Установка выполняется намного быстрее, чем сооружение цельной железобетонной конструкции;
  • многообразию габаритов. Это позволяет использовать стандартизированную продукцию для строительства сложных перекрытий.

К преимуществам изделий также относятся:

  • возможность использования внутреннего пространства для прокладки различных инженерных сетей;
  • повышенный запас прочности продукции, выпущенной на специализированных предприятиях;
  • стойкость к вибрационному воздействию, перепадам температур и повышенной влажности;
  • возможность использования в районах с повышенной до 9 баллов сейсмической активностью;
  • ровная поверхность, благодаря которой уменьшается трудоемкость отделочных мероприятий.

Изделия не подвержены усадке, имеют минимальные отклонения размеров и устойчивы к воздействию коррозии.

Пустотные плиты перекрытия

Имеются также и недостатки:

  • потребность в использовании грузоподъемного оборудования для выполнения работ по их установке. Это повышает общий объем затрат, а также требует наличия свободной площадки для установки подъемного крана;
  • необходимость выполнения прочностных расчетов. Важно правильно рассчитать значения статической и динамической нагрузки. Массивные бетонные покрытия не стоит устанавливать на стены старых зданий.

Для установки перекрытия необходимо сформировать армопояс по верхнему уровню стен.

Расчет нагрузки на плиту перекрытия

Расчетным путем несложно определить, какую нагрузку выдерживают плиты перекрытия. Для этого необходимо:

  • начертить пространственную схему здания;
  • рассчитать вес, действующий на несущую основу;
  • вычислить нагрузки, разделив общее усилие на количество плит.

Определяя массу, необходимо просуммировать вес стяжки, перегородок, утеплителя, а также находящейся в помещении мебели.

Рассмотрим методику расчета на примере панели с обозначением ПК 60.15-8, которая весит 2,85 т:

  1. Рассчитаем несущую площадь – 6х15=9 м2.
  2. Вычислим нагрузку на единицу площади – 2,85:9=0,316 т.
  3. Отнимем от нормативного значения собственный вес 0,8-0,316=0,484 т.
  4. Вычислим вес мебели, стяжки, полов и перегородок на единицу площади – 0,3 т.
  5. Сопоставимый результат с расчетным значением 0,484-0,3=0,184 т.

Многопустотная плита перекрытия ПК 60.15-8

Полученная разница, равная 184 кг, подтверждает наличие запаса прочности.

Плита перекрытия – нагрузка на м2

Методика расчета позволяет определить нагрузочную способность изделия.

Рассмотрим алгоритм вычисления на примере панели ПК 23.15-8 весом 1,18 т:

  1. Рассчитаем площадь, умножив длину на ширину – 2,3х1,5=3,45 м2.
  2. Определим максимальную загрузочную способность – 3,45х0,8=2,76т.
  3. Отнимем массу изделия – 2,76-1,18=1,58 т.
  4. Рассчитаем вес покрытия и стяжки, который составит, например, 0,2 т на 1 м2.
  5. Вычислим нагрузку на поверхность от веса пола – 3,45х0,2=0,69 т.
  6. Определим запас прочности – 1,58-0,69=0,89 т.

Фактическая нагрузка на квадратный метр определяется путем деления полученного значения на площадь 890 кг:3,45 м2= 257 кг. Это меньше расчетного показателя, составляющего 800 кг/м2.

Блок: 4/6 | Кол-во символов: 3875
Источник: https://pobetony.expert/raschet/nagruzka-na-plitu-perekrytiya

Как правильно делать ремонт (распределение нагрузок):

  • Произведите демонтаж (уберите лишнее) и утилизацию строительного мусора. Это важно, чтобы подготовить фронт работы.
  • Продумайте и просчитайте пирог полов. Если требуется большой слой, то используйте легкие материалы (пеноплекс, керамзит). Эти материалы не дают большую нагрузку на плиту перекрытия и позволяют обеспечить звукоизоляцию.
  • Перегородки собирайте из легких материалов. Не используйте кирпич для возведения внутренних перегородок — вес кирпичной перегородки (пустотелый кирпич) составляет 200-220 кг/кв.м. Соответственно маленькая кирпичная стена площадью в 10 кв.м будет весить более 2 т.

В своих проектах я всегда собираю перегородки из тонкого пеноблока (толщиной 50-75мм). Это позволяет экономить пространство (толщина кирпичной стены 120 мм) и не перегружать плиту перекрытия. Стены из пеноблока обладают схожими характеристиками с кладкой в полкирпича (крепость и звукоизоляция между помещениями).

  • Никогда не заливайте слой цементной стяжки более 4 см. Всегда должен быть «пирог» полов: снизу толстые слои легких материалов, а сверху цементная стяжка и тонкий слой самовыравнивающегося наливного пола (0,4 — 0,9 см).
  • Учитывайте вес финишных материалов. Натуральный камень может передавать нагрузку от 60 кг/кв.м. Если уже произвели работы и подняли уровень полов, то правильно заменить тяжелые финишные материалы на более легкие, например на керамогранит.
  • Следите, чтобы во время ремонта хранение сухих смесей не было организовано в одной точке. Разделите смеси на группы и храните их в разных комнатах.
  • Всегда обращайтесь к профессионалам и не экономьте на специалистах. Ремонт не прощает ошибок. Ремонт требует знаний и опыта, никогда не допускайте к работе дилетантов или тех, кто не понимает разницу между М:300 и М:500.

Источник

Блок: 4/4 | Кол-во символов: 1845
Источник: http://trustload.com/%D0%B4%D0%BE%D0%BF%D1%83%D1%81%D1%82%D0%B8%D0%BC%D0%B0%D1%8F-%D0%BD%D0%B0%D0%B3%D1%80%D1%83%D0%B7%D0%BA%D0%B0-%D0%BD%D0%B0-%D0%BF%D0%BB%D0%B8%D1%82%D1%83-%D0%BF%D0%B5%D1%80%D0%B5%D0%BA%D1%80%D1%8B/

Виды нагрузок

Независимо от типа, любое перекрытие состоит из:

  1. 1. Верхней части – напольное покрытие, утепление полов, бетонные стяжки, если сверху расположен жилой этаж.
  2. 2. Нижней части, которая создается из обшивочных материалов, штукатурки, плиточных покрытий, к примеру, отделка потолка и подвесные конструкции, если снизу находится жилой этаж.
  3. 3. Конструкционной части, состоящей из монолитных или сборных плит.

Конструкционной частью является любой тип плит перекрытия, при этом верхняя и нижняя часть создают определенную статическую (перегородки, подвесные потолки, мебель) и динамическую нагрузку (нагрузка от перемещающихся по полу людей, домашних питомцев). Помимо этого также существуют точечные нагрузки и распределенные. Для жилых строений, помимо статических и динамических рассчитывают распределенные нагрузки, которые измеряются в килограмм-силах или Ньютонах на метр (кгс/м).

Блок: 5/9 | Кол-во символов: 896
Источник: https://shtyknozh.ru/nagruzka-na-plitu-perekrytija/

Маркировка

Каждый тип пустотелых плит перекрытий оснащается маркировкой, которая соответствует стандартам качества. Благодаря этому заказчик и проектировщик могут определить нужные параметры. На торце конструкции потребитель может увидеть маркировку, дату изготовления, массу и штамп ОТК.

В стандартной маркировке имеются несколько букв, которые обозначают серию, а также 3 группы цифр, определяющие размеры, несущую возможность. Обе группы имеют вид двух цифр, которые считаются обозначением длины, а также ширины в дециметрах. Данные показатели округляются до целых чисел в большую сторону. Последняя группа представлена в виде единой цифры, она определяет равномерность распределения нагрузок в кПа.

Показатель этот также округляется.

Пример маркировки: ПК 23-5-8. Ее расшифровка такая: плита имеет круглые пустоты, она характеризуется длиной в 2280, шириной в 490 миллиметров, при этом конструкция обладает несущей способностью в 7,85 кПа. Есть такие виды изделий, что оснащаются маркировкой, дополненной латинскими обозначениями, что определяют типы прутьев. Один из примеров маркировки: ПК ,5 обозначает, что изготовление каркаса осуществлялось из напряженной арматуры. В качестве дополнения на пустотелых конструкциях имеются следующие обозначения:

  • т – бетон тяжелого типа;
  • а – наличие вкладышей для уплотнения;
  • э – формирование при помощи экструзионного метода.

Блок: 6/8 | Кол-во символов: 2646
Источник: http://www.stroy-podskazka.ru/perekrytiya/vse-o-pustotnyh-plitah/

Разновидности конструкций

  • ПК характеризуется стандартной толщиной в 22 см, наличием сквозных полостей цилиндрической формы. Плиты изготавливаются из железобетона, который имеет класс не менее В15.
  • ПБ – этот вид изделий получают при помощи безопалубочного метода, используя конвейер. При изготовлении данных конструкций используется особый метод армирования, с его помощью отрезание происходит без потерь прочности. Так как плиты имеют ровную поверхность, последующая отделка полов, потолков осуществляется легче.
  • ПНО – облегченный вид конструкции, что произведен путем безопалубочного метода. Отличием от предыдущего вида можно назвать меньшую толщину в 0,16 метра.
  • НВ – внутренний тип настила, производимый из железобетона класса В40, имеющий армирование в один ряд, что является предварительно напряжённым.
  • НВК является внутренним типом настила, который имеет напряженное армирование в два ряда и толщину в 26,5 сантиметров.

При производстве конструкций для перекрытий предварительно напряженную арматуру подвергают сжимающей напряженности в пунктах, где будет осуществляться самое большое растяжение. По прохождению данной обработки преднапряженные круглопустотные конструкции становятся более прочными, устойчивыми. Характеристика таких приспособлений содержит обозначение «предварительно напряженная плита».

Стандартные габариты круглопустотных плит толщиной 0,22 м (ПК, ПБ, НВ) и 0,16 м (ПНО) характеризуются длиной 980-8990 мм, что в маркировке фиксируется как 10-90. Дистанция между соседствующими габаритами – 10-20 сантиметров. Ширина полноразмерного товара составляет 990 (10), 1190 (12), 1490 (15) миллиметров. Чтобы потребителю не приходилось резать изделия, применяются элементы добора, ширина которых составляет 500 (5), 600 (6), 800 (8), 900 (9), 940 (9) миллиметров.

ПБ характеризуются длиной до 12 метров. Если данный показатель составляет более 9 метров, то толщина должна соответствовать 22 сантиметрам или же несущая способность плиты будет меньше. Изделия серии НВК, НВКУ, 4НВК могут характеризоваться габаритами, которые не подходят к стандартным. Расстояние между пустотами плит назначается с использованием параметров оборудования, что используется на заводе. Согласно ГОСТ дистанция должна составлять меньше, чем следующие показатели:

  • для плит 1ПК, 1ПКТ, 1ПКК, 2ПК, 2ПКТ, 2ПКК, 3ПК, 3ПКТ, 3ПКК и 4ПК – 185;
  • для конструкций типа 5ПК – 235 миллиметров;
  • 6ПК – 233 миллиметров;
  • 7ПК – 139 миллиметров.

Оптимальным количеством пустот в данной конструкции считается 6 штук.

Блок: 5/8 | Кол-во символов: 4073
Источник: http://www.stroy-podskazka.ru/perekrytiya/vse-o-pustotnyh-plitah/

Примерный расчет предельной нагрузки на пустотную плиту перекрытия

Для того чтобы самостоятельно рассчитать, какую максимальную нагрузку могут выдерживать плиты перекрытия, которые вы планируете использовать при строительстве, необходимо учесть все моменты. Допустим, что для обустройства перекрытий вы хотите использовать панели 1ПК63.12-8 (то есть, величина расчетной нагрузки, которую выдерживает одно изделие, составляет 800 кг/м²: для дальнейших расчетов обозначим ее буквой Q₀). Рассчитав сумму всех динамических, статических и распределенных нагрузок (от веса самой плиты; от людей и животных, мебели и бытовой техники; от стяжки, утеплителя, финишного напольного покрытия и перегородок), которую обозначаем QΣ, можно определить, какую нагрузку выдерживает ваша конкретная плита. Основной момент, на который надо обратить внимание: в результате всех расчетов (разумеется, с учетом повышающего коэффициента прочности) должно получиться, что QΣ ≤ Q₀.

Для того чтобы определить равномерно распределенную нагрузку от собственного веса плиты, необходимо знать ее массу (M). Можно воспользоваться либо величиной массы, указанной в сертификате завода-изготовителя (если его предоставили в месте продажи), либо справочной величиной из таблицы ГОСТ-а, которая составлена для изделий, изготовленных из тяжелых видов бетона со средней плотностью 2500 кг/м³. В нашем случае справочный вес плиты составляет 2400 кг.

Сначала вычисляем площадь плиты: S = L⨯H = 6,3⨯1,2 = 7,56 м². Тогда нагрузка от собственного веса (Q₁) составит: Q₁ = M:S = 2400:7,56 = 317,46 ≈ 318 кг/м².

В некоторых строительных справочниках рекомендуют при расчетах использовать суммарное усредненное значение полезной нагрузки на перекрытие жилых помещений – Q₂=400 кг/м².

Тогда суммарная нагрузка, которую необходимо выдерживать плите перекрытия, составит:

QΣ = Q₁ + Q₂ = 318 + 400 = 718 кг/м² ˂ 800 кг/м², то есть основной момент QΣ ≤ Q₀ соблюден и выбранная плита пригодна для обустройства перекрытий жилых помещений.

Для точных расчетов будут необходимы значения удельной плотности (стяжки, теплоизолятора, финишного покрытия), значение нагрузки от перегородок, вес мебели и бытовой техники и так далее. Нормативные показатели нагрузок (Qн) и коэффициенты надежности (Үн) указаны в соответствующих СНИП-ах.

Блок: 6/7 | Кол-во символов: 2267
Источник: https://zamesbetona.ru/zhelezobetonnye-izdelija/nagruzka-na-plitu-perekrytija-pustotnuju.html

Максимальная нагрузка на плиту перекрытия в точке приложения усилий

Предельное значение статической нагрузки, которое может прилагаться в одной точке, определяется с коэффициентом запаса, равным 1,3. Для этого необходимо нормативный показатель 0,8 т/м2 умножить на коэффициент запаса. Полученное значение составляет – 0,8х1,3=1,04 т. При динамической нагрузке, действующей в одной точке, коэффициент запаса следует увеличить до 1,5.

Блок: 5/6 | Кол-во символов: 434
Источник: https://pobetony.expert/raschet/nagruzka-na-plitu-perekrytiya

Нагрузка на плиту перекрытия в панельном доме старой постройки

Определяя, какой вес выдерживает плита перекрытия в квартире старого дома, следует учитывать ряд факторов:

  • нагрузочную способность стен;
  • состояние строительных конструкций;
  • целостность арматуры.

При размещении в зданиях старой застройки тяжелой мебели и ванн увеличенного объема, необходимо рассчитать, какое предельное усилие могут выдержать плиты и стены строения. Воспользуйтесь услугами специалистов. Они выполнят расчеты и определят величину предельно допустимых и постоянно действующих усилий. Профессионально выполненные расчеты позволят избежать проблемных ситуаций.

Originally posted 2018-03-05 17:23:17.

Блок: 6/6 | Кол-во символов: 677
Источник: https://pobetony.expert/raschet/nagruzka-na-plitu-perekrytiya

Способ пересчета нагрузок на квадратный м

Расчет нагрузок на плиту перекрытия делается на ее каждый погонный метр.

Нагрузку на ту же плиту перекрытия можно рассчитать и по-другому. Берем все ту же ПК-60-15-8.

При площади поверхности в 9 кв.м на 1 кв.м поверхности плиты приходится: 2850 кг : 9 кв.м = 316 кг/кв.м Вычитаем собственный вес из максимально допустимой нагрузки: 800 кг/кв. м — 316 кг/кв.м = 484 кг/кв.м.

Теперь вычитаем отсюда вес напольного покрытия, стяжки или утепления, то есть всего того, что ляжет на пол. Пусть оно будет приблизительно равно 150 кг/кв.м: 484 кг/кв. м — 150 кг/кв.м = 334 кг/кв.м.

Небольшая разница в 1 кг получается за счет того, что здесь не проводилось деление, которое в первом случае приводит к периодической дроби. Из остающихся 334 кг/кв.м нужно вычесть 150 кг/кв. м, отпущенные на мебель и людей, а потом распланировать перегородки и двери из расчета 184 кг на 1 кв.м.

Блок: 7/9 | Кол-во символов: 912
Источник: https://1popotolku.ru/perekrytie/skolko-vyderzhivaet-plita-perekrytiya.html

Сколько может выдержать плита перекрытия?

Не стоит устанавливать в старых домах слишком массивную сантехнику или другие предметы, которые приведут к утяжелению конструкции. Помимо этого статические нагрузки со временем могут накапливаться, что в свою очередь может привести к прогибам и провисанию плит перекрытия. Чтобы не ошибиться в измерениях, рекомендуется пригласить специалиста для проведения детальных расчетов. Расчеты должны соответствовать установленным нормам (СНиПу).

Блок: 7/9 | Кол-во символов: 482
Источник: https://shtyknozh. ru/nagruzka-na-plitu-perekrytija/

Точечная нагрузка с точностью до грамма

Этот вид нагрузки требует особой осторожности. От того, сколько будет подвешено или нагружено на одну точку, будет зависеть срок службы всего перекрытия.

Некоторые справочники предлагают рассчитывать предельно допустимую точечную нагрузку по следующей формуле: 800 кг/кв.м × 2 = 1600 кг То есть на одну точку можно навесить или поставить 1600 кг. Однако более разумным будет подсчет точечной нагрузки в соответствии с коэффициентом надежности.

Для жилых помещений он обычно равен 1-1,2. Исходя из этого, получаем: 800 кг/кв.м × 1,2 = 960 кг Такой расчет более безопасен, если речь идет о длительной нагрузке на одну точку. Однако следует помнить, что точечную нагрузку лучше располагать ближе к несущим стенам, возле которых армирование плиты усилено.

Блок: 8/9 | Кол-во символов: 793
Источник: https://1popotolku.ru/perekrytie/skolko-vyderzhivaet-plita-perekrytiya.html

Правила монтажа

Для осуществления надежного монтажа пустотных плит перекрытия стоит точно соблюдать все правила. В случае если площадь опоры недостаточна, могут деформироваться стены, а в ситуации с излишком площади возможно увеличение теплопроводности. При установке плит данного вида стоит брать во внимание максимальную глубину опоры:

  • для кирпичного сооружения – 9 сантиметров;
  • для газобетонного и пенобетонного – 15 сантиметров;
  • для конструкций из стали – 7, 5 сантиметров.

В данном процессе стоит учитывать, что глубина заделки панели в стене не должно быть более чем 16 см для легкого блочного и кирпичного здания, а также 12 см для конструкции из бетона и железобетона.

До того как начать установку плит, окраинные пустоты необходимо заделать легкой смесью из бетона на глубину 0,12 метра.

Категорически не рекомендуется осуществлять монтаж плит без использования раствора. На рабочей поверхности укладывается слой раствора не меньше чем в 2 миллиметра. Благодаря данному мероприятию нагрузка на стену передается равномерно. Обустраивая плиты на хрупкую стену, необходимо сделать процедуру армирования, благодаря которой не будет выгибания блоков. Для того чтобы уменьшить теплопроводность плит перекрытия, стоит снаружи утеплить конструкцию.

Покупая пустотные панели перекрытий, стоит обращать внимание на их качество, внешний вид и наличие сертификатов, так как от них будет зависеть безопасность. Использование пустотных плит обеспечивает небольшую нагрузку на весь периметр сооружения, гарантирует высокую прочность и надежность сооружения.

Этот вид конструкций способствует меньшей осадке здания, нежели при использовании полнотелых вариантов, к тому же цена на них приемлемая.

О том, как правильно уложить плиты перекрытия, вы можете узнать из видео ниже.

Блок: 8/8 | Кол-во символов: 4118
Источник: http://www.stroy-podskazka.ru/perekrytiya/vse-o-pustotnyh-plitah/

Нагрузки при ремонтах старых квартир

Плиты перекрытия можно делать своими руками. Чтобы сделать их прочнее делается армирование.

Планируя роскошные ремонты в старых домах, лучше заранее изъять старое утепление полов и напольное покрытие. Затем следует хотя бы приблизительно оценить его вес. Новые стяжки, плиты или паркет, которые придут им на смену, желательно подобрать так, чтобы вес нового напольного «одеяния» был примерно равен массе прежней верхней части перекрытия.

Следует быть особо осторожным, размещая в старых квартирах новую сантехнику с увеличенными объемами — ванны на 500 л и более, джакузи. Лучше всего пригласить специалиста и попросить его провести детальные расчеты. Следует помнить, что кратковременная нагрузка и постоянная статическая нагрузка отличаются друг от друга.

Статические нагрузки имеют свойство накапливаться, приводя со временем к значительным прогибам и провисаниям плиты. А кратковременная нагрузка всего лишь испытывает ее на прочность.

В заключение хотелось бы сказать, что только точное соблюдение всех правил и тщательность в расчетах обеспечат плитам перекрытия долгую жизнь.

Блок: 9/9 | Кол-во символов: 1153
Источник: https://1popotolku.ru/perekrytie/skolko-vyderzhivaet-plita-perekrytiya.html

Кол-во блоков: 21 | Общее кол-во символов: 33856
Количество использованных доноров: 6
Информация по каждому донору:
  1. https://1popotolku.ru/perekrytie/skolko-vyderzhivaet-plita-perekrytiya.html: использовано 4 блоков из 9, кол-во символов 4569 (13%)
  2. https://shtyknozh.ru/nagruzka-na-plitu-perekrytija/: использовано 3 блоков из 9, кол-во символов 1746 (5%)
  3. http://www. stroy-podskazka.ru/perekrytiya/vse-o-pustotnyh-plitah/: использовано 4 блоков из 8, кол-во символов 13308 (39%)
  4. https://zamesbetona.ru/zhelezobetonnye-izdelija/nagruzka-na-plitu-perekrytija-pustotnuju.html: использовано 2 блоков из 7, кол-во символов 2572 (8%)
  5. https://pobetony.expert/raschet/nagruzka-na-plitu-perekrytiya: использовано 4 блоков из 6, кол-во символов 7676 (23%)
  6. http://trustload.com/%D0%B4%D0%BE%D0%BF%D1%83%D1%81%D1%82%D0%B8%D0%BC%D0%B0%D1%8F-%D0%BD%D0%B0%D0%B3%D1%80%D1%83%D0%B7%D0%BA%D0%B0-%D0%BD%D0%B0-%D0%BF%D0%BB%D0%B8%D1%82%D1%83-%D0%BF%D0%B5%D1%80%D0%B5%D0%BA%D1%80%D1%8B/: использовано 3 блоков из 4, кол-во символов 3985 (12%)

Поделитесь в соц.сетях:

Оцените статью:

Загрузка…

Какой может быть нагрузка на плиты перекрытия?

При проектировании любого строения обязательно учитывается нагрузка на плиты перекрытия. Она может отличаться по величине и направлению действия. Чтобы смонтированная конструкция прослужила достаточно долго, надо разобраться с условиями ее эксплуатации. Это позволит выбрать ЖБИ, которое выдержит приложенную нагрузку.

Различные виды нагрузок

Нагрузка на плиту перекрытия в панельном доме образуется за счет веса строительных и отделочных материалов, используемых при возведении строения, а также в результате воздействия внешних факторов. Порывы ветра, снег и дождь способны оказать существенное влияние на несущую конструкцию. Чтобы в процессе эксплуатации здания не возникало трудностей, следует учесть все воздействующие факторы.

Нагрузка на плиты перекрытия в самом общем случае делится на:

  • Постоянную. Сохраняется на протяжении всего периода эксплуатации строения. Сюда относится масса строительных элементов, инженерных коммуникаций, строительных конструкций, отделочных материалов, расположенных выше.
  • Временную. Носит временный характер. Появляется в определенный временной интервал. Сюда относится воздействие, создаваемое атмосферными осадками и ветром, перемещением людей и мебели внутри здания.

Продолжительность воздействия временной нагрузки на плиты перекрытия может отличаться. По данному параметру их принято делить на длительные и кратковременные.

Определяя, какую нагрузку выдерживает плита перекрытия, следует учитывать характер оказываемого воздействия. На верхнюю и нижнюю часть панели приходится нагрузка, создаваемая выполненной отделкой. Такую нагрузку на плиты перекрытия называют статической. Сюда же стоит отнести массу подвесной потолочной системы, люстры, качели и другие конструкции. Статическое усилие создают кирпичные перегородки или выполненные из гипсокартона, колонны, ванны и другие тяжелые объекты.

Если по горизонтальной поверхности перемещаются тяжелые предметы, прикладываемое усилие является динамическим. Его создают все живые объекты: люди, домашние питомцы. В качестве последних могут выступать не только обычные кошки и собаки, но и более экзотические крупные животные.

В зависимости от порядка приложения нагрузка на плиты перекрытия может быть распределенной и точечной. Если объект имеет несколько мест приложения, усилие является распределенным. К данному виду относится натяжной потолок, у которого крепежные элементы располагаются с шагом 0,5 м. Если вес сосредоточен в одной точке – точечным. В качестве примера может выступать боксерская груша, весящая 200 кг.

Не всегда нагрузка на плиты перекрытия является только точечной или распределенной. Достаточно часто встречаются комбинированные варианты. Это может быть тяжелый объект на ножках. В этом случае учитывается распределение усилия, создаваемое весом объекта, и точечное нагружение, формируемое каждой ножкой в отдельности.

Расчет предельно допустимых нагрузок

Допустимая нагрузка на плиту перекрытия может существенно отличаться. Все зависит от ее параметров и конструктивных особенностей. Для пустотной это будет одно значение, для монолитной – другое. Чтобы найти предельное значение усилия, действующего на пустотелое изделие, выполняется расчет, в качестве исходных данных для которого является вес модели. После этого определяется площадь несущей поверхности. Типовые изделия имеют преимущественно прямоугольную форму. Чтобы найти искомую квадратуру, перемножают длину на ширину.

Для нахождения предельно допустимой нагрузки на плиты перекрытия перемножают максимально допустимое усилие на один квадрат и площадь элемента. Полученная величина будет выражаться в единицах веса. От нее отнимается вес самого изделия. Также значение уменьшается на вес теплоизоляционного материала, массу стяжки и напольного покрытия. Суммарная величина может отличаться. Для обеспечения достаточной прочности и долговечности суммарный вес этих конструктивных элементов на один квадрат обычно не превосходит 150 кг.

Полученное значение и есть та предельно допустимая нагрузка на плиты перекрытия, которая рассчитывалась. Обычно она составляет несколько сот килограммов. Из полученного значения следует отнять минимум 150 кг/м2, которые будут приходиться на статическое и динамическое нагружение элемента. Оставшиеся килограммы не имеют ограничений по использованию. Их можно потратить на зонирование пространства с помощью перегородок либо монтажа других декоративных элементов. Если не удалось уложиться в полученное значение, можно выполнить перераспределение нагрузки на плиты перекрытия. Вместо выбранного теплоизоляционного материала использовать другой, с меньшим весом, или уложить более легкое напольное покрытие.

Способ пересчета нагрузок на квадратный метр

Иногда надо знать, как рассчитать нагрузку на 1 м2. Действующая методика расчета позволяет найти нагрузочную способность ЖБИ стандартной формы. Для этого надо знать габариты изделия и его вес. Вычисления производится в следующей последовательности:

  • Рассчитывается площадь. Если изделие квадратной формы, перемножается длина и ширина. В противном случае делится на простые фигуры, находится квадратура каждого в отдельности и найденные значения суммируются. Значение выражается в м2.
  • Определяется максимальная загрузочная способность путем умножения найденной площади на соответствующий коэффициент, равный максимальной загрузке. Полученное значение имеет размерность т.
  • От максимальной загрузочной способности отнимаем массу изделия.
  • Определяем нормативное значение веса заливаемой стяжки и декоративного покрытия. В среднем для частного дома нагрузка на плиты перекрытия от стяжки и покрытия принимают около 0,2 – 0,25 т/м2.
  • Рассчитывается суммарный вес будущего пола путем умножения нормативного значения на площадь.
  • Рассчитываем запас прочности, отняв от разности загрузочной способности и массы изделия вес пола.

После этого останется разделить полученное значение на общую площадь пола. Полученное значение следует выразить в кг и сравнить с расчетным показателем. Если найденная нагрузка на плиты перекрытия менее 800 кг/м2, значит, запас прочности обеспечен.

Нагрузки при ремонтах старых квартир

Самостоятельно произвести расчеты в данном случае достаточно сложно. Конечный результат зависит от множества факторов:

  • Нагрузочной способности стен, зависящей от того, из какого материала они состоят.
  • Общего состояния строительных конструкций, особенно располагающихся горизонтально.
  • Целостности армирующих элементов.

При определении нагрузки на плиты перекрытия в старой квартире следует учитывать вес мебели и сантехники. Если планируется установка тяжелого гарнитура, надо убедиться, что такое воздействие сможет выдержать и горизонтальный, и вертикальный элемент. Чтобы избежать непростительных ошибок, подобные расчет следует доверить специалистам. Они смогут учесть все факторы и найдут точное значение усилий, допустимых и постоянно действующих на объект. Самостоятельная оценка становится невозможной из-за отсутствия специализированного оборудования и достаточных компетенций.

Сколько может выдержать плита перекрытия?

Габаритные размеры горизонтальных железобетонных изделий могут отличаться. Это оказывает непосредственное влияние на максимальное значение нагрузки на плиты перекрытия, которую выдерживает конструктивный элемент. Чтобы определить, сколько сможет выдержать конкретное изделие, сначала изготавливается подробный чертеж возводимого жилого дома или будущей квартиры.

После этого рассчитывается общий вес объектов, которые будут опираться на перекрытия. Для получения точного значения суммируется вес всех конструктивных элементов, включая массу перегородок и заканчивая декоративным покрытием. Это будет суммарная нагрузка на плиты перекрытия. Чтобы найти усилие, которое сможет выдержать одна многопустотная или ребристая модель, суммарное значение делится на общее количество.

При этом следует учитывать специфику распределения прикладываемого усилия. Опорные элементы будут располагаться по торцам, что учитывается на этапе армирования. При этом основная нагрузка не должна приходиться на середину горизонтальной поверхности. Даже при наличии снизу капитальных стен или колонн.

Как собрать нагрузку от перегородок

Содержание:

1. Пример 1.

2. Как собрать нагрузку от перегородок для расчета монолитной плиты.

3. Как собрать нагрузку от перегородок для расчета колонн и фундаментов

4. Пример 2. Собрать нормативную (характеристическую) нагрузку от перегородок на колонну и на стену.

5. Как собрать нагрузку от перегородок для расчета (или проверки) сборной плиты

6. Пример 3. Перегородка проходит поперек сборной плиты.

7. Пример 4. Перегородка проходит вдоль сборной плиты.

8. Пример 5. Перегородки находятся над частью сборной плиты.

 

В ДБН В.1.2-2:2006 «Нагрузки и воздействия» о сборе нагрузок от перегородок сказано скупо:

Давайте разберемся, как рациональней собирать нагрузку от перегородок для различных ситуаций.

Что такое характеристическая нагрузка? Это нормативная нагрузка еще безо всяких коэффициентов, т.е. фактический вес перегородок. Этот фактический  вес, по сути, распределен по очень узкой площади (т.к. толщина перегородки обычно не превышает 150 мм), и наиболее правдоподобным будет принимать нагрузку от перегородки как линейную. Что это значит?

Пример 1. Есть кирпичная перегородка высотой 2,5 м, толщиной 0,12 м, длиной 3 м, ее объемный вес равен 1,8 т/м3. Нужно собрать нагрузку от перегородки на плиту.

Она оштукатурена с двух сторон, каждый слой штукатурки имеет толщину 0,02 м, объемный вес штукатурки 1,6 т/м3. Нужно найти нормативную (характеристическую) нагрузку от перегородки для расчета плиты перекрытия.

Найдем вес 1 м 2 перегородки:

(1,8∙0,12 + 1,6∙2∙0,02)∙1 = 0,28 т/м2 (здесь 1 – это площадь перегородки).

Зная высоту перегородки, определим, сколько будет весить погонный метр перегородки:

0,28∙2,5 = 0,7 т/м.

Таким образом, мы получили погонную линейную нагрузку 0,7 т/м, которая будет действовать на плиту перекрытия под всей перегородкой (каждый метр перегородки весит 0,7 т/м). Суммарный же вес перегородки будет равен 0,7∙3 = 2,1 т, но такое значение для расчета нужно далеко не всегда.

Теперь рассмотрим, в каких ситуациях нагрузку от перегородок следует оставлять в виде линейной нагрузки, а когда – переводить в равномерно распределенные по площади нагрузки, как это рекомендуется в п. 6.6 ДБН «Нагрузки и воздействия».

Сразу оговорюсь, если вы считаете перекрытие в программном комплексе, позволяющем с легкостью задавать перегородки или линейную нагрузку от них, следует воспользоваться этой возможностью и делать наиболее приближенный к жизни расчет – такой, где все нагрузки от перегородок в виде линейно-распределенных расположены каждая на своем месте.

Если же вы считаете вручную или же по каким-то причинам хотите упростить программный счет (вдруг, компьютер не тянет такое обилие перегородок), следует проанализировать, как это делать и делать ли.

Как собрать нагрузку от перегородок для расчета монолитной плиты

Рассмотрим варианты с монолитным перекрытием. Допустим, есть у нас фрагмент монолитного перекрытия, на который необходимо собрать нагрузку от перегородок, превратив ее в равномерно распределенную.

Что для этого нужно? Во-первых, как в примере 1, нужно определить нагрузку от 1 погонного метра перегородки, а также суммарную длину перегородок.

Допустим, погонная нагрузка у нас 0,3 т/м (перегородки газобетонные), а суммарная длина всех перегородок 76 м. Площадь участка перекрытия 143 м2.

Первое, что мы можем сделать, это размазать нагрузку от всех перегородок по имеющейся площади перекрытия (найдя вес всех перегородок и разделив его на площадь плиты):

0,3∙76/143 = 0,16 т/м2.

Казалось бы, можно так и оставить, и приложить нагрузку на все перекрытие и сделать расчет. Но давайте присмотримся, у нас есть разные по интенсивности загруженности участки перекрытия. Где-то перегородок вообще нет, а где-то (в районе вентканалов) их особенно много. Справедливо ли по всему перекрытию оставлять одинаковую нагрузку? Нет. Давайте разобьем плиту на участки с примерно одинаковой загруженностью перегородками.

На желтом участке перегородок нет вообще, справедливо будет, если нагрузка на этой площади будет равна 0 т/м2.

На зеленом участке общая длина перегородок составляет 15,3 м. Площадь участка 12 м2 (заметьте, площадь лучше брать не строго по перегородкам, а отступая от них где-то на толщину перекрытия, т.к. нагрузка на плиту передается не строго вертикально, а расширяется под углом 45 градусов). Тогда нагрузка на этом участке будет равна:

0,3∙15,3/12 = 0,38 т/м2.

На розовом участке общая длина перегородок составляет 38,5 м, а площадь участка равна 58 м2. Нагрузка на этом участке равна:

0,3∙38,5/58 = 0,2 т/м2.

На каждом синем участке общая длина перегородок составляет 11,1 м, а площадь каждого синего участка равна 5 м2. Нагрузка на синих участках равна:

0,3∙11,1/5 = 0,67 т/м2.

В итоге, мы имеем следующую картину по нагрузке (смотрим на рисунок ниже):

Видите, как значительно различаются нагрузки на этих участках? Естественно, если сделать расчет при первом (одинаковом для всей плиты) и втором (уточненном) варианте загружения, то армирование будет разным.

Делаем вывод: всегда нужно тщательно анализировать, какую часть плиты загружать равномерной нагрузкой от перегородок, чтобы результат расчета был правдоподобным.

Если вы собираете нагрузку от перегородок на перекрытие, опирающееся на стены по четырем сторонам, то следует руководствоваться следующим принципом:

 

Как собрать нагрузку от перегородок для расчета колонн и фундаментов

Теперь рассмотрим на том же примере, как следует собирать нагрузку от перегородок для расчета колонн и стен или фундаментов под ними. Конечно, если вы делаете расчет перекрытия, то в результате такого расчета вы получите реакции на опорах, которые и будут нагрузками на колонны и стены. Но если перекрытие по каким-то причинам не считаете, а требуется просто собрать нагрузку от перегородок, то как быть?

Здесь начинать нужно не с анализа загруженности частей плиты. Первый шаг в таком случае – это разделить плиту на грузовые площади для каждой колонны и стены.

На рисунке показано, как это сделать. Расстояние между колоннами делится пополам и проводятся горизонтальные линии. Точно так же ровно посередине между колоннами и между колоннами и нижней стеной проводятся горизонтали. В итоге в районе колонн плита поделена на квадраты. Все перегородки, попадающие в квадрат конкретной колонны, нагружают именно эту колонну. А на стену приходится нагрузка с полосы, ширина которой равна половине пролета. Остается только на каждом участке, где есть перегородки, посчитать суммарную длину этих перегородок и весь их вес передать на колонну.

Пример 2. Собрать нормативную (характеристическую) нагрузку от перегородок на розовую колонну и на стену с рисунка выше.

Вес одного погонного метра перегородки 0,35 кг. Суммарная длина перегородок в квадрате розовой колонны 5,4 м (из этих 5,4 м, одна перегородка длиной 1,4 м находится ровно на границе между двумя колоннами, а 4 м – в квадрате сбора нагрузки). Суммарная длина перегородок на полосе сбора нагрузки для стены – 18 м, длина стены 15,4 м.

Соберем нагрузку на колонну:

0,35∙4 + 0,35∙1,4/2 = 1,65 т.

Здесь мы взяли всю нагрузку от четырех метров стен и половину нагрузки от стены длиной 1,4 м (вторая половина пойдет на другую колонну).

На колонну также придется изгибающий момент от веса перегородок (если перекрытие опирается жестко), но без расчета плиты момент определить сложно.

Соберем нагрузку на стену. Нагрузка собирается на 1 погонный метр стены. Так как перегородки расположены довольно равномерно, находится общий вес всех перегородок и делится на длину стены:

0,35∙18/15,4 = 0,41 т/м.

Как собрать нагрузку от перегородок для расчета (или проверки) сборной плиты

Так как сборные плиты имеют четкую конфигурацию и схему опирания (обычно по двум сторонам), то подход для сбора нагрузок от перегородок должен быть особенным. Рассмотрим варианты сбора нагрузок на примерах.

Пример 3. Перегородка проходит поперек плиты.

Толщина перегородки 0,12 м, высота 3 м, объемный вес 1,8 т/м3; два слоя штукатурки по 0,02 м толщиной каждый, объемным весом 1,6 т/м3. Ширина плиты 1,2 м.

Так как плита считается как балка на двух опорах, то нагрузку от перегородки следует брать сосредоточенную – в виде вертикальной силы, приложенной к «балке» в месте опирания перегородки. Величина сосредоточенной силы равна весу всей перегородки:

0,12∙3∙1,2∙1,8 + 2∙0,02∙3∙1,2∙1,6 = 1,0 т.

Пример 4. Перегородка проходит вдоль сборной плиты.

В таком случае, не зависимо от того, где находится перегородка – посередине или на краю плиты, нагрузка от нее берется равномерно распределенной вдоль плиты. Эта нагрузка собирается на 1 погонный метр плиты.

Толщина перегородки 0,1 м, высота 2,5 м, объемный вес 0,25 т/м3.

Определим равномерно распределенную нагрузку 1 п.м плиты:

0,1∙2,5∙1∙0,25 = 0,06 т/м.

Пример 5. Перегородки находятся над частью плиты.

Когда плиту пересекает несколько перегородок, у нас есть два варианта:

1) выделить нагрузку от продольных перегородок в равномерно распределенную, а нагрузку от поперечных перегородок – в сосредоточенную;

2) всю нагрузку  сделать равномерно распределенной, «размазав» ее по участку плиты с перегородками.

Толщина перегородки 0,1 м, высота 2,5 м, объемный вес 0,25 т/м3. Ширина плиты 1,5 м, длина продольной перегородки 3 м, длина двух самых коротких перегородок 0,7 м.

Определим нагрузку на плиту по варианту 1.

Равномерно распределенная нагрузка равна:

0,1∙2,5∙1∙0,25 = 0,06 т/м.

Сосредоточенная нагрузка от крайней правой перегородки равна:

0,1∙2,5∙1,5∙0,25 = 0,1 т.

Сосредоточенная нагрузка от каждой из двух коротких перегородок равна:

0,1∙2,5∙0,7∙0,25 = 0,044 т.

Определим нагрузку на плиту по варианту 2.

Найдем общий вес всех перегородок:

0,1∙2,5∙0,25∙(3 + 1,5 + 0,7∙2) = 0,37 т.

Найдем длину перегородки, на которой действует нагрузка:

3 + 0,1 = 3,1 м.

Найдем величину равномерно распределенной нагрузки на участке 3,1 м:

0,37/3,1 = 0,12  т/м.

class=»eliadunit»> Добавить комментарий

Как правильно уложить железобетонную плиту перекрытия на кирпичную стену

Одним из наиболее уязвимых в отношении обеспечения несущей способности перекрытий кирпичных зданий, является узел опирания плиты перекрытия ПК или плиты другого типа, на стену из кирпича.


Монтаж сборных железобетонных плит перекрытия на кирпичные стены

При возведении кирпичных зданий жилого, общественного или производственного назначения, контролю подлежат многие параметры кладки, однако значительное внимание уделяется проверке минимально допустимой величины, с которой железобетонные плиты перекрытия опираются на кирпичную стену. Этот размер определяется исходя из возможности среза торцевой части плиты под нагрузкой.

Величина опирания зависит от:

  • конструкции плиты – пустотная она или полнотелая, облегченная или обычная;
  • проектного решения здания: на стену предусмотрено одностороннее или двухстороннее опирание плит;
  • нагрузки на плиту перекрытия;
  • прочностных характеристик кирпича.

Однако, исходя из практических соображений, этот параметр не может быть меньше 120 мм для всех видов перекрытий и стен.

В любом случае плиты перекрытия ПК, равно как и плиты других марок, укладываются на постель из цементно-песчаного раствора, разложенную поверх кирпичной кладки стены. Благодаря этому нагрузка от вышележащих конструкций равномерно распределяется по всей поверхности торцевой части плиты.

Во избежание повреждения пустотных плит, каналы в их торцевых частях заделываются бетоном в заводских условиях или на стройплощадке с тем, чтобы избежать раздавливания торцов под воздействием веса стен верхних этажей.

В большинстве случаев, когда железобетонные плиты перекрытия укладываются на кирпичные стены для увеличения надежности конструкций здания, монтажные петли плит и стальные анкера, заложенные в кирпичную кладку, соединяются стальными проволочными стяжками.

При опирании плит перекрытия на стену с двух сторон, стяжками, проходящими над торцами, соединяются монтажные петли соседних плит, расположенные друг за другом. Возникающий при этом паз заполняется цементно-песчаным раствором. В подобных случаях использование перекрытий с беспетлевыми захватами, которые выпускаются рядом заводов железобетонных изделий, недопустимо.

Как правило, величина опирания плит перекрытия на кирпичные стены и крепление плит друг к другу, фиксируется представителями заказчика и подрядчика в актах освидетельствования скрытых работ, если необходимость такой фиксации указана в проектной документации. При наличии требования о составлении такого рода акта, кирпич следующих этажей укладывается на смонтированные железобетонные плиты перекрытия только после комиссионного освидетельствования площади их опирания.


Плиты перекрытия от столичного завода ЖБИ-4

Предприятия стройиндустрии, выпускающие элементы сборных железобетонных перекрытий чаще всего изготавливают пустотные плиты с заполненными бетоном пустотами в торцах конструкций. В таком виде поставляются как плиты перекрытия ПК, так и облегченные плиты марки ПНО. Это позволяет строителям использовать продукцию конкретного завода для возведения, как индивидуального загородного дома, так и производственного корпуса.

Одним из наиболее востребованных на рынке Москвы и Московской области поставщиков элементов перекрытий является столичный завод ЖБИ-4, в нашем ассортименте более сотни типоразмеров пустотных и более 50 – облегченных плит перекрытия.

Полным портфелем заказов завод железобетонных изделий ЖБИ-4 обязан высокому качеству выпускаемой продукции, широкому ассортименту конструкций для надземного строительства, устройства нулевых циклов зданий и прокладки наружных и внутриквартальных напорных и самотечных инженерных сетей, а также оптимальному для столичного региона соотношению цена – качество.

Какую нагрузку могут выдерживать пустотные плиты перекрытия

 

Бетонные пустотные плиты уже много лет используют для обустройства межэтажных перекрытий при строительстве зданий из любых строительных материалов: железобетонных панелей, стеновых блоков (газобетонных, пенобетонных, газосиликатных), а также при возведении монолитных или кирпичных сооружений. Нагрузка на пустотную плиту перекрытия – одна из основных характеристик таких изделий, которую необходимо учитывать уже на этапе проектирования будущего строения. Неправильный расчет этого параметра негативно скажется на прочности и долговечности всего строения.

Блок: 1/7 | Кол-во символов: 556
Источник: https://zamesbetona.ru/zhelezobetonnye-izdelija/nagruzka-na-plitu-perekrytija-pustotnuju.html

Разделы статьи

Пустотная плита перекрытия: важный элемент, обеспечивающий зданию надежность

Для межэтажного перекрытия любого каркасного и панельного здания применяются пустотные плиты.

Блок: 2/12 | Кол-во символов: 169
Источник: https://hozsektor.ru/plita-pk-foto-video-osnovnye-razmery-tipy-pustotnyh-plit-perekrytiya

Разновидности плит и сферы применения

Плиты перекрытия разнятся по предназначению. Они бывают чердачными, подвальными, межэтажными. Кроме того, они различаются по конструкционным параметрам:

  • сборные: а) балочные из стальных балок; б) балки, выполненных из древесины; в) панельные;
  • часторебристые;
  • монолитные и железобетонные;
  • сборно-монолитные;
  • шатрового типа;
  • арочные, кирпичные, сводчатые.

Сводчатые, как правило, практикуются при сооружении домов из камня на старинный лад.

Пустотные панели перекрытия

Пустотелые (многопустотные) ПК нашли применение при устройстве перекрытий на соединениях между этажами, при возведении объектов из бетона, стеновых блоков и кирпича. Плиты востребованы при сооружении высотных зданий и индивидуальных домов, в сборно-монолитных строениях и в постройках сборного типа. Пустотелые изделия из железобетона зачастую применяются в качестве несущих конструкций. При постройке производственных комплексов востребованы многопустотные армированные образцы плит из тяжелого бетона.

Для придания большей надежности они армируются арматурой либо специализированным каркасом. Эти панели выполняют не только несущие функции, но и роль шумоизоляции. У пустотелых плит внутри есть пустоты, которые к тому же обеспечивают дополнительную звуко- и теплоизоляцию, кроме того, через пустоты можно проложить электропроводку. Такие панели принадлежат к 3-й группе трещиностойкости. Они способны выдерживать большую нагрузку – от 400 до 1200 кгс/м2). Огнеустойчивость у них, как правило, один час.

Панели ПКЖ

ПКЖ – это панели, которые используются главным образом при возведении первых этажей. Расшифровывается их аббревиатура как плита крупнопанельная железобетонная. Изготавливаются из тяжелых бетонов. Использовать ПКЖ необходимо исключительно после всех расчетов – если инсталлировать их просто так, то они могут просто проломиться.

Для высотных монолитных сооружений использовать их нерентабельно.

Блок: 2/5 | Кол-во символов: 2401
Источник: https://stroy-podskazka.ru/perekrytiya/plity-pk/

Характеристики пустотелых (многопустотных) плит

Размер

От габаритов пустотелой ПК зависит и ее окончательная цена. Принципиальное значение, кроме таких характеристик, как длина и ширина, имеет еще и вес.

Габариты ПК колеблются в следующих пределах:

  • в длину плита может быть от 1180 до 9700 миллиметров;
  • в ширину – от 990 до 3500 миллиметров.

Самые востребованные и распространенные – это многопустотные ПК, длина которых составляет 6 метров, а ширина 1,5 метра. Существенное значение также имеет толщина (высота) ПК (правильней будет называть этот параметр «высотой», но строители обычно называют ее «толщиной»).

Итак, высота, которой могут обладать многопустотные ПК, стабильно имеет размер в 220 миллиметров. Немалое значение имеет, естественно, и масса ПК. Плиты перекрытия из бетона должен поднимать подъемный кран, грузоподъемность которого минимум должна составлять 4-5 тонн.

Масса

Производимые в Российской Федерации плиты имеют вес в пределах от 960 до 4820 килограммов. Масса считается основным аспектом, по которому обусловливается метод, посредством которого будет производиться сборка плит.

Вес плит схожей маркировки может различаться, но лишь незначительно: поскольку если расценивать массу с точностью до грамма, то это сделать очень трудно, так как на массу способно оказать воздействие множество факторов (влажность, состав, температура и другое). Если, к примеру, плита попала под дождь, значит, она, естественно, станет немного тяжелее той панели, которая не была под дождем.

Блок: 3/5 | Кол-во символов: 2094
Источник: https://stroy-podskazka.ru/perekrytiya/plity-pk/

Маркировка пустотных плит

Марка панели состоит из нескольких групп букв и цифр, разделенных дефисами. Первая часть – тип плиты, ее геометрические размеры в дециметрах (округленные до целого числа), количество сторон опоры, на которое рассчитана панель. Вторая часть – расчетная нагрузка на плиту в кПа (1 кПа = 100 кг/м²).

Внимание! В маркировке указана расчетная, равномерно распределенная нагрузка на бетонное перекрытие (без учета собственной массы изделия).

Дополнительно в маркировке указывают тип бетона, примененного для изготовления (Л – легкий; С – плотный силикатный; тяжелый бетон индексом не обозначают), а также дополнительные характеристики (например, сейсмологическую устойчивость).

Например, если на плиту нанесена маркировка 1ПК66.15-8, то это расшифровывается следующим образом:

1ПК – толщина панели – 220 мм, пустоты Ø=159 мм и она предназначена для установки с опорой на две стороны.

66.15 – длина составляет 6600 мм, ширина – 1500 мм.

8 – нагрузка на плиту перекрытия, которая составляет 8 кПа (800 кг/м²).

Отсутствие в конце маркировки буквенного индекса указывает на то, что для изготовления был применен тяжелый бетон.

Еще один пример маркировки: 2ПКТ90.12-6-С7. Итак, по порядку:

2ПКТ – панель толщиной 220 мм с пустотами Ø=140 мм, предназначенная для установки с упором на три стороны (ПКК означает необходимость установки панели на четыре стороны опоры).

90.12 – длина – 9 м, ширина – 1,2 м.

6 – расчетная нагрузка 6 кПа (600 кг/м²).

С – означает, что она изготовлена из силикатного (плотного) бетона.

7 – панель может быть использована в регионах с сейсмологической активностью до 7 баллов.

Блок: 4/7 | Кол-во символов: 1604
Источник: https://zamesbetona.ru/zhelezobetonnye-izdelija/nagruzka-na-plitu-perekrytija-pustotnuju.html

Виды пустотных панелей перекрытия

Панели с продольными полостями применяют при сооружении перекрытий в жилых зданиях, а также строениях промышленного назначения.

Железобетонные панели отличаются по следующим признакам:

  • размерам пустот;
  • форме полостей;
  • наружным габаритам.

В зависимости от размера поперечного сечения пустот железобетонная продукция классифицируется следующим образом:

  • изделия с каналами цилиндрической формы диаметром 15,9 см. Панели маркируются обозначением 1ПК, 1 ПКТ, 1 ПКК, 4ПК, ПБ;
  • продукция с кругами полостями диаметром 14 см, произведенная из тяжелых марок бетонной смеси, обозначается 2ПК, 2ПКТ, 2ПКК;
  • пустотелые панели с каналами диаметром 12,7 см. Они маркируются обозначением 3ПК, 3ПКТ и 3ПКК;
  • круглопустотные панели с уменьшенным до 11,4 см диаметром полости. Применяются для малоэтажного строительства и обозначаются 7ПК.

Виды плит и конструкция перекрытия

Панели для межэтажных оснований отличаются формой продольных отверстий, которая может быть выполнены в виде различных фигур:

  • круга;
  • эллипса;
  • восьмигранника.

По согласованию с заказчиком стандарт допускает выпуск продукции с отверстиями, форма которых отличается от указанных. Каналы могут иметь вытянутую или грушеобразную форму.

Круглопустотная продукция отличается также габаритами:

  • длиной, которая составляет 2,4–12 м;
  • шириной, находящейся в интервале 1м3,6 м;
  • толщиной, составляющей 16–30 см.

По требованию потребителя предприятие-изготовитель может выпускать нестандартную продукцию, отличающуюся размерами.

Основные характеристики пустотных панелей перекрытий

Плиты с полостями пользуются популярностью в строительной отрасли благодаря своим эксплуатационным характеристикам.

Расчет на продавливание плиты межэтажного перекрытия

Главные моменты:

  • расширенный типоразмерный ряд продукции. Габариты могут подбираться для каждого объекта индивидуально, в зависимости от расстояния между стенами;
  • уменьшенная масса облегченной продукции (от 0,8 до 8,6 т). Масса варьируется в зависимости от плотности бетона и размеров;
  • допустимая нагрузка на плиту перекрытия, равная 3–12,5 кПа. Это главный эксплуатационный параметр, определяющий несущую способность изделий;
  • марка бетонного раствора, который применялся для заливки панелей. Для изготовления подойдут бетонные составы с маркировкой от М200 до М400;
  • стандартный интервал между продольными осями полостей, составляющий 13,9-23,3 см. Расстояние определяется типоразмером и толщиной продукции;
  • марка и тип применяемой арматуры. В зависимости от типоразмера изделия, используются стальные прутки в напряженном или ненапряженном состоянии.

Подбирая изделия, нужно учитывать их вес, который должен соответствовать прочностным характеристикам фундамента.

Блок: 2/6 | Кол-во символов: 2690
Источник: https://pobetony.expert/raschet/nagruzka-na-plitu-perekrytiya

Максимальная нагрузка на плиту перекрытия в точке приложения усилий

Предельное значение статической нагрузки, которое может прилагаться в одной точке, определяется с коэффициентом запаса, равным 1,3. Для этого необходимо нормативный показатель 0,8 т/м2 умножить на коэффициент запаса. Полученное значение составляет – 0,8х1,3=1,04 т. При динамической нагрузке, действующей в одной точке, коэффициент запаса следует увеличить до 1,5.

Блок: 5/6 | Кол-во символов: 434
Источник: https://pobetony.expert/raschet/nagruzka-na-plitu-perekrytiya

Нагрузка на плиту перекрытия в панельном доме старой постройки

Определяя, какой вес выдерживает плита перекрытия в квартире старого дома, следует учитывать ряд факторов:

  • нагрузочную способность стен;
  • состояние строительных конструкций;
  • целостность арматуры.

При размещении в зданиях старой застройки тяжелой мебели и ванн увеличенного объема, необходимо рассчитать, какое предельное усилие могут выдержать плиты и стены строения. Воспользуйтесь услугами специалистов. Они выполнят расчеты и определят величину предельно допустимых и постоянно действующих усилий. Профессионально выполненные расчеты позволят избежать проблемных ситуаций.

Блок: 6/6 | Кол-во символов: 637
Источник: https://pobetony.expert/raschet/nagruzka-na-plitu-perekrytiya

Преимущества и слабые стороны плит с полостями

Плиты перекрытия с полостями

Пустотелые плиты популярны благодаря комплексу достоинств:

  • небольшому весу. При равных размерах они обладают высокой прочностью и успешно конкурируют с цельными панелями, которые имеют большой вес, соответственно увеличивая воздействие на стены и фундамент строения;
  • уменьшенной цене. По сравнению с цельными аналогами, для изготовления пустотелых изделий требуется уменьшенное количество бетонного раствора, что позволяет обеспечить снижение сметной стоимости строительных работ;
  • способности поглощать шумы и теплоизолировать помещение. Это достигается за счет конструктивных особенностей, связанных с наличием в бетонном массиве продольных каналов;
  • повышенному качеству промышленно изготовленной продукции. Особенности конструкции, размеры и вес не позволяют кустарно изготавливать панели;
  • возможности ускоренного монтажа. Установка выполняется намного быстрее, чем сооружение цельной железобетонной конструкции;
  • многообразию габаритов. Это позволяет использовать стандартизированную продукцию для строительства сложных перекрытий.

К преимуществам изделий также относятся:

  • возможность использования внутреннего пространства для прокладки различных инженерных сетей;
  • повышенный запас прочности продукции, выпущенной на специализированных предприятиях;
  • стойкость к вибрационному воздействию, перепадам температур и повышенной влажности;
  • возможность использования в районах с повышенной до 9 баллов сейсмической активностью;
  • ровная поверхность, благодаря которой уменьшается трудоемкость отделочных мероприятий.

Изделия не подвержены усадке, имеют минимальные отклонения размеров и устойчивы к воздействию коррозии.

Пустотные плиты перекрытия

Имеются также и недостатки:

  • потребность в использовании грузоподъемного оборудования для выполнения работ по их установке. Это повышает общий объем затрат, а также требует наличия свободной площадки для установки подъемного крана;
  • необходимость выполнения прочностных расчетов. Важно правильно рассчитать значения статической и динамической нагрузки. Массивные бетонные покрытия не стоит устанавливать на стены старых зданий.

Для установки перекрытия необходимо сформировать армопояс по верхнему уровню стен.

Расчет нагрузки на плиту перекрытия

Расчетным путем несложно определить, какую нагрузку выдерживают плиты перекрытия. Для этого необходимо:

  • начертить пространственную схему здания;
  • рассчитать вес, действующий на несущую основу;
  • вычислить нагрузки, разделив общее усилие на количество плит.

Определяя массу, необходимо просуммировать вес стяжки, перегородок, утеплителя, а также находящейся в помещении мебели.

Рассмотрим методику расчета на примере панели с обозначением ПК 60.15-8, которая весит 2,85 т:

  1. Рассчитаем несущую площадь – 6х15=9 м2.
  2. Вычислим нагрузку на единицу площади – 2,85:9=0,316 т.
  3. Отнимем от нормативного значения собственный вес 0,8-0,316=0,484 т.
  4. Вычислим вес мебели, стяжки, полов и перегородок на единицу площади – 0,3 т.
  5. Сопоставимый результат с расчетным значением 0,484-0,3=0,184 т.

Многопустотная плита перекрытия ПК 60.15-8

Полученная разница, равная 184 кг, подтверждает наличие запаса прочности.

Плита перекрытия – нагрузка на м2

Методика расчета позволяет определить нагрузочную способность изделия.

Рассмотрим алгоритм вычисления на примере панели ПК 23.15-8 весом 1,18 т:

  1. Рассчитаем площадь, умножив длину на ширину – 2,3х1,5=3,45 м2.
  2. Определим максимальную загрузочную способность – 3,45х0,8=2,76т.
  3. Отнимем массу изделия – 2,76-1,18=1,58 т.
  4. Рассчитаем вес покрытия и стяжки, который составит, например, 0,2 т на 1 м2.
  5. Вычислим нагрузку на поверхность от веса пола – 3,45х0,2=0,69 т.
  6. Определим запас прочности – 1,58-0,69=0,89 т.

Фактическая нагрузка на квадратный метр определяется путем деления полученного значения на площадь 890 кг:3,45 м2= 257 кг. Это меньше расчетного показателя, составляющего 800 кг/м2.

Блок: 4/6 | Кол-во символов: 3875
Источник: https://pobetony.expert/raschet/nagruzka-na-plitu-perekrytiya

Виды нагрузок, на которые рассчитаны плиты пк

По стандарту величина несущей способности изделия равняется 800 кг/м², но существуют также варианты, рассчитанные на повышенную нагрузку в пределах 1200-1600 кг/м². Следует учитывать, что стоимость пустотных плит перекрытия такого типа будет выше. В основном панели испытывают два типа нагрузок:

  • статические;
  • динамические.

Статическая нагрузка ‒ совокупное воздействие на плиту, оказываемое напольным покрытием совместно с массой стяжки. Сюда же относится и масса межкомнатных стен, установленной мебели – все это составляет суммарное давление, которое оказывается на изделие сверху. Снизу имеется дополнительная нагрузка в виде потолочных светильников, гипсокартонных конструкций, закреплённых карнизов и всего остального навесного оборудования, при установке которого используется потолок.

Что касается динамических нагрузок, то они возникают в результате перемещения всех жильцов. Помимо этого, динамическую нагрузку создают установленные спортивные тренажёры, а также раздвижные перегородки, которые имеют крепления на полу или на потолке.

800 кг/м² – стандартный показатель несущей способности плит перекрытия.

В отдельную категорию выделяется комплексная нагрузка, куда, например, можно отнести давление, оказываемое ванной, которое изменяется в зависимости от наполнения чаши, присутствия или отсутствия в ней человека. Если ванная установлена на ножки, то каждая из опор будет создавать на плиту локальное давление.

Блок: 9/12 | Кол-во символов: 1462
Источник: https://hozsektor.ru/plita-pk-foto-video-osnovnye-razmery-tipy-pustotnyh-plit-perekrytiya

Кол-во блоков: 13 | Общее кол-во символов: 16366
Количество использованных доноров: 4
Информация по каждому донору:

  1. https://pobetony.expert/raschet/nagruzka-na-plitu-perekrytiya: использовано 4 блоков из 6, кол-во символов 7636 (47%)
  2. https://zamesbetona.ru/zhelezobetonnye-izdelija/nagruzka-na-plitu-perekrytija-pustotnuju.html: использовано 3 блоков из 7, кол-во символов 2465 (15%)
  3. https://hozsektor.ru/plita-pk-foto-video-osnovnye-razmery-tipy-pustotnyh-plit-perekrytiya: использовано 3 блоков из 12, кол-во символов 1770 (11%)
  4. https://stroy-podskazka.ru/perekrytiya/plity-pk/: использовано 2 блоков из 5, кол-во символов 4495 (27%)

Тонкости укладки плит перекрытий — каталог проектов Z500


В первой части нашего рассказа мы обсудили вопросы производства железобетонных сборных плит перекрытия, их характеристики и отличия. В этой статье мы подробно расскажем о том, как необходимо выполнять их монтаж.

Если вы решили реализовать проект обычного кирпичного дома и подошли к стадии укладки перекрытий, то важно предварительно ознакомиться с важными нюансами их монтажа. 

1. Монтажная конфигурация плит

  • плиты ПК реализуются с наличием монтажных петель,
  • плиты ПБ могут быть ими дополнены за дополнительную стоимость, но в стандартном варианте их не имеют. Это нередко создаёт сложности при погрузо-разгрузочных работах и монтаже.

2. Способ строповки

ВАЖНО! Часто при строповке плит ПБ рабочие используют торцевые пустотные отверстия. Это делать категорически запрещается! 

Во-первых, крепление крюка ненадежно, он может соскользнуть, приведя к падению плиты. Во-вторых, эта нагрузка может вызвать разрушение торцов плиты. Также не рекомендуется пользоваться методом протаскивания арматуры или лома сквозь пустотные отверстия и креплением крюков за его концы. 

Приспособлениями для монтажа плит перекрытий марки ПБ являются траверсы или мягкие чалки! При этом в процессе монтажа важно выдерживать между плитами расстояние в 2 см для возможности выдергивания из-под нее чалки и последующего сдвигания плиты ломом к крайней плите.  

3. Вопросы опирания плит

Любой проект 2 этажного кирпичного дома (или из других кладочных материалов) указывает допустимые величины минимальной глубины опирания перекрытий. В процессе монтажа важно соблюдать указанные условия. Каждый план, проект кирпичного дома, например, будет иметь индивидуальные значения этого показателя. Именно этот факт определяет невозможность ориентирования в этом важном вопросе на опыт знакомых, родственников или другие источники. 

Особенностью монтажа сборных железобетонных перекрытий является максимальная глубина опирания в 200 мм. При превышении этого порога плиты выступают в роли защемленных балок, в результате чего могут образоваться трещины. 

Если ваш коттедж предполагает использование пено-газоблочных кладочных материалов, то для возможности опирания плит перекрытия важно выполнить устройство арматурного железобетонного пояса.  

4. Способы защиты торцов плит

Перед тем, как осуществлять монтаж железобетонных сборных перекрытий, важно заделать пустотные отверстия в торцах плит. Во-первых, это защищает плиты от проникновения влаги, во-вторых, увеличивыет прочностные показатели торцов. Это важно скорее для ПК-типа при установке на них несущих перегородок. Способом защиты в большинстве случаев является заделка отверстий ломаным кирпичем и бетонной смесью. При этом глубина заделки составляет не менее 120-150 мм.

При попадании в пустоты влаги важно её удалить. Делается это путем сверление в дне плиты в пустотном отверстии канала, по которому вода стечет из плиты. Данная мера обязательна и важна для ситуаций, при которых консервация строительства на зиму пришлась на этап укладки плит перекрытия без устройства кровли. Этот способ поможет избежать повреждения плиты в результате расширения замерзшей в пустотах воды. 

5. Выбор погрузочно-разгрузочной техники

Перед осуществлением разгрузки плит на объекте важно убедиться в том, что грузоподъемность крана соответствует требуемой. Необходимо выбрать такую модель, которая будет отвечать требованиям к максимальному вылету стрелы, массе груза и необходимым подъездным путям. Удобнее, если разгрузка материалов будет происходить с двух сторон дома. 

6. Требования к опорной поверхности и хитрости укладки плит

Укладывать плиты можно на ровную и очищенную от мусора поверхность. Перед укладкой плит выполняется устройство растворной «постели» толщиной 20 мм из цементной смеси. Благодаря этому слою значительно улучшается сцепление плиты и опорной поверхности. 

По слою цемента можно пустить арматуру толщиной 10-12 мм. Применение этой методики обеспечивает контроль над вертикальностью плит перекрытия в процессе их укладки, поскольку стержень фиксирует нижнее положение плит и предотвращает полное выдавливание цементного раствора собственным весом. 

Запрещается ступенчатая установка плит и разбег торцов в зависимости от длины плит более 8-12 мм. Нарушением технологии является случай опирания перекрытия на три стены при перекрытии сразу двух пролетов одной плитой. Такая ситуация способствует возникновению непредусмотренных армированием нагрузок, в определенных случаях, приводящих к повреждению плиты. Если же план расположения комнат в доме определяет необходимость именно такой раскладки, можно избежать излишнего напряжения, пропилив поверх плиты болгаркой штрабу над средней перегородкой. 

7. Правила анкеровки плит

Этот технологический этап выполняется после монтажа плит. Для этого используется гладкая арматура  240С диаметром 10 мм. После этого выполняется заделка рустов цементом. После крепления анкера к монтажной проушине плит ПК, выполняется заделка пустот цементом во избежание намокания или забивания отверстий строительным мусором.  

8. Особенности перекрытия лестничных пролетов 

Если лестничный пролет лежит между плитами перекрытия, то перекрыть его можно следующим образом. Устраиваются направляющие из двух швеллеров параллельно плитам, перевязываются третьим поперек. Выполняется вязка арматурного каркаса сеткой с ячейками в 200 мм по краям проема с использованием арматуры 8 мм. Устанавливается опалубка и заливается монолитный участок. При этом необязательна подвязка швеллера к плитам. Этот способ позволяет создать оптимальные условия для опирания плиты на короткие стороны и исключение нагрузок от лестничного пролета.

9. Размещение плит на приобъектном складе

Самым благоприятным вариантом считается монтаж плит непосредственно после доставки. Если же монтаж требуется отложить, хранение плит важно организовать грамотно. Для этого потребуется заранее подготовленная ровная поверхность. Укладка плит на землю не допускается ввиду неравномерного распределения нагрузки на нижнюю плиту от верхних и возможности её повреждения.

Укладка плит в штабель выполняется по 8-10 шт. Брус 200*200 мм обычно является прокладкой под нижний ряд. Прокладкой для последующих рядов служит доска-дюймовка, имеющая толщину 25 мм. Положение прокладок не должно удаляться от торцов плит далее, чем на 45 см с соблюдением вертикальности друг над другом. Эти правила обеспечат равномерность распределения нагрузки на штабель.

Итак, соблюдая все эти правила хранения, раскладки и монтажа плит перекрытия, вы обеспечите всей конструкции надежность!

Минимальное и максимальное опирание плиты перекрытия на кирпичную стену

Каким должно быть минимальное опирание плиты перекрытия на кирпичную стену, чтобы обеспечить надежность и долговечность конструкции? Вопрос серьезный, от его решения зависит устойчивость здания к нагрузкам и безопасность находящихся в нем людей. Вот почему глубина наложения плоских железобетонных изделий на кладку из кирпича регламентируется строительными нормативными документами (СНиП).

От качества монтажа плит перекрытия зависит прочность всей конструкции дома.

О пустотных железобетонных изделиях


Ошибки в укладке перекрытия.

Разобраться в вопросе сложно, если не знать, что собой представляют плиты перекрытия. Это конструктивные элементы капитальных зданий, изготавливаемые из железобетона, для устройства перекрытий между этажами. Внутри вдоль всей плиты есть пустоты различной формы, чаще — круглой.

Изделия производятся по типовым проектам — сериям чертежей, где указаны конструктивные особенности и размеры. Длина элементов — 1,5-12 м. Современные технологии производства позволяют отрезать плиты нужной длины с шагом 100 мм. По ширине изделия изготавливаются 4 типов: 1000, 1200, 1500 и 1800 мм.

Стандартная распределенная нагрузка, на которую рассчитан каждый элемент — 800 кг/м2. Плита может иметь толщину 16-33 см в зависимости от конструкции и длины, наиболее распространенный размер — 22 см.

Плиты перекрытия — это практически незаменимые изделия. Альтернатива — перекрытие из деревянных балок либо монолитного железобетона. Дерево проигрывает армированному бетону по несущей способности, а сооружение монолитной конструкции — процесс сложный и дорогой.

От чего зависит минимальное расстояние для опоры

Нормативными документами установлена минимальная длина опирания торцевой части пустотной плиты на стену, сложенную из кирпича — 9 см. Подобное решение принимается инженерами-проектировщиками с обоснованием и расчетами. Факторы, влияющие на глубину наложения перекрытия:

Параметры опирания плиты зависят от типа будущего строения.
  • габаритный размер пролета и длина железобетонного изделия;
  • величина распределенной и точечной нагрузки на бетонное перекрытие;
  • разновидности нагрузок — статические, динамические;
  • толщина несущей стены из кирпича;
  • тип здания — жилое, административное либо производственное.

Все перечисленные факторы должны учитываться в расчете надежности конструкции. В соответствии с нормативами, конец железобетонной пустотной плиты накладывается на стену так, чтобы размер нахлеста оказался 9-12 см, точные данные получают расчетным путем.

Если изучить серии, по которым производятся элементы перекрытий, то в них указаны 2 вида размеров:

Таблица расчета сечения балок перекрытий.
  1. Модульный. Это теоретическая ширина пролета, куда должен ставиться элемент.
  2. Конструктивный. Это чистая длина потолочной плиты от одного торца до другого.

Например, бетонное изделие с модульной длиной 6 м имеет реальный габарит 5,98 м, что необходимо учитывать при проектировании. Чтобы получить чистую ширину комнаты 5,7 м, надо уложить плиту на кирпичную стену на глубину 120 мм, для отделки штукатуркой останется по 20 мм с каждой стороны, также есть кирпичное перекрытие.

Возникает вопрос — почему размер опоры такой маленький, ведь плиту можно уложить и на 20-30 см, лишь бы ширина ограждения позволяла. Но это будет не опирание, а защемление железобетонного элемента, поскольку его торец тоже несет часть нагрузки от стены, построенной выше. В подобной ситуации как плита, так и несущая перегородка будут работать неправильно, что приведет к медленному разрушению и растрескиванию кирпичной кладки.

И наоборот, из-за слишком маленького нахлеста тяжелая плита вместе со всей нагрузкой начнет воздействовать на край кладки и со временем обрушит его.

Поэтому минимальное опирание 9 см используется на практике редко, обычно принимают 10-12 см.

Существует еще одна причина, по которой нельзя слишком заглублять край перекрытия внутрь ограждающей конструкции. Чем ближе торец плиты к наружной поверхности, тем больше тепла теряется в подобном конструктивном узле, потому что бетон хорошо проводит тепло. В результате получится мостик холода, от которого в доме будут холодные полы.

Конструкция опорного узла

При строительстве кирпичного здания с перекрытиями из плоских бетонных элементов кладку в полную толщину ограждения ведут до проектной отметки низа потолка. Затем кирпич кладут только с наружной части таким образом, чтобы образовалась ниша, куда ляжет плита. Процесс сопровождается следующим:

  1. Если глубина опирания составляет 12 см (ровно полкирпича), то ниша выполняется шириной не менее 13 см, чтобы торцевая часть плиты не упиралась в кирпичную кладку.
  2. Перед монтажом перекрытия на основание укладывается слой цементно-песчаного раствора той же марки, что применялась при возведении кладки.
  3. Поскольку краевые зоны плит будут воспринимать часть нагрузки от возведенной выше стены, пустоты с торца наглухо заделываются бетонными вкладышами, дабы изделие не разрушилось от сдавливания.

//www.youtube.com/watch?v=-Ol8NGMGQGc

Как правило, вкладыши из бетона производители железобетонных изделий предусматривают еще на заводе. Если этого не было сделано, пустоты обязательно заполняются бетонной смесью марки М200 в условиях строительной площадки.

В торцевых стенах здания плиты перекрытия ложатся на внешние ограждения не только торцами, но и одной боковой частью. Здесь глубина опирания не нормируется, но для надежности следует запроектировать данный узел таким образом, чтобы нагрузка от кирпичной кладки не легла на первую пустоту изделия. Иначе от сдавливания пустотной части может произойти ее разрушение. Плечо опоры должно быть минимальным, его величина зависит от конструкции плиты.


1.2: Структурные нагрузки и система нагружения

2.1.4.1 Дождевые нагрузки

Дождевые нагрузки — это нагрузки из-за скопившейся массы воды на крыше во время ливня или сильных осадков. Этот процесс, называемый пондингом, в основном происходит на плоских крышах и крышах с уклоном менее 0,25 дюйма / фут. Заливка крыш возникает, когда сток после атмосферных осадков меньше количества воды, удерживаемой на крыше. Вода, скопившаяся на плоской или малоскатной крыше во время ливня, может создать большую нагрузку на конструкцию.Поэтому это необходимо учитывать при проектировании здания. Совет Международного кодекса требует, чтобы на крышах с парапетами были первичные и вторичные водостоки. Первичный водосток собирает воду с крыши и направляет ее в канализацию, а вторичный водосток служит резервным на случай засорения первичного водостока. На рисунке 2.3 изображена крыша и эти дренажные системы. Раздел 8.3 стандарта ASCE7-16 определяет следующее уравнение для расчета дождевых нагрузок на неотклоненную крышу в случае, если основной слив заблокирован:

где

  • R = дождевая нагрузка на неотклоненную крышу в фунтах на кв. Дюйм или кН / м 2 .
  • d s = глубина воды на неотклоненной крыше до входа во вторичную дренажную систему (т. Е. Статический напор) в дюймах или мм.
  • d h = дополнительная глубина воды на неотклоненной крыше над входом во вторичную дренажную систему (т. Е. Гидравлический напор) в дюймах или мм. Это зависит от скорости потока, размера дренажа и площади дренажа каждого дренажа.

Расход Q в галлонах в минуту можно рассчитать следующим образом:

Q (галлонов в минуту) = 0. 0104 Ai

где

  • A = площадь крыши в квадратных футах, осушаемая дренажной системой.
  • и = 100 лет, 1 час. интенсивность осадков в дюймах в час для местоположения здания, указанного в правилах водоснабжения.

Рис. 2.3. Водосточная система с крыши (адаптировано из Международного совета по кодам).

2.1.4.2 Ветровые нагрузки

Ветровые нагрузки — это нагрузки, действующие на конструкции ветровым потоком.Ветровые силы были причиной многих структурных нарушений в истории, особенно в прибрежных регионах. Скорость и направление ветрового потока непрерывно меняются, что затрудняет точное прогнозирование давления ветра на существующие конструкции. Это объясняет причину значительных усилий по исследованию влияния и оценки ветровых сил. На рисунке 2.4 показано типичное распределение ветровой нагрузки на конструкцию. Основываясь на принципе Бернулли, взаимосвязь между динамическим давлением ветра и скоростью ветра может быть выражена следующим образом при визуализации потока ветра как потока жидкости:

где

  • q = воздух с динамическим ветровым давлением в фунтах на квадратный фут.
  • ρ = массовая плотность воздуха.
  • V = скорость ветра в милях в час.

Базовая скорость ветра для определенных мест в континентальной части США может быть получена из основной контурной карты скорости в ASCE 7-16 .

Предполагая, что удельный вес воздуха для стандартной атмосферы составляет 0,07651 фунт / фут 3 и подставляя это значение в ранее указанное уравнение 2.1, можно использовать следующее уравнение для статического давления ветра:

Для определения величины скорости ветра и его давления на различных высотах над уровнем земли прибор ASCE 7-16 модифицировал уравнение 2.2 путем введения некоторых факторов, учитывающих высоту сооружения над уровнем земли, важность сооружения для жизни и имущества человека, а также топографию его местоположения, а именно:

где

K z = коэффициент скоростного давления, который зависит от высоты конструкции и условий воздействия. Значения K z приведены в таблице 2.4.

K zt = топографический фактор, который учитывает увеличение скорости ветра из-за внезапных изменений топографии там, где есть холмы и откосы.Этот коэффициент равен единице для строительства на ровной поверхности и увеличивается с высотой.

K d = коэффициент направленности ветра. Он учитывает уменьшенную вероятность максимального ветра, идущего с любого заданного направления, и уменьшенную вероятность развития максимального давления при любом направлении ветра, наиболее неблагоприятном для конструкции. Для конструкций, подверженных только ветровым нагрузкам, K d = 1; для конструкций, подвергающихся другим нагрузкам, помимо ветровой, значения K d приведены в таблице 2.5.

  • K e = коэффициент высоты земли. Согласно разделу 26.9 в ASCE 7-16 , это выражается как K e = 1 для всех отметок.
  • V = скорость ветра, измеренная на высоте z над уровнем земли.

Три условия воздействия, классифицированные как B, C и D в таблице 2.4, определены с точки зрения шероховатости поверхности следующим образом:

Воздействие B: Шероховатость поверхности для этой категории включает городские и пригородные зоны, деревянные участки или другую местность с близко расположенными препятствиями.Эта категория применяется к зданиям со средней высотой крыши ≤ 30 футов (9,1 м), если поверхность простирается против ветра на расстояние более 1500 футов. Для зданий со средней высотой крыши более 30 футов (9,1 м) эта категория будет применяться, если шероховатость поверхности с наветренной стороны превышает 2600 футов (792 м) или в 20 раз превышает высоту здания, в зависимости от того, что больше.

Экспозиция C: Экспозиция C применяется там, где преобладает шероховатость поверхности C. Шероховатость поверхности C включает открытую местность с разбросанными препятствиями высотой менее 30 футов.

Воздействие D: Шероховатость поверхности для этой категории включает квартиры, гладкие илистые отмели, солончаки, сплошной лед, свободные участки и водные поверхности. Воздействие D применяется, когда шероховатость поверхности D простирается против ветра на расстояние более 5000 футов или в 20 раз больше высоты здания, в зависимости от того, что больше. Это также применимо, если шероховатость поверхности с наветренной стороны составляет B или C, а площадка находится в пределах 600 футов (183 м) или 20-кратной высоты здания, в зависимости от того, что больше.

Таблица 2.4. Коэффициент воздействия скоростного давления, K z , как указано в ASCE 7-16 .

Таблица 2.5. Коэффициент направленности ветра K d , как указано в ASCE 7-16 .

Тип конструкции

К г

Основная система сопротивления ветровой нагрузке (MWFRS)

Комплектующие и облицовка

0. 85

0,85

Арочные крыши

0,85

Дымоходы, резервуары и аналогичные конструкции

Площадь

Шестиугольный

Круглый

0.9

0,95

0,95

Сплошные отдельно стоящие стены и сплошные отдельно стоящие и прикрепленные вывески

0,85

Открытые вывески и решетчатый каркас

0,85

Фермерские башни

Треугольная, квадратная, прямоугольная

Все прочие сечения

0. 85

0,95

Чтобы получить окончательное внешнее давление для расчета конструкций, уравнение 2.3 дополнительно модифицируется следующим образом:

где

  • P z = расчетное давление ветра на поверхность конструкции на высоте z над уровнем земли. Он увеличивается с высотой на наветренной стене, но остается постоянным с высотой на подветренной и боковых стенах.
  • G = фактор порыва ветра. G = 0,85 для жестких конструкций с собственной частотой ≥ 1 Гц. Коэффициенты порывов ветра для гибких конструкций рассчитываются с использованием уравнений в ASCE 7-16 .
  • C p = коэффициент внешнего давления. Это часть внешнего давления на наветренные стены, подветренные стены, боковые стены и крышу. Значения C p представлены в таблицах 2.6 и 2.7.

Чтобы вычислить ветровую нагрузку, которая будет использоваться для расчета элемента, объедините внешнее и внутреннее давление ветра следующим образом:

где

GC pi = коэффициент внутреннего давления из ASCE 7-16 .

Рис. 2.4. Типичное распределение ветра на стенах конструкции и крыше.

Таблица 2.6. Коэффициент давления на стенку, C p , как указано в ASCE 7-16 .

Примечания:

1. Положительные и отрицательные знаки указывают на давление ветра, действующее по направлению к поверхностям и от них.

2. L — размер здания, перпендикулярный направлению ветра, а B — размер, параллельный направлению ветра.

Таблица 2.7. Коэффициенты давления на крышу, C p , для использования с q h , как указано в ASCE 7-16 .

Пример \ (\ PageIndex {1} \)

Двухэтажное здание, показанное на рисунке 2.5 — это начальная школа, расположенная на ровной местности в пригороде, со скоростью ветра 102 миль в час и категорией воздействия B. Какое давление скорости ветра на высоте крыши для основной системы сопротивления ветровой силе (MWFRS)?

Рис. 2.5. Двухэтажное здание.

Решение

Средняя высота крыши ч = 20 футов

Таблица 26.10-1 из ASCE 7-16 утверждает, что если категория воздействия — B и коэффициент воздействия скоростного давления для h = 20 ′, то K z = 0.7.

Фактор топографии из раздела 26.8.2 ASCE 7-16 равен K zt = 1.0.

Коэффициент направленности ветра для MWFRS, согласно таблице 26.6-1 в ASCE 7-16 , составляет K d = 0,85.

Используя уравнение 2.3, скоростное давление на высоте 20 футов для MWFRS составляет:

В некоторых географических регионах сила, оказываемая накопившимся снегом и льдом на крышах зданий, может быть довольно огромной и может привести к разрушению конструкции, если не будет учтена при проектировании конструкции.

Предлагаемые расчетные значения снеговых нагрузок приведены в нормах и проектных спецификациях. Основой для расчета снеговых нагрузок является так называемая снеговая нагрузка на грунт. Снеговая нагрузка на грунт определяется Международными строительными нормами (IBC) как вес снега на поверхности земли. Снеговые нагрузки на грунт для различных частей США можно получить из контурных карт в ASCE 7-16 . Некоторые типичные значения снеговых нагрузок на грунт из этого стандарта представлены в таблице 2.8. После того, как эти нагрузки для требуемых географических областей установлены, их необходимо изменить для конкретных условий, чтобы получить снеговую нагрузку для проектирования конструкций.

Согласно стандарту ASCE 7-16 расчетные снеговые нагрузки для плоских и наклонных крыш можно получить с помощью следующих уравнений:

где

  • р f = расчетная снеговая нагрузка на плоскую крышу.
  • р с = расчетная снеговая нагрузка для скатной крыши.
  • р г = снеговая нагрузка на грунт.
  • I = фактор важности. См. Таблицу 2.9 для значений коэффициента важности в зависимости от категории здания.
  • C e = коэффициент воздействия. См. Таблицу 2.10 для значений коэффициента воздействия в зависимости от категории местности.
  • C t = тепловой коэффициент. См. Типичные значения в таблице 2.11.
  • C s = коэффициент наклона.Значения C s приведены в разделах с 7.4.1 по 7.4.4 ASCE 7-16 , в зависимости от различных факторов.

Таблица 2.8. Типичные снеговые нагрузки на грунт, указанные в ASCE 7-16.

Расположение

Нагрузка (PSF)

Ланкастер, Пенсильвания

Якутат, АК

Нью-Йорк, NY

Сан-Франциско, Калифорния

Чикаго, Иллинойс

Таллахасси, Флорида

30

150

30

5

25

0

Таблица 2. 9. Коэффициент значимости снеговой нагрузки Is, как указано в ASCE 7-16.

Категория риска конструкции

Фактор важности

I

II

III

IV

0.8

1,0

1,1

1,2

Таблица 2.10. Коэффициент экспозиции, C e , как указано в ASCE 7-16 .

Таблица 2.11. Тепловой коэффициент, C t , как указано в ASCE 7-16 .

Температурные условия

Температурный коэффициент

Все конструкции, кроме указанных ниже

1. 0

Конструкции, поддерживаемые чуть выше точки замерзания, и другие конструкции с холодными вентилируемыми крышами, в которых термическое сопротивление (значение R) между вентилируемым и отапливаемым помещениями превышает 25 ° F × h × ft 2 / BTU (4,4 K × м 2 / Ш)

1,1

Неотапливаемые и открытые конструкции

1.2

Сооружения намеренно поддерживаются ниже нуля

1,3

Теплицы с постоянным обогревом и крышей, имеющей тепловое сопротивление (значение R) менее 2,0 ° F × в × фут 2 / BTU

0,85

Пример 2. 4

Одноэтажный отапливаемый жилой дом, расположенный в пригородной зоне Ланкастера, штат Пенсильвания, считается частично незащищенным. Крыша дома с уклоном 1 на 20, без нависающего карниза. Какова расчетная снеговая нагрузка на крышу?

Решение

Согласно рисунку 7.2-1 в ASCE 7-16 , снеговая нагрузка на грунт для Ланкастера, штат Пенсильвания, составляет

р г = 30 фунтов на квадратный дюйм.

Поскольку 30 psf> 20 psf, доплата за дождь на снегу не требуется.

Чтобы найти уклон крыши, используйте θ = arctan

.

Согласно ASCE 7-16 , поскольку 2,86 ° <15 °, крыша считается пологой. В таблице 7.3-2 в ASCE 7-16 указано, что тепловой коэффициент для обогреваемой конструкции составляет C t = 1,0 (см. Таблицу 2.11).

Согласно Таблице 7.3-1 в ASCE 7-16 , коэффициент воздействия для частично открытой местности категории B составляет C e = 1.0 (см. Таблицу 2.10).

В таблице 1.5-2 в ASCE 7-16 указано, что фактор важности I s = 1,0 для категории риска II (см. Таблицу 2.9).

Согласно уравнению 2.6 снеговая нагрузка на плоскую крышу составляет:

Так как 21 фунт / фут> 20 I с = (20 фунт / фут) (1) = 20 фунт / фут. Таким образом, расчетная снеговая нагрузка на плоскую крышу составляет 21 фунт / фут.

2.1.4.4 Сейсмические нагрузки

Смещение грунта, вызванное сейсмическими силами во многих географических регионах мира, может быть весьма значительным и часто повреждает конструкции.Это особенно заметно в регионах вблизи активных геологических разломов. Таким образом, большинство строительных норм и правил требуют, чтобы конструкции были спроектированы с учетом сейсмических сил в таких областях, где вероятны землетрясения. Стандарт ASCE 7-16 предоставляет множество аналитических методов для оценки сейсмических сил при проектировании конструкций. Один из этих методов анализа, который будет описан в этом разделе, называется процедурой эквивалентной боковой силы (ELF). Поперечный сдвиг основания V и боковая сейсмическая сила на любом уровне, вычисленные с помощью ELF, показаны на рисунке 2.6. Согласно процедуре, общий статический поперечный сдвиг основания, V , в определенном направлении для здания определяется следующим выражением:

где

V = боковой сдвиг основания здания. Расчетное значение В должно удовлетворять следующему условию:

Вт = эффективный сейсмический вес здания. Он включает в себя полную статическую нагрузку здания, его постоянного оборудования и перегородок.

T = основной естественный период здания, который зависит от массы и жесткости конструкции. Он рассчитывается по следующей эмпирической формуле:

C т = коэффициент периода строительства. Значение C t = 0,028 для каркасов из конструкционной стали, устойчивых к моменту, 0,016 для жестких железобетонных рам и 0,02 для большинства других конструкций (см. Таблицу 2.12).

n = высота самого высокого уровня здания, а x = 0.8 для стальных жестких рам, 0,9 для жестких железобетонных рам и 0,75 для других систем.

Таблица 2.12. C t значения для различных структурных систем.

Структурная система

C т

х

Рамы, сопротивляющиеся моменту стальные

Рамы с эксцентриситетом (EBF)

Все прочие конструкционные системы

0.028

0,03

0,02

0,8

0,75

0,75

S DI = расчетное спектральное ускорение. Он оценивается с использованием сейсмической карты, которая обеспечивает расчетную интенсивность землетрясения для конструкций в местах с T = 1 секунда.

S DS = расчетное спектральное ускорение.Он оценивается с использованием сейсмической карты, которая обеспечивает расчетную интенсивность землетрясения для конструкций с T = 0,2 секунды.

R = коэффициент модификации отклика. Это объясняет способность структурной системы противостоять сейсмическим силам. Значения R для нескольких распространенных систем представлены в таблице 2.13.

I = фактор важности. Это мера последствий для жизни человека и материального ущерба в случае выхода конструкции из строя.Значение фактора важности равно 1 для офисных зданий, но равняется 1,5 для больниц, полицейских участков и других общественных зданий, где в случае разрушения конструкции ожидается большая гибель людей или повреждение имущества.

Таблица 2.13. Коэффициент модификации ответа, R, как указано в ASCE 7-16.

Система сейсмостойкости

R

Системы несущих стен

Обычные железобетонные стены со сдвигом

Обычные стены, армированные сдвигом по камню

Стены из легкого каркаса (холоднокатаная сталь), обшитые конструкционными панелями, устойчивыми к сдвигу, или стальными листами

4

2

Строительные каркасные системы

Обычные железобетонные стены со сдвигом

Обычные стены, армированные сдвигом по камню

Рамы стальные, ограниченные продольным изгибом

5

2

8

Моментостойкие каркасные системы

Стальные рамы с особым моментом

Стальные обычные моментные рамы

Рамы моментные железобетонные обычные

8

3

После того, как общая сейсмическая статическая поперечная поперечная сила сдвига основания в заданном направлении для конструкции была вычислена, следующим шагом будет определение поперечной сейсмической силы, которая будет применяться к каждому уровню пола, используя следующее уравнение:

где

F x = боковая сейсмическая сила, приложенная к уровню x .

W i и W x = эффективные сейсмические веса на уровнях i и x .

i и x = высота от основания конструкции до этажей на уровнях i и x .

= суммирование произведения W i и всей конструкции.

k = показатель распределения, относящийся к основному собственному периоду конструкции.Для T ≤ 0,5 с, k = 1,0, а для T ≥ 2,5 с k = 2,0. Для T , лежащего между 0,5 с и 2,5 с, k можно вычислить с использованием следующего соотношения:

Рис. 2.6. Процедура эквивалентной боковой силы

Пример 2.5

Пятиэтажное офисное стальное здание, показанное на рис. 2.7, укреплено по бокам стальными каркасами, устойчивыми к особым моментам, и его размеры в плане 75 на 100 футов.Здание находится в Нью-Йорке. Используя процедуру эквивалентной боковой силы ASCE 7-16 , определите поперечную силу, которая будет приложена к четвертому этажу конструкции. Статическая нагрузка на крышу составляет 32 фунта на квадратный фут, статическая нагрузка на перекрытие (включая нагрузку на перегородку) составляет 80 фунтов на квадратный фут, а снеговая нагрузка на плоскую крышу составляет 40 фунтов на квадратный фут. Не обращайте внимания на вес облицовки. Расчетные параметры спектрального ускорения: S DS = 0,28 и S D 1 = 0.11.

Рис. 2.7. Пятиэтажное офисное здание.

Решение

S DS = 0,28 и S D 1 = 0,11 (дано).

R = 8 для стальной рамы со специальным моментом сопротивления (см. Таблицу 2.13).

Офисное здание относится к категории риска занятости II, поэтому I e = 1,0 (см. Таблицу 2.9).

Рассчитайте примерный фундаментальный естественный период здания T a .

C t = 0,028 и x = 0,8 (из таблицы 2.12 для стальных рам, сопротивляющихся моменту).

n = Высота крыши = 52,5 фута

Определите статическую нагрузку на каждом уровне. Поскольку снеговая нагрузка на плоскую крышу, указанная для офисного здания, превышает 30 фунтов на квадратный фут, 20% снеговой нагрузки должны быть включены в расчеты сейсмической статической нагрузки.

Вес, присвоенный уровню крыши:

W крыша = (32 фунта на фут) (75 футов) (100 футов) + (20%) (40 фунтов на квадратный фут) (75 футов) (100 футов) = 300000 фунтов

Вес, присвоенный всем остальным уровням, следующий:

Вт i = (80 фунтов на фут) (75 футов) (100 футов) = 600000 фунтов

Общая статическая нагрузка составляет:

Вт Всего = 300000 фунтов + (4) (600000 фунтов) = 2700 тыс.

Расчет коэффициента сейсмической реакции C s .

Следовательно, C с = 0,021> 0,01

Определите сейсмический сдвиг основания V .

В = C с Вт = (0,021) (2700 тысяч фунтов) = 56,7 тыс.

Рассчитайте боковую силу, приложенную к четвертому этажу.

2.1.4.5 Гидростатическое давление и давление земли

Подпорные конструкции должны быть спроектированы таким образом, чтобы не допускать опрокидывания и скольжения, вызываемых гидростатическим давлением и давлением грунта, чтобы обеспечить устойчивость их оснований и стен.Примеры подпорных стен включают гравитационные стены, консольные стены, контрфорсированные стены, резервуары, переборки, шпунтовые сваи и другие. Давление, создаваемое удерживаемым материалом, всегда перпендикулярно поверхностям удерживающей конструкции, контактирующим с ними, и изменяется линейно с высотой. Интенсивность нормального давления р и равнодействующей силы P на подпорную конструкцию рассчитывается следующим образом:

Где

γ = удельный вес удерживаемого материала.

= расстояние от поверхности удерживаемого материала и рассматриваемой точки.

2.1.4.6 Разные нагрузки

Существует множество других нагрузок, которые также можно учитывать при проектировании конструкций, в зависимости от конкретных случаев. Их включение в сочетания нагрузок будет основано на усмотрении проектировщика, если предполагается, что в будущем они окажут значительное влияние на структурную целостность. Эти нагрузки включают тепловые силы, центробежные силы, силы из-за дифференциальной осадки, ледовые нагрузки, нагрузки от затопления, взрывные нагрузки и многое другое.

2.2 Сочетания нагрузок для расчета конструкций

Конструкции

спроектированы с учетом требований как прочности, так и удобства эксплуатации. Требование прочности обеспечивает безопасность жизни и имущества, а требование эксплуатационной пригодности гарантирует удобство использования (людей) и эстетику конструкции. Чтобы соответствовать указанным выше требованиям, конструкции проектируются на критическую или самую большую нагрузку, которая будет действовать на них. Критическая нагрузка для данной конструкции определяется путем объединения всех различных возможных нагрузок, которые конструкция может нести в течение своего срока службы.В разделах 2.3.1 и 2.4.1 документа ASCE 7-16 представлены следующие сочетания нагрузок для использования при проектировании конструкций с использованием методов расчета коэффициента нагрузки и сопротивления (LRFD) и расчета допустимой прочности (ASD).

Для LRFD комбинации нагрузок следующие:

1.1.4 D

2.1.2 D + 1,6 L + 0,5 ( L r или S или R )

3.1.2 D + 1,6 ( L r или S или R ) + ( L или 0.5 Вт )

4.1.2 D + 1.0 W + L + 0.5 ( L r или S или R )

5.0.9 D + 1.0 Вт

Для ASD комбинации нагрузок следующие:

1. Д

2. Д + Д

3. D + ( L r или S или R )

4. D + 0,75 L + 0.75 ( L r или S или R )

5. D + (0,6 Вт )

где

D = статическая нагрузка.

L = временная нагрузка из-за занятости.

L r = временная нагрузка на крышу.

S = снеговая нагрузка.

R = номинальная нагрузка из-за начальной дождевой воды или льда, без учета затопления.

Вт = ветровая нагрузка.

E = сейсмическая нагрузка.

Пример 2.6

Система перекрытий, состоящая из деревянных балок, расположенных на расстоянии 6 футов друг от друга по центру, и деревянной обшивки с гребнем и пазом, как показано на рисунке 2.8, выдерживает статическую нагрузку (включая вес балки и обшивки) 20 фунтов на квадратный фут и временную нагрузку. 30 фунтов на квадратный фут. Определите максимальную факторную нагрузку в фунтах / футах, которую должна выдержать каждая балка перекрытия, используя комбинации нагрузок LRFD.

Рис. 2.8. Система полов.

Решение

Собственная нагрузка D = (6) (20) = 120 фунт / фут

Переменная нагрузка L = (6) (30) = 180 фунт / фут

Определение максимальной факторизованной нагрузки W и с использованием комбинаций нагрузок LRFD и пренебрежением членами, не имеющими значений, дает следующее:

Вт u = (1,4) (120) = 168 фунтов / фут

Вт u = (1,2) (120) + (1,6) (180) = 288 фунт / фут

Вт u = (1.2) (120) + (0,5) (180) = 234 фунт / фут

Вт u = (1,2) (120) + (0,5) (180) = 234 фунт / фут

Вт u = (1,2) (120) + (0,5) (180) = 234 фунт / фут

Вт u = (0,9) (120) = 108 фунтов / фут

Регулирующая факторная нагрузка = 288 фунтов / фут

2.3 Ширина и площадь притока

Зона притока — это зона нагрузки, на которую будет воздействовать элемент конструкции. Например, рассмотрим внешнюю балку B1 и внутреннюю балку B2 односторонней системы перекрытий, показанной на рисунке 2.9. Входная ширина для B1 — это расстояние от центральной линии луча до половины расстояния до следующего или соседнего луча, а подчиненная область для луча — это область, ограниченная шириной подчиненного элемента и длиной луча, как заштриховано на рисунке. Для внутренней балки B2-B3 ширина притока W T составляет половину расстояния до соседних балок с обеих сторон.

Рис. 2.9. Площадь притока.

2,4 Области влияния

Зоны влияния — это зоны нагружения, которые влияют на величину нагрузок, переносимых конкретным элементом конструкции.В отличие от притоков, где нагрузка в пределах зоны воспринимается стержнем, все нагрузки в зоне влияния не поддерживаются рассматриваемым стержнем.

2,5 Снижение динамической нагрузки

Большинство кодексов и стандартов допускают снижение временных нагрузок при проектировании больших систем перекрытий, поскольку очень маловероятно, что такие системы всегда будут поддерживать расчетные максимальные временные нагрузки в каждом конкретном случае. Раздел 4.7.3 стандарта ASCE 7-16 позволяет снизить временные нагрузки для элементов, которые имеют зону воздействия A I ≥ 37.2 м 2 (400 футов 2 ). Площадь влияния — это произведение площади притока и коэффициента элемента динамической нагрузки. Уравнения ASCE 7-16 для определения приведенной временной нагрузки на основе зоны воздействия следующие:

где

L = уменьшенная расчетная временная нагрузка на фут 2 (или м 2 ).

≥ 0,50 L o для конструктивных элементов, поддерживающих один этаж (например, балки, фермы, плиты и т. Д.).

≥ 0,40 L o для конструктивных элементов, поддерживающих два или более этажа (например, колонны и т. Д.).

Никакое уменьшение не допускается для динамических нагрузок на пол, превышающих 4,79 кН / м 2 (100 фунтов / фут 2 ) или для полов общественных собраний, таких как стадионы, зрительные залы, кинотеатры и т. Д., Поскольку существует большая вероятность того, что такие этажи будут перегружены или использованы как гаражи.

L o = несниженная расчетная временная нагрузка на фут 2 (или 2 м) из таблицы 2.2 (Таблица 4.3-1 в ASCE 7-16 ).

A T = площадь притока элемента в футах 2 (или м 2 ).

K LL = A I / A T = коэффициент элемента динамической нагрузки из таблицы 2.14 (см. Значения, указанные в таблице 4.7-1 в ASCE 7-16 ).

A I = K LL A T = зона влияния.

Таблица 2.14. Коэффициент динамической нагрузки элемента.

Строительный элемент

К LL

Внутренние колонны и внешние колонны без консольных плит

4

Наружные колонны с консольными перекрытиями

3

Угловые колонны с консольными перекрытиями

2

Внутренние и краевые балки без консольных плит

2

Все остальные элементы, включая панели в двусторонних плитах

1

Пример 2.7

В четырехэтажном школьном здании, используемом для классных комнат, колонны расположены, как показано на Рисунке 2.10. Нагрузка конструкции на плоскую крышу оценивается в 25 фунтов / фут 2 . Определите уменьшенную временную нагрузку, поддерживаемую внутренней колонной на уровне земли.

Рис. 2.10. Четырехэтажное здание школы.

Решение

Любая внутренняя колонна на уровне земли выдерживает нагрузку на крышу и временные нагрузки на втором, третьем и четвертом этажах.

Площадь притока внутренней колонны A T = (30 футов) (30 футов) = 900 футов 2

Временная нагрузка на крышу составляет F R = (25 фунтов / фут 2 ) (900 футов 2 ) = 22500 фунтов = 22,5 k

Для динамических нагрузок на перекрытие используйте уравнения ASCE 7-16 , чтобы проверить возможность уменьшения.

L o = 40 фунтов / фут 2 (из таблицы 4.1 в ASCE 7-16 ).

Если внутренняя колонна K LL = 4, то зона влияния A 1 = K LL A T = (4) (900 футов 2 ) = 3600 футов 2 .

Так как 3600 футов 2 > 400 футов 2 , временная нагрузка может быть уменьшена с помощью уравнения 2.14 следующим образом:

Согласно Таблице 4.1 в ASCE 7-16 , приведенная нагрузка как часть неуменьшенной временной нагрузки на пол для классной комнаты составляет Таким образом, приведенная временная нагрузка на пол составляет:

F F = (20 фунтов / фут 2 ) (900 футов 2 ) = 18000 фунтов = 18 кг

Общая нагрузка, воспринимаемая внутренней колонной на уровне земли, составляет:

F Итого = 22.5 к + 3 (18 к) = 76,5 к

Краткое содержание главы

Структурные нагрузки и системы нагружения: Элементы конструкции рассчитаны на наихудшие возможные сочетания нагрузок. Некоторые нагрузки, которые могут воздействовать на конструкцию, кратко описаны ниже.

Собственные нагрузки : Это нагрузки постоянной величины в конструкции. Они включают в себя вес конструкции и нагрузки, которые постоянно прилагаются к ней.

Динамические нагрузки : Это нагрузки различной величины и положения.К ним относятся подвижные грузы и нагрузки из-за занятости.

Ударные нагрузки : Ударные нагрузки — это внезапные или быстрые нагрузки, прикладываемые к конструкции в течение относительно короткого периода времени по сравнению с другими нагрузками на конструкцию.

Дождевые нагрузки : Это нагрузки из-за скопления воды на крыше после ливня.

Ветровые нагрузки : Это нагрузки из-за давления ветра на конструкции.

Снеговые нагрузки : Это нагрузки, оказываемые на конструкцию скопившимся снегом на крыше.

Землетрясения. Нагрузки : это нагрузки, оказываемые на конструкцию движением грунта, вызванным сейсмическими силами.

Гидростатическое давление и давление грунта : Это нагрузки на подпорные конструкции из-за давлений, создаваемых удерживаемыми материалами. Они линейно меняются с высотой стен.

Сочетания нагрузок: Два метода проектирования зданий — это метод расчета коэффициента нагрузки и сопротивления (LRFD) и метод расчета допустимой прочности (ASD).Некоторые комбинации нагрузок для этих методов показаны ниже.

LRFD:

1.1.4 D

2.1.2 D + 1,6 L + 0,5 ( L r или S или R )

3.1.2 D + 1,6 ( L r или S или R ) + ( L или 0,5 W )

4.1.2 D + 1.0 W + L + 0.5 ( L r или S или R )

5.0.9 D + 1.0 Вт

ASD:

1. Д

2. Д + Д

3. D + ( L r или S или R )

4. D + 0,75 L + 0,75 ( L r или S или R )

5. D + (0,6 Вт )

Список литературы

ACI (2016 г.), Требования строительных норм для конструкционного бетона (ACI 318-14), Американский институт бетона.

ASCE (2016), Минимальные расчетные нагрузки для зданий и других конструкций, ASCE 7-16, ASCE.

ICC (2012), Международные строительные нормы и правила, Международный совет по нормам.

Практические задачи

2.1 Определите максимальный факторный момент для балки крыши, подверженной следующим эксплуатационным нагрузкам:

M D = 40 psf (статический момент нагрузки)

M L r = 36 psf (момент нагрузки на крышу)

M с = 16 psf (момент снеговой нагрузки)

2.2 Определите максимальную факторную нагрузку, которую выдерживает колонна, подверженная следующим эксплуатационным нагрузкам:

P D = 500 тысяч фунтов (статическая нагрузка)

P L = 280 тысяч фунтов (постоянная нагрузка на пол)

P S = 200 тысяч фунтов (снеговая нагрузка)

P E = ± 30 тысяч фунтов (сейсмическая нагрузка)

P w = ± 70 тысяч фунтов (ветровая нагрузка)

2.3 Типовая планировка композитной системы перекрытий из железобетона и бетона в здании библиотеки показана на рисунке P2.1. Определите статическую нагрузку в фунтах / футах, действующую на типичную внутреннюю балку B 1- B 2 на втором этаже. Все лучи имеют размер W 12 × 44, расстояние между ними составляет 10 футов в секунду. Распределенная нагрузка на второй этаж:

Пескоцементная стяжка толщиной 2 дюйма

= 0.25 фунтов / кв. Дюйм

Железобетонная плита толщиной 6 дюймов

= 50 фунтов / кв. Дюйм

Подвесные потолки из металлических реек и гипсокартона

= 10 фунтов / кв. Дюйм

Электротехнические и механические услуги

= 4 фунта / кв. Дюйм

Типовой план этажа

Рис.P2.1. Композитная система перекрытий из стали и бетона.

2.4 План второго этажа здания начальной школы показан на рисунке P2.1. Отделка пола аналогична практической задаче 2.3, за исключением того, что потолок представляет собой акустическую древесноволокнистую плиту с минимальной расчетной нагрузкой 1 фунт-сила на фут. Все балки имеют размер W, 12 × 75, вес 75 фунтов / фут, а все балки — W, 16 × 44, с собственным весом 44 фунта / фут. Определите статическую нагрузку на типичную внутреннюю балку A 2- B 2.

2.5 План второго этажа офисного помещения показан на рисунке P2.1. Отделка пола аналогична практической задаче 2.3. Определите общую статическую нагрузку, приложенную к внутренней колонне B 2 на втором этаже. Все балки W 14 × 75, а все балки W 18 × 44.

2.6 Четырехэтажное больничное здание с плоской крышей, показанное на рисунке P2.2, имеет концентрически скрепленные рамы в качестве системы сопротивления поперечной силе. Вес на каждом уровне пола указан на рисунке.Определите сейсмический сдвиг основания в тысячах фунтов с учетом следующих расчетных данных:

S 1 = 1,5 г

S с = 0,6 г

Класс площадки = D

Рис. P2.2. Четырехэтажное здание с плоской крышей.

2.7 Используйте ASCE 7-16 для определения снеговой нагрузки (psf) для здания, показанного на рисунке P2.3. Следующие данные относятся к зданию:

Снеговая нагрузка на грунт = 30 фунтов / кв. Дюйм

Крыша полностью покрыта битумной черепицей.

Угол наклона крыши = 25 °

Открытая местность

Категория размещения I

Неотапливаемое сооружение

Рис. P2.3. Образец кровли.

2,8. В дополнение к расчетной снеговой нагрузке, рассчитанной в практической задаче 2.7, крыша здания на рисунке P2.3 подвергается статической нагрузке 16 фунтов на квадратный фут (включая вес фермы, кровельной доски и асфальтовой черепицы) по горизонтали. самолет. Определите равномерную нагрузку, действующую на внутреннюю ферму, если фермы имеют 6 футов-0 дюймов в центре.

2.9 Ветер дует со скоростью 90 миль в час на закрытое хранилище, показанное на Рисунке P2.4. Объект расположен на ровной местности с категорией воздействия B. Определите давление скорости ветра в psf на высоте карниза объекта. Топографический коэффициент K zt = 1.0.

Рис. P2.4. Закрытая сторга.

Как скоро укладывать бетон для стен и колонн на опоры и плиты? | Журнал Concrete Construction

В.: Два аналогичных вопроса были подняты относительно укладки бетона поверх недавно завершенных плит и фундаментов. В одном случае подрядчик хотел сформировать и разместить стены подвала на следующий день после завершения строительства фундаментов, но архитектор потребовал от архитектора подождать 7 дней. В другом случае инженер отказал в разрешении на укладку бетонной колонны над полностью закрепленной и поддерживаемой плитой, которая была уложена 5–7 часами ранее в тот же день. Рассматриваемые столбцы располагались по центру над столбцами нижнего уровня.Какие правила ограничивают время заливки бетона в этих условиях?

A .: После долгих поисков и расследований мы пришли к выводу, что нет никаких письменных правил, регулирующих эти случаи. Бетон в значительной степени имеет свои собственные правила в отношении времени схватывания и затвердевания, и у строителей, соблюдающих эти естественные ограничения, не было проблем. Например, подрядчик не будет использовать готовую плиту для установки опалубки для колонн до тех пор, пока бетон не станет достаточно твердым, чтобы не повредить его в результате работ.Опалубка и опоры, поддерживающие плиту, обычно рассчитаны также на то, чтобы выдерживать нагрузки от строительных работ на плите.

Стены подвала : Обычной практикой является заливка стен на следующий день после заливки фундаментов, но вряд ли вы найдете ссылку, в которой говорится, что вы можете или не можете это делать. Одна из причин, по которой это относительно безопасно, заключается в том, что размеры опор часто соответствуют минимальным требованиям местных норм, которые на самом деле превышают размер по сравнению с нагрузкой, которую стена будет оказывать на опору.Помните также, что на этом этапе строительства единственная нагрузка на опору будет исходить от веса стены, поскольку конструкция выше, для которой была спроектирована опора, еще не установлена.

Размещение колонн на новой плите : После проверки более десятка книг, технических отчетов и стандартов, касающихся опалубки и бетонных конструкций (из США и Европы), мы не нашли утверждения, ограничивающего время установки колонн на верх плиты.

Однако мы обнаружили ограничения на соответствующее условие размещения бетона в плитах и ​​балках поверх глубокого подъемника из свежего бетона в стенах или колоннах. Руководство Американского института бетона (ACI) по проверке бетона, ACI «Технические требования к конструкционному бетону для зданий (ACI 301-84)» и Строительный кодекс ACI (ACI 318-89) содержат утверждения, аналогичные намерениям следующего раздела. 8.3.2 из ACI 301-84: «Укладка бетона в опорные элементы не должна начинаться до тех пор, пока бетон, ранее уложенный в колонны и стены, не перестанет быть пластичным и будет оставаться на месте не менее двух часов.«

Ни один из трех документов ACI не устанавливает каких-либо ограничений для связанных условий размещения бетона над поддерживаемым элементом (балкой или плитой).

Мы обсуждали этот вопрос с бывшим председателем комитета 301 ACI, Дэвидом Густафсоном, техническим директором Института арматурной стали; и с нынешним председателем 301 Тимоти Мур из Gilbert / Commonwealth, Inc. Оба заявили, что не знают никаких правил или ограничений по времени укладки бетона колонн поверх недавно законченных плит.Мур далее заявил, что среди множества изменений, которые комитет рассматривает для будущих пересмотров ACI 301, такие положения не рассматриваются. Он сказал, что единственными другими положениями ACI 301, которые могут иметь какое-либо значение, будут те, которые касаются строительных швов. Раздел 6.1 ACI 301 (строительные швы) содержит положения о расположении строительных швов и склеивании в строительных швах, где это необходимо или разрешено, но ничего не касается сроков размещения.

Мы также опросили Рэнди Борднера, бывшего председателя комитета ACI 347, Опалубка для бетона.Борднер — профессиональный инженер и специалист в области проектирования и строительства многоэтажных зданий. Он заявил, что на его работах бетон колонн обычно укладывался поверх бетонной плиты, уложенной в тот же день, единственная проблема заключалась в удовлетворительной твердости плиты для крепления любых необходимых шаблонов и распорок.

Интересно, что П. Кумар Мета из Калифорнийского университета в Беркли говорит в своей книге Concrete Structure, Properties, and Materials относительно схватывания и твердения цементного теста в бетоне (стр. 191): «Время, затраченное на «solidify» полностью отмечает окончательный набор, который не должен быть слишком длинным, чтобы возобновить строительные работы в разумные сроки после укладки бетона.«

Это заявление подразумевает, что возобновление строительных работ может произойти во время окончательной установки.

Как определить толщину кладки стен в зданиях?

Толщина кладки стен в здании рассчитывается с учетом нагрузок и других факторов. Обсуждаются различные требования к подходящей толщине кладки стен.

Рис.1: Кладка стены и структура кладки

Требования к толщине кладки стен в зданиях

Существуют различные требования к толщине кладки стен, которые необходимо учитывать на этапе проектирования.

Например, рекомендуется использовать постоянную толщину стены кладки между боковыми опорами. Боковая опора для кладки обеспечивается поперечными стенами, пилястрами и конструктивными элементами каркаса, как показано на рисунке 2.

Рис.2: Боковая опора каменной стены

Что касается изменения кладки в вертикальном направлении, следует учитывать расстояние между этажами, структурными каркасами и крышами, когда толщина кладки стены варьируется.

Толщина кирпичной кладки варьируется между полом и крышей, а также между разными этажами, как правило, для достижения тепловых, звуковых и противопожарных требований.

Рис.3: Вертикальная опора каменной стены, учитываемая при изменении толщины кладки

При изменении толщины стены кладки рекомендуется удлинить более толстую стену до нижнего уровня опоры.

Строительные нормы и правила для каменной конструкции (ACI 530-11) гласят, что при изменении толщины кирпичной стены, построенной из пустотелых каменных блоков, потребуется обеспечить слой или несколько слоев твердых каменных блоков или полностью залитые пустотелые блоки между более толстой стеной и более тонкой стеной.

Целью создания сплошного слоя кладки между более толстой и более тонкой кладкой является надлежащая передача нагрузок от верхней стены (тонкая стена) к стене ниже (толстая стена).

Есть несколько ограничений и ограничений, которые следует учитывать для каменных стен, за исключением случая, когда стены спроектированы для армирования на основе инженерных принципов.

Ограничения, связанные с толщиной кладки для различных типов кирпичных стен, обсуждаются ниже.

Требования к толщине несущей кирпичной стены

Толщина несущей кирпичной стены должна быть не менее 304,8 мм (1 фут) для максимальной высоты стены 10,668 м (35 футов).

Кроме того, толщину кирпичной стены необходимо увеличивать на 101,6 мм (4 дюйма) на каждые последующие 10,668 м (35 футов) высоты или доли этой высоты, измеренные от верха каменной стены.

Есть несколько случаев, когда вышеуказанные условия не могут применяться к несущим каменным стенам.

Эти исключительные случаи включают усиленную каменную стену, каменную стену верхнего этажа, каменную стену жилых домов, каменную стену пентхаусов и крышных конструкций, каменную стену из простого бетона и кирпича с цементным раствором, пустотелую каменную стену, облицованную каменную стену, несущую каменную стену.

Кирпичная стена с усилением

Если несущая кирпичная стена усилена или усилена железобетонными перекрытиями или каменными поперечными стенами на расстоянии не более 3,65 м (12 футов.), то можно выбрать толщину 304,8 мм (1 фут) для максимальной высоты стены 21,33 м (70 футов).

Толщина каменной стены должна увеличиваться на 101,6 мм (4 дюйма) на каждые последующие 21,33 м (70 футов) высоты или доли этой высоты, измеренные от верха каменной стены.

Каменная стена верхнего этажа

Разрешается использовать толщину 203,2 мм (8 дюймов) для несущей кладки верхнего этажа здания с максимальной высотой 10,668 м (35 футов).).

Стена не должна подвергаться боковым нагрузкам, а ее высота не должна превышать 3,65 м (12 футов), в противном случае такую ​​толщину нельзя рассматривать.

Жилая кладка стены

Допустимая толщина несущей кирпичной стены жилого дома с максимум тремя этажами составляет 203,2 мм (8 дюймов).

Эту толщину не следует использовать, если здание выше трех этажей или высота стены превышает 10,668 м (35 футов).) или стена, на которую действуют боковые силы.

Кроме того, толщина стены может быть уменьшена до 152,4 мм (6 дюймов) для одноэтажного здания, если максимальная высота стены составляет 2,74 м (9 футов).

Кладка стен мансард и конструкций крыши

Толщина кладки несущей стены с высотой 3,65 м (12 футов) над уровнем крыши или пентхаусов может быть принята равной 203,2 мм (8 дюймов).

Обычная бетонная стена и кирпичная кладка с цементным раствором

Можно использовать 152 мм (6 футов.) толщина простой бетонной и залитой кирпичной кладки стены.

Пустотелая каменная стена

Рекомендуется ограничить высоту полости или стены из каменной кладки максимум 10,668 м (35 футов).

Кроме того, высота стенки полости не должна превышать 7,62 м (25 футов) над опорой, если ее толщина равна 254 мм (10 дюймов).

Требования к толщине стен из бутового камня

Толщина каменной стены не должна быть меньше 406 мм (16 дюймов.) в любом слючае.

Толщина ненесущих стен кладки

Минимальная толщина стены парапета может быть принята равной 203 мм (8 дюймов), а его высота не должна превышать толщину стены более чем в три раза.

Тем не менее, можно использовать стену парапета меньшей толщины, если она усилена, чтобы противостоять землетрясениям.

Что касается требований к толщине наружной несущей кирпичной стены, следует использовать те же спецификации, что и в ACI 530-11 для несущей каменной стены: 152 мм (6 дюймов) для одноэтажного здания и 203 мм (8 дюймов) для более чем одноэтажного здания.

Подробнее:

Виды кладки стен

Типы соединений при строительстве кирпичных стен и их применение

Строительство зданий с пластиковыми бутылками — стены, крыша и льготы

Типы сейсмостойких каменных стен

Список литературы

ACI 530-11. Требования и спецификации строительных норм и правил для конструкции каменной кладки.Американский институт бетона. Мичиган, стр. C151-C152. 2011.

BIA. Эмпирический дизайн кирпичной кладки. Ассоциация кирпичной промышленности. Вирджиния, стр. 2-4. 1991.

ФРЕДЕРИК С. МЕРРИТТ, ДЖОНАТАН Т. РИКЕТТС. Справочник по проектированию и строительству зданий. 6-е изд. Нью-Йорк: McGRAW-HILL, 2001.

.

ICC. Строительный кодекс Флориды. Совет Международного кодекса. Флорида, стр. 21.6-21.7. 2001.

неправильных мифов о строительстве колонн — задача преодолеть

Автор
Сурав Дутта
Менеджер-гражданский

Введение
Существует несколько способов строительства надстройки.В районах, где имеется кирпич среднего и хорошего качества, стены домов двух-трехэтажной застройки могут быть построены из кирпича с железобетонными плитами, перемычками, чайной и т. Д. Такая конструкция называется несущей (рис. 1). Это в основном потому, что вся нагрузка, исходящая от плит, балок, стен и т. Д., Передается на фундамент через кирпичные стены.


Рис.1: Кирпичная несущая конструкция

При стихийных бедствиях, таких как землетрясения или высокоскоростные ураганы, которые чаще случаются в различных частях страны, такая несущая стеновая конструкция больше не является безопасной для выдерживания горизонтальных сносов, если не будет модернизирована.Также такая конструкция подходит до G + 2-х этажного дома в целом.

Также, поскольку потребность в строительстве многоэтажных зданий возрастает в сочетании с опасными природными явлениями, рекомендуется выбрать каркасную конструкцию из RCC (армированного цементного бетона) (рис. 2). По сути, каркасная конструкция RCC состоит из ряда колонн, установленных в доме соответствующим образом, которые соединены между собой балками, образуя каркас. Эти колонны переносят строительную нагрузку на грунт через опоры RCC.

Каркас, начиная с фундамента, должен быть спроектирован инженером-строителем, который определит смесь бетона, которая будет использоваться, размеры колонн и балок, а также арматуру, которая должна быть предусмотрена в ней, в зависимости от нагрузок на поддерживаться структурой.

Объявления

Что такое столбец?
Колонна представляет собой вертикальный сжимающий элемент, который передает нагрузку конструкции на фундамент (рис. 2). Они усилены основными продольными (вертикальными) стержнями, чтобы противостоять сжатию и / или изгибу; и поперечная сталь (замкнутые стяжки) для сопротивления сдвигу (рис. 3).

Типичные нагрузки, которые необходимо учитывать при проектировании колонны
(i) Собственная нагрузка: любая постоянная нагрузка, действующая на колонну, например собственный вес колонны, вес балки

(ii) Динамическая нагрузка: любая непостоянная или подвижная нагрузка

(iii) Землетрясение: зависит от сейсмической зоны, в которой расположено здание. Чем выше зона, тем больше нагрузка

(iv) Ветровая нагрузка: зависит от скорости ветра, высоты и местоположения здания. Также местность и прилегающие конструкции играют роль в определении этой нагрузки


Рис 2


Рис 3

Конструкция колонны: разрушающий миф

S № Миф Фактическое
1 Для моего 2/3 этажного дома может быть достаточно диаметром 4-12 или 4-16 Колонна является наиболее важным элементом конструкции для передачи нагрузок на пол, исходящих от каждого этажа.Выход из строя колонны может привести к вздутию или разрушению всей конструкции. В зависимости от планировки вашего здания определяются приходящие нагрузки и этажность, сечение колонны и ее арматура. Стандартных рекомендаций как таковых нет.
2 Для колонн достаточно прозрачной крышки 25 мм (1 дюйм) Прозрачная крышка предоставляется на основе критериев прочности (воздействия) и огнестойкости. Согласно BIS456-2000 (b) рекомендуется использовать покрытие мин. 40 мм (прибл.1,5 дюйма) для колонн. Однако, если сечение колонны меньше 200 мм и диаметр арматуры 12 мм, то возможно только прозрачное покрытие 25 мм (1 дюйм).
3 Кольца / стяжки диаметром 6 мм слишком тонкие, чтобы удерживать арматурные стержни колонны Использование колец диаметром 6 мм разрешено в соответствии с рекомендациями BIS и не влияет на структурную стабильность колонны при условии, что они изготовлены и закреплены в соответствии с рекомендациями BIS. Это также дает значительную экономию по сравнению с кольцами диаметром 8 мм.
4 Кольца могут быть размещены на стандартном расстоянии (150/200 мм с / с) по всей колонне В соответствии с руководящими принципами правил проектирования пластичных конструкций для RCC-конструкций BIS 13920, кольца следует размещать на более близком расстоянии (примерно от 3 до 4 дюймов) до расстояния L / 6 [L = неподдерживаемая высота колонны] от любой балки-колонны. соединение.Расстояние в центральной части балансира колонны может составлять 6 дюймов.
5 8 мм или 10 мм арматуры в качестве вертикальных стержней колонны может быть достаточно В BIS456-2000 (b) рекомендуется использовать арматурный стержень мин. 12 мм в качестве вертикалей колонны, независимо от каких-либо условий. Однако количество арматурных стержней будет определяться на основе проектных решений.

Рекомендуемые методы строительства для колонн
1. В колонне должно быть предусмотрено минимум 4 продольных стержня в прямоугольных и 6 в круглых колоннах (рис. 4).

2. Арматуру следует размещать симметрично относительно осей симметрии (рис. 5). При несимметричном армировании всегда существует опасность того, что меньшее количество стали будет неправильно размещено на лицевой поверхности, что потребует большего армирования.


Рис 4


Рис 5

3. Если арматура колонны будет использоваться для будущего строительства или расширения, рекомендуется нанести слой цементного раствора (цемент: вода = 1: 3) на открытую часть арматуры и обернуть ее полиэтиленом или джутовой тканью. для предотвращения прямого контакта с атмосферой для защиты от атмосферной коррозии и, следовательно, потери материала для соединения будущих конструкций.

Примечание: Цементный раствор обеспечивает естественную защиту от атмосферной коррозии.

4. При притирке / стыковке арматурных стержней колонн необходимо следить за тем, чтобы соединительный арматурный стержень имел наклон 1 к 6 (минимум), так чтобы осевая линия обоих стержней совпадала (рис. 6).


Рис 6


Рис. 7 (а)


Рис. 7 (б)

5. Притирка предпочтительно должна производиться в центральной части колонны с минимальной длиной нахлеста, в 57 раз превышающей диаметр арматурного стержня (c).Таким образом, если вы используете арматуру 16 мм, длина нахлеста составит 3 фута.

6. Концы стяжек должны быть загнуты как крючки 135 °. Длина стяжки за изгибами 135 ° должна быть как минимум в 10 раз больше диаметра стального стержня, используемого для изготовления закрытой стяжки; это выступление за изгиб не должно быть меньше 75 мм (рис. 7а).

Если это правило не соблюдается, то стяжка / кольцо, удерживающие вертикальные стержни, имеют более высокую вероятность раскрытия во время такого события, как землетрясение. Следовательно, это может привести к выходу из строя колонки (рис. 7b).

7. Минимальная марка бетона, используемого для строительства колонны RCC, — M20.

8. Минимальный процент стали, используемой в колонне RCC, составляет 0,8% площади поперечного сечения колонны.

Примечание о сотах
Соты — это пустоты и полости, оставленные в бетонной массе на поверхности или внутри бетонной массы, куда бетон не может попасть. Они похожи на гнезда медоносных пчел (рис. 8).

Соты, расположенные по бокам, видны невооруженным глазом и могут быть легко обнаружены сразу после снятия опалубки.Гребни с медом, находящиеся внутри массы бетона, можно обнаружить только с помощью передовых методов, таких как измерение скорости ультразвуковым импульсом или испытание отбойным молотком.

Соты образуются в основном из-за:
a) Неправильная вибрация / уплотнение

б) Без покрытия арматурных стержней

c) Строительные швы (швы, до которых выполняется этап строительства) — это типичные места, где наблюдаются соты. Это связано с тем, что строительные швы не обработаны (очистка швов от цементного молока и рыхлого цементного раствора с помощью металлической щетки / сколов) перед возобновлением строительства.

d) Неправильная пропорция смеси различных компонентов бетона и / или неправильная градация заполнителей также являются причиной образования таких сот.

Средства для соты в бетоне:
• Строго говоря, везде, где наблюдаются соты, бетон должен быть сколот в этом месте, а часть должна быть восстановлена ​​после укладки свежего бетона. Соты как дефект не только снижают несущую способность, но и вода легко попадает в арматурные стержни, и начинается коррозия.Коррозия — это процесс, который продолжается через арматурные стержни даже в хорошем бетоне, что приводит к потере сцепления между стержнями и бетоном, что очень опасно для безопасности и жизни бетонных конструкций.

• Не будет вырываться из контекста, чтобы указать, что нанесение поверхностной цементной штукатурки на соты может быть временным решением для их сокрытия, но никогда не является безопасным / целесообразным.

• В месте соединения балки с колонной можно использовать бетон с гранулометрическим составом 20 мм и ниже с немного большим количеством воды и цемента, чтобы избежать образования сот.

• Использование игольчатого вибратора для надлежащего уплотнения бетона помогает уменьшить соты меда. Свежий бетон необходимо тщательно обработать вибрацией возле строительных швов, чтобы раствор из нового бетона тек между крупными заполнителями и имел надлежащее сцепление со старым бетоном.

Объявления

Ссылки
(a) BIS 1786 — это код BIS, который дает руководящие принципы, касающиеся качества стали, которым должны следовать все производители стали
(b) BIS 456-2000 — это свод правил BIS для простых и железобетонных конструкций
( c) Предложение сделано с учетом марки бетона М20 (цемент: песок: гранулированная щебень = 1: 1.5: 3) и марки Fe500 арматуры HYSD

Мы в engineeringcivil.com благодарны Er. Sourav Dutta за отправку нам этого документа. Мы надеемся, что эта статья будет полезна для всей строительной отрасли в целом.

Расчет нагрузки на колонну, балку и плиту

При расчете общей нагрузки на колонны, балки, плиты мы должны знать о различных нагрузках, приходящихся на колонну. Как правило, расположение колонн, балок и перекрытий можно увидеть в конструкции каркасного типа.В каркасе нагрузка на конструкцию передается от плиты к балке, от балки к колонне и в конечном итоге достигает фундамента здания.

Для расчета нагрузки здания необходимо рассчитать нагрузки на следующие элементы:

Что такое столбец:

Колонна — это вертикальный элемент строительной конструкции, который в основном предназначен для восприятия сжимающей и продольной нагрузки. Колонна — один из важных конструктивных элементов строительной конструкции. В зависимости от нагрузки, поступающей на столбец, размер увеличивается или уменьшается.

Длина колонны обычно в 3 раза больше их наименьшего поперечного размера в поперечном сечении. Прочность любой колонны в основном зависит от ее формы и размеров поперечного сечения, длины, расположения и положения колонны.

Расчет нагрузки на колонну

Что такое луч:

Балка — это горизонтальный конструктивный элемент в строительстве, который предназначен для восприятия поперечной силы, изгибающего момента и передачи нагрузки на колонны с обоих концов.Нижняя часть балки испытывает силу растяжения и силу сжатия верхней части. Таким образом, в нижней части балки предусмотрено больше стальной арматуры по сравнению с верхней частью балки.

Что такое плита:

Плита — это ровный конструктивный элемент здания, на котором предусмотрена ровная твердая поверхность. Эти плоские поверхности плит используются для изготовления полов, крыш и потолков. Это горизонтальный конструктивный элемент, размер которого может варьироваться в зависимости от размера и площади конструкции, а также может варьироваться его толщина.

Но минимальная толщина плиты указана для нормального строительства около 125 мм. Как правило, каждая плита поддерживается балкой, колонной и стеной вокруг нее.

Нагрузка на колонну, балку и плиту :

1) Собственная масса колонны X Количество этажей

2) Собственная масса балок на погонный метр

3) Нагрузка стен на погонный метр

4) Общая нагрузка на плиту (статическая нагрузка + динамическая нагрузка + собственный вес)

Помимо указанной выше нагрузки, на колонны также действуют изгибающие моменты, которые необходимо учитывать при окончательном проектировании.

Наиболее эффективным методом проектирования конструкций является использование передового программного обеспечения для проектирования конструкций, такого как ETABS или STAAD Pro.

Эти инструменты представляют собой упрощенный и трудоемкий метод ручных расчетов для проектирования конструкций, который в настоящее время настоятельно рекомендуется в полевых условиях.

для профессионального проектирования конструкций, есть несколько основных допущений, которые мы используем для расчетов нагрузок на конструкции.

Подробнее: H ow to C alculate Размер колонны для строительства (конструкция колонны RCC )

Подробнее : Как рассчитать количество стали для плиты

1.Расчет нагрузки на колонну (расчет конструкции колонны):

, мы знаем, что собственный вес бетона составляет около 2400 кг / м3, , что эквивалентно 240 кН, а собственный вес стали составляет около 8000 кг / м3.

Итак, если мы примем размер колонны 230 мм x 600 мм с 1% стали и стандартной высотой 3 метра, собственный вес колонны составит около 1000 кг на пол, что id равно 10 кН.

  • Объем бетона = 0.23 x 0,60 x 3 = 0,414 м³
  • Вес бетона = 0,414 x 2400 = 993,6 кг
  • Вес стали (1%) в бетоне = 0,414x 0,01 x 8000 = 33 кг
  • Общий вес колонны = 994 + 33 = 1026 кг = 10KN

При расчетах конструкции колонны мы предполагаем, что собственный вес колонн составляет от от 10 до 15 кН на пол.

Расчет нагрузки на колонну, балку и плиту :

2.Be am Расчет нагрузки:

Мы применяем тот же метод расчета для балки.

мы предполагаем, что каждый метр балки имеет размеры 230 мм x 450 мм без учета толщины плиты.

Предположим, что каждый (1 м) метр балки имеет размер

  • 230 мм x 450 мм без плиты.
  • Объем бетона = 0,23 x 0,60 x 1 = 0,138 м³
  • Вес бетона = 0,138 x 2400 = 333 кг
  • Вес стали (2%) в бетоне = = 0.138 x 0,02 x 8000 = 22 кг
  • Общий вес колонны = 333 + 22 = 355 кг / м = 3,5 кН / м

Таким образом, собственный вес будет около 3,5 кН за погонный метр.

3. Расчет нагрузки на стену :

известно, что Плотность кирпича колеблется от 1500 до 2000 кг на кубический метр.

Для кирпичной стены толщиной 6 дюймов, высотой 3 метра и длиной 1 метр,

Погонный метр нагрузки должен быть равен 0.150 x 1 x 3 x 2000 = 900 кг,

, что эквивалентно 9 кН / метр.

Этот метод можно использовать для расчета нагрузки кирпича на погонный метр для любого типа кирпича с использованием этого метода.

Для газобетонных блоков и блоков из автоклавного бетона, таких как Aerocon или Siporex, вес на кубический метр составляет от 550 до 700 кг на кубический метр.

, если вы используете эти блоки для строительства, нагрузка на стену на погонный метр может быть всего 4 кН / метр , использование этого блока может значительно снизить стоимость проекта.

Расчет нагрузки на колонну

4.

Расчет нагрузки на перекрытие :

Пусть, Предположим, плита имеет толщину 125 мм.

Таким образом, собственный вес каждого квадратного метра плиты будет

.

= 0,125 x 1 x 2400 = 300 кг, что эквивалентно 3 кН.

Теперь, если мы рассмотрим чистовую нагрузку, равную 1 кН на метр, а добавленную динамическую нагрузку, равную 2 кН, на метр.

Итак, исходя из приведенных выше данных, мы можем оценить нагрузку на плиту примерно в 6–7 кН на квадратный метр.

5. Фактор безопасности:

В конце концов, рассчитав всю нагрузку на колонну, не забудьте добавить коэффициент запаса прочности, который наиболее важен для любой конструкции здания для безопасной и удобной работы здания в течение его расчетного срока службы.

Это важно, когда выполняется расчет нагрузки на колонну.

Согласно IS 456: 2000 коэффициент безопасности составляет 1,5.

Посмотреть видео: Расчет нагрузки на колонну

Подробнее:

Вам также может понравиться:

(PDF) Влияние пазов и углублений на несущую способность кирпичной кладки

12

Канадский симпозиум по каменщику

Ванкувер, Британская Колумбия, 2-5 июня 2013 г.

ВЛИЯНИЕ ГОРИЗОНТАЛЬНЫХ ПРОФИЛЕЙ НА НАГРУЗКА

ВМЕСТИМОСТЬ КЛАДКИ

Ст.Reichel

1

, W. Jäger

2

и T. Bakeer

1

1

Старшие научные сотрудники, кафедра структурного проектирования, архитектурный факультет, Технический университет Дрездена, 01062, 9000den5, Германия , [email protected]

2

Профессор кафедры структурного проектирования архитектурного факультета Технического университета Дрездена, 01062, Дрезден,

Германия, [email protected]

РЕЗЮМЕ

Скрытая прокладка электрических линий (или аналогичных систем, таких как отопление или водопровод)

требует выполнения пазов и углублений в кирпичной кладке. Недавно на кафедре структурного проектирования

Дрезденского технического университета было проведено исследование влияния горизонтальных желобов

на несущую способность кирпичной кладки. По результатам следует определить, необходим ли дополнительный структурный анализ

для пазов вблизи опоры железобетонной плиты

или, как и раньше, ограничение геометрии и положения паза составляет

достаточно для обеспечения безопасности конструкции.

Основываясь на анализе современного состояния техники, влияние горизонтальных желобов на структурное поведение кладки

было исследовано экспериментально с помощью подходящих образцов

. Поэтому была определена несущая способность образцов с горизонтальным желобом при центрических

и эксцентрических нагрузках и проведено сравнение с результатами эталонных испытаний на образцах

без прогона. Структурное поведение было исследовано в отношении блоков каменной кладки с

вертикальными полостями.

Результаты экспериментальных исследований и дополнительных аналитических соображений будут наконец дополнены и подкреплены посредством исследования числовых параметров, выполненного с помощью

с помощью общего программного обеспечения FE.

КЛЮЧЕВЫЕ СЛОВА: кладка, паз, несущая способность, приложение эксцентричной нагрузки

ВВЕДЕНИЕ

Внутренняя прокладка линий электропередачи требует выполнения пазов в кладке. Немецкий стандарт

[1] предоставляет информацию о геометрии направляющих и расстояниях между направляющими

.Если эти значения соблюдены, отдельный структурный анализ не требуется, см. Таблицу 1.

Тем не менее, код не предоставляет никакой информации о том, как следует учитывать ослабление секций

, если указанные значения превышаются. В большинстве случаев кладку модифицируют таким образом

, чтобы она соответствовала требованиям [1]. Поэтому валидация стандартных руководств

чрезвычайно важна.

% PDF-1.6 % 36 0 объект > эндобдж xref 36 180 0000000016 00000 н. 0000004329 00000 н. 0000004466 00000 н. 0000004632 00000 н. 0000004758 00000 н. 0000004789 00000 н. 0000004983 00000 н. 0000005015 00000 н. 0000005850 00000 н. 0000006196 00000 п. 0000006543 00000 н. 0000006656 00000 н. 0000006789 00000 н. 0000007366 00000 н. 0000007908 00000 н. 0000007943 00000 п. 0000008137 00000 н. 0000008335 00000 н. 0000008449 00000 н. 0000009449 00000 н. 0000010408 00000 п. 0000010882 00000 п. 0000011082 00000 п. 0000012028 00000 п. 0000013080 00000 п. 0000014062 00000 п. 0000015174 00000 п. 0000016267 00000 п. 0000017004 00000 п. 0000019674 00000 п. 0000050084 00000 п. 0000083882 00000 п. 0000100394 00000 н. 0000100419 00000 н. 0000100488 00000 н. 0000100596 00000 н. 0000100684 00000 н. 0000100724 00000 н. 0000100822 00000 н. 0000100862 00000 н. 0000100982 00000 п. 0000101069 00000 п. 0000101203 00000 н. 0000101353 00000 п. 0000101458 00000 н. 0000101498 00000 п. 0000101632 00000 н. 0000101760 00000 н. 0000101860 00000 н. 0000101899 00000 н. 0000101999 00000 н. 0000102038 00000 н. 0000102151 00000 п. 0000102190 00000 п. 0000102290 00000 н. 0000102329 00000 н. 0000102378 00000 п. 0000102427 00000 н. 0000102476 00000 н. 0000102525 00000 н. 0000102564 00000 н. 0000102613 00000 н. 0000102653 00000 п. 0000102763 00000 н. 0000102803 00000 п. 0000102943 00000 н. 0000102984 00000 н. 0000103097 00000 н. 0000103138 00000 п. 0000103250 00000 н. 0000103291 00000 н. 0000103413 00000 п. 0000103454 00000 п. 0000103583 00000 н. 0000103624 00000 н. 0000103758 00000 п. 0000103799 00000 н. 0000103900 00000 н. 0000103941 00000 н. 0000104046 00000 н. 0000104087 00000 п. 0000104180 00000 п. 0000104221 00000 н. 0000104327 00000 н. 0000104368 00000 н. 0000104485 00000 н. 0000104526 00000 н. 0000104629 00000 н. 0000104670 00000 п. 0000104802 00000 п. 0000104843 00000 н. 0000104952 00000 п. 0000104993 00000 п. 0000105125 00000 н. 0000105166 00000 п. 0000105264 00000 н. 0000105305 00000 н. 0000105355 00000 н. 0000105406 00000 п. 0000105456 00000 п. 0000105506 00000 н. 0000105556 00000 п. 0000105606 00000 н. 0000105656 00000 н. 0000105707 00000 н. 0000105758 00000 п. 0000105809 00000 н. 0000105860 00000 п. 0000105911 00000 н. 0000105963 00000 н. 0000106014 00000 н. 0000106065 00000 н. 0000106116 00000 п. 0000106167 00000 п. 0000106218 00000 н. 0000106268 00000 н. 0000106309 00000 н. 0000106359 00000 п. 0000106400 00000 н. 0000106510 00000 н. 0000106551 00000 н. 0000106690 00000 н. 0000106731 00000 н. 0000106853 00000 п. 0000106894 00000 н. 0000107005 00000 н. 0000107046 00000 н. 0000107167 00000 н. 0000107208 00000 н. 0000107365 00000 н. 0000107406 00000 н. 0000107541 00000 н. 0000107582 00000 н. 0000107682 00000 н. 0000107723 00000 п. 0000107828 00000 н. 0000107869 00000 п. 0000107972 00000 п. 0000108013 00000 н. 0000108121 00000 п. 0000108162 00000 п. 0000108280 00000 п. 0000108321 00000 н. 0000108454 00000 п. 0000108495 00000 н. 0000108649 00000 н. 0000108690 00000 н. 0000108819 00000 н. 0000108860 00000 н. 0000108988 00000 н. 0000109029 00000 н. 0000109139 00000 н. 0000109180 00000 н.

LEAVE A REPLY

Ваш адрес email не будет опубликован. Обязательные поля помечены *